Identification of a Novel Score for Adherence to the Mediterranean Diet That Is Inversely Associated with Visceral Adiposity and Cardiovascular Risk: The Chrono Med Diet Score (CMDS)
Abstract
:1. Introduction
1.1. Overview of the Mediterranean Diet
1.2. Modern Eating Patterns and Dysmetabolic Conditions
1.3. Adherence Scores for the Mediterranean Diet
2. Materials and Methods
2.1. Study Participants
2.2. Clinical Assessment
2.3. Med Diet Score
2.4. MEDI-LITE Score
2.5. Biochemical Measurements
2.6. Statistical Analysis
3. Results
3.1. Chrono Med-Diet Score
3.2. Clinical Characterization of the Study Population
3.3. Association between MDS and MEDI-LITE Cut-Offs’ Identification and Increased WC
3.4. Associaton between CMDS, Increased WC and Dysmetabolic Conditions
3.5. Correlation between MedDiet Adherence Scores, Clinical and Biochemical Parameters for Metabolic Disorders
3.6. Data Distribution According to Scores’ ROC-Identified Cut-Offs for Major Dysmetabolic Biomarkers
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Trichopoulou, A.; Lagiou, P. Healthy traditional Mediterranean diet: An expression of culture, history, and lifestyle. Nutr. Rev. 1997, 55, 383–389. [Google Scholar] [CrossRef] [PubMed]
- Estruch, R.; Ros, E.; Salas-Salvado, J.; Covas, M.I.; Corella, D.; Aros, F.; Gomez-Gracia, E.; Ruiz-Gutierrez, V.; Fiol, M.; Lapetra, J.; et al. Primary Prevention of Cardiovascular Disease with a Mediterranean Diet Supplemented with Extra-Virgin Olive Oil or Nuts. N. Engl. J. Med. 2018, 378, e34. [Google Scholar] [CrossRef]
- Jimenez-Torres, J.; Alcala-Diaz, J.F.; Torres-Pena, J.D.; Gutierrez-Mariscal, F.M.; Leon-Acuna, A.; Gomez-Luna, P.; Fernandez-Gandara, C.; Quintana-Navarro, G.M.; Fernandez-Garcia, J.C.; Perez-Martinez, P.; et al. Mediterranean Diet Reduces Atherosclerosis Progression in Coronary Heart Disease: An Analysis of the CORDIOPREV Randomized Controlled Trial. Stroke 2021, 52, 3440–3449. [Google Scholar] [CrossRef] [PubMed]
- St-Onge, M.P.; Ard, J.; Baskin, M.L.; Chiuve, S.E.; Johnson, H.M.; Kris-Etherton, P.; Varady, K.; On behalf of the American Heart Association Obesity Committee of the Council on Lifestyle and Cardiometabolic Health; Council on Cardiovascular Disease in the Young; Council on Clinical Cardiology; et al. Meal Timing and Frequency: Implications for Cardiovascular Disease Prevention: A Scientific Statement from the American Heart Association. Circulation 2017, 135, e96–e121. [Google Scholar] [CrossRef] [PubMed]
- Di Daniele, N.; Noce, A.; Vidiri, M.F.; Moriconi, E.; Marrone, G.; Annicchiarico-Petruzzelli, M.; D’Urso, G.; Tesauro, M.; Rovella, V.; De Lorenzo, A. Impact of Mediterraneandiet on metabolicsyndrome, cancer and longevity. Oncotarget 2017, 8, 8947–8979. [Google Scholar] [CrossRef] [Green Version]
- Castello, A.; Amiano, P.; Fernandez de Larrea, N.; Martin, V.; Alonso, M.H.; Castano-Vinyals, G.; Perez-Gomez, B.; Olmedo-Requena, R.; Guevara, M.; Fernandez-Tardon, G.; et al. Low adherence to the western and high adherence to the mediterranean dietary patterns could prevent colorectal cancer. Eur. J. Nutr. 2019, 58, 1495–1505. [Google Scholar] [CrossRef]
- Kastorini, C.M.; Milionis, H.J.; Esposito, K.; Giugliano, D.; Goudevenos, J.A.; Panagiotakos, D.B. The effect of Mediterranean diet on metabolic syndrome and its components: A meta-analysis of 50 studies and 534,906 individuals. J. Am. Coll. Cardiol. 2011, 57, 1299–1313. [Google Scholar] [CrossRef] [Green Version]
- Sofi, F.; Cesari, F.; Abbate, R.; Gensini, G.F.; Casini, A. Adherence to Mediterranean diet and health status: Meta-analysis. BMJ 2008, 337, a1344. [Google Scholar] [CrossRef] [Green Version]
- de Lorgeril, M.; Salen, P.; Martin, J.L.; Monjaud, I.; Delaye, J.; Mamelle, N. Mediterranean diet, traditional risk factors, and the rate of cardiovascular complications after myocardial infarction: Final report of the Lyon Diet Heart Study. Circulation 1999, 99, 779–785. [Google Scholar] [CrossRef] [PubMed]
- Kidney Disease: Improving Global Outcomes (KDIGO) CKD-MBD Update Work Group. KDIGO 2017 Clinical Practice Guideline Update for the Diagnosis, Evaluation, Prevention, and Treatment of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD). Kidney Int. Suppl. 2017, 7, 1–59. [Google Scholar] [CrossRef] [Green Version]
- Crudele, L.; Piccinin, E.; Moschetta, A. Visceral Adiposity and Cancer: Role in Pathogenesis and Prognosis. Nutrients 2021, 13, 2101. [Google Scholar] [CrossRef] [PubMed]
- Trichopoulou, A.; Costacou, T.; Bamia, C.; Trichopoulos, D. Adherence to a Mediterranean diet and survival in a Greek population. N. Engl. J. Med. 2003, 348, 2599–2608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riboli, E.; Hunt, K.J.; Slimani, N.; Ferrari, P.; Norat, T.; Fahey, M.; Charrondiere, U.R.; Hemon, B.; Casagrande, C.; Vignat, J.; et al. European Prospective Investigation into Cancer and Nutrition (EPIC): Study populations and data collection. Public. Health Nutr. 2002, 5, 1113–1124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Merra, G.; Noce, A.; Marrone, G.; Cintoni, M.; Tarsitano, M.G.; Capacci, A.; De Lorenzo, A. Influence of Mediterranean Diet on Human Gut Microbiota. Nutrients 2020, 13, 7. [Google Scholar] [CrossRef] [PubMed]
- Davis, C.; Bryan, J.; Hodgson, J.; Murphy, K. Definition of the Mediterranean Diet; a Literature Review. Nutrients 2015, 7, 9139–9153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panagiotakos, D.B.; Pitsavos, C.; Arvaniti, F.; Stefanadis, C. Adherence to the Mediterranean food pattern predicts the prevalence of hypertension, hypercholesterolemia, diabetes and obesity, among healthy adults; the accuracy of the MedDietScore. Prev. Med. 2007, 44, 335–340. [Google Scholar] [CrossRef]
- Sofi, F.; Dinu, M.; Pagliai, G.; Marcucci, R.; Casini, A. Validation of a literature-based adherence score to Mediterranean diet: The MEDI-LITE score. Int. J. Food Sci. Nutr. 2017, 68, 757–762. [Google Scholar] [CrossRef]
- Alberti, K.G.; Zimmet, P.; Shaw, J. Metabolic syndrome—A new world-wide definition. A Consensus Statement from the International Diabetes Federation. Diabet. Med. 2006, 23, 469–480. [Google Scholar] [CrossRef]
- Mahmood, S.S.; Levy, D.; Vasan, R.S.; Wang, T.J. The Framingham Heart Study and the epidemiology of cardiovascular disease: A historical perspective. Lancet 2014, 383, 999–1008. [Google Scholar] [CrossRef] [Green Version]
- De Matteis, C.; Cariello, M.; Graziano, G.; Battaglia, S.; Suppressa, P.; Piazzolla, G.; Sabba, C.; Moschetta, A. AST to Platelet Ratio Index (APRI) is an easy-to-use predictor score for cardiovascular risk in metabolic subjects. Sci. Rep. 2021, 11, 14834. [Google Scholar] [CrossRef]
- Bedogni, G.; Bellentani, S.; Miglioli, L.; Masutti, F.; Passalacqua, M.; Castiglione, A.; Tiribelli, C. The Fatty Liver Index: A simple and accurate predictor of hepatic steatosis in the general population. BMC Gastroenterol. 2006, 6, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amato, M.C.; Giordano, C.; Galia, M.; Criscimanna, A.; Vitabile, S.; Midiri, M.; Galluzzo, A.; AlkaMeSy Study, G. Visceral Adiposity Index: A reliable indicator of visceral fat function associated with cardiometabolic risk. Diabetes Care 2010, 33, 920–922. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.H.; Kim, D.; Kim, H.J.; Lee, C.H.; Yang, J.I.; Kim, W.; Kim, Y.J.; Yoon, J.H.; Cho, S.H.; Sung, M.W.; et al. Hepatic steatosis index: A simple screening tool reflecting nonalcoholic fatty liver disease. Dig. Liver Dis. 2010, 42, 503–508. [Google Scholar] [CrossRef] [PubMed]
- Angulo, P.; Hui, J.M.; Marchesini, G.; Bugianesi, E.; George, J.; Farrell, G.C.; Enders, F.; Saksena, S.; Burt, A.D.; Bida, J.P.; et al. The NAFLD fibrosis score: A noninvasive system that identifies liver fibrosis in patients with NAFLD. Hepatology 2007, 45, 846–854. [Google Scholar] [CrossRef]
- Parikh, R.; Mathai, A.; Parikh, S.; Chandra Sekhar, G.; Thomas, R. Understanding and using sensitivity, specificity and predictive values. Indian. J. Ophthalmol. 2008, 56, 45–50. [Google Scholar] [CrossRef]
- Willett, W.C. The Mediterranean diet: Science and practice. Public. Health Nutr. 2006, 9, 105–110. [Google Scholar] [CrossRef] [Green Version]
- Tapsell, L.C.; Neale, E.P.; Satija, A.; Hu, F.B. Foods, Nutrients, and Dietary Patterns: Interconnections and Implications for Dietary Guidelines. Adv. Nutr. 2016, 7, 445–454. [Google Scholar] [CrossRef] [Green Version]
- Gijsbers, L.; Ding, E.L.; Malik, V.S.; de Goede, J.; Geleijnse, J.M.; Soedamah-Muthu, S.S. Consumption of dairy foods and diabetes incidence: A dose-response meta-analysis of observational studies. Am. J. Clin. Nutr. 2016, 103, 1111–1124. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. WHO Guidelines on Physical Activity and Sedentary Behaviour. Available online: https://www.who.int/publications/i/item/9789240015128 (accessed on 4 March 2023).
- Dinu, M.; Pagliai, G.; Giangrandi, I.; Colombini, B.; Toniolo, L.; Gensini, G.; Sofi, F. Adherence to the Mediterranean diet among Italian adults: Results from the web-based Medi-Lite questionnaire. Int. J. Food Sci. Nutr. 2021, 72, 271–279. [Google Scholar] [CrossRef]
- Prentice, R.L.; Tinker, L.F.; Huang, Y.; Neuhouser, M.L. Calibration of self-reported dietary measures using biomarkers: An approach to enhancing nutritional epidemiology reliability. Curr. Atheroscler. Rep. 2013, 15, 353. [Google Scholar] [CrossRef] [Green Version]
- UNESCO. The Mediterranean Diet, Inscribed in 2013 on the Representative List of the Intangible Cultural Heritage of Humanity. Available online: https://ich.unesco.org/en/RL/mediterranean-diet-00884 (accessed on 8 March 2023).
- Luisi, M.L.E.; Lucarini, L.; Biffi, B.; Rafanelli, E.; Pietramellara, G.; Durante, M.; Vidali, S.; Provensi, G.; Madiai, S.; Gheri, C.F.; et al. Effect of Mediterranean Diet Enriched in High Quality Extra Virgin Olive Oil on Oxidative Stress, Inflammation and Gut Microbiota in Obese and Normal Weight Adult Subjects. Front. Pharmacol. 2019, 10, 1366. [Google Scholar] [CrossRef] [Green Version]
- Neuhouser, M.L. The importance of healthy dietary patterns in chronic disease prevention. Nutr. Res. 2019, 70, 3–6. [Google Scholar] [CrossRef] [PubMed]
- Uusitupa, M.; Khan, T.A.; Viguiliouk, E.; Kahleova, H.; Rivellese, A.A.; Hermansen, K.; Pfeiffer, A.; Thanopoulou, A.; Salas-Salvado, J.; Schwab, U.; et al. Prevention of Type 2 Diabetes by Lifestyle Changes: A Systematic Review and Meta-Analysis. Nutrients 2019, 11, 2611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galbete, C.; Schwingshackl, L.; Schwedhelm, C.; Boeing, H.; Schulze, M.B. Evaluating Mediterranean diet and risk of chronic disease in cohort studies: An umbrella review of meta-analyses. Eur. J. Epidemiol. 2018, 33, 909–931. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bozzetto, L.; Alderisio, A.; Clemente, G.; Giorgini, M.; Barone, F.; Griffo, E.; Costabile, G.; Vetrani, C.; Cipriano, P.; Giacco, A.; et al. Gastrointestinal effects of extra-virgin olive oil associated with lower postprandial glycemia in type 1 diabetes. Clin. Nutr. 2019, 38, 2645–2651. [Google Scholar] [CrossRef]
- Bozzetto, L.; Alderisio, A.; Giorgini, M.; Barone, F.; Giacco, A.; Riccardi, G.; Rivellese, A.A.; Annuzzi, G. Extra-Virgin Olive Oil Reduces Glycemic Response to a High-Glycemic Index Meal in Patients with Type 1 Diabetes: A Randomized Controlled Trial. Diabetes Care 2016, 39, 518–524. [Google Scholar] [CrossRef] [Green Version]
- Ross, R.; Neeland, I.J.; Yamashita, S.; Shai, I.; Seidell, J.; Magni, P.; Santos, R.D.; Arsenault, B.; Cuevas, A.; Hu, F.B.; et al. Waist circumference as a vital sign in clinical practice: A Consensus Statement from the IAS and ICCR Working Group on Visceral Obesity. Nat. Rev. Endocrinol. 2020, 16, 177–189. [Google Scholar] [CrossRef] [Green Version]
- McHill, A.W.; Phillips, A.J.; Czeisler, C.A.; Keating, L.; Yee, K.; Barger, L.K.; Garaulet, M.; Scheer, F.A.; Klerman, E.B. Later circadian timing of food intake is associated with increased body fat. Am. J. Clin. Nutr. 2017, 106, 1213–1219. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Minguez, J.; Gomez-Abellan, P.; Garaulet, M. Timing of Breakfast, Lunch, and Dinner. Effects on Obesity and Metabolic Risk. Nutrients 2019, 11, 2624. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.B.; Patterson, R.E.; Ang, A.; Emond, J.A.; Shetty, N.; Arab, L. Timing of energy intake during the day is associated with the risk of obesity in adults. J. Hum. Nutr. Diet. 2014, 27 (Suppl. S2), 255–262. [Google Scholar] [CrossRef]
- Timlin, M.T.; Pereira, M.A. Breakfast frequency and quality in the etiology of adult obesity and chronic diseases. Nutr. Rev. 2007, 65, 268–281. [Google Scholar] [CrossRef] [PubMed]
- Gu, C.; Brereton, N.; Schweitzer, A.; Cotter, M.; Duan, D.; Borsheim, E.; Wolfe, R.R.; Pham, L.V.; Polotsky, V.Y.; Jun, J.C. Metabolic Effects of Late Dinner in Healthy Volunteers—A Randomized Crossover Clinical Trial. J. Clin. Endocrinol. Metab. 2020, 105, 2789–2802. [Google Scholar] [CrossRef] [PubMed]
- Aune, D.; Keum, N.; Giovannucci, E.; Fadnes, L.T.; Boffetta, P.; Greenwood, D.C.; Tonstad, S.; Vatten, L.J.; Riboli, E.; Norat, T. Whole grain consumption and risk of cardiovascular disease, cancer, and all cause and cause specific mortality: Systematic review and dose-response meta-analysis of prospective studies. BMJ 2016, 353, i2716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Korem, T.; Zeevi, D.; Zmora, N.; Weissbrod, O.; Bar, N.; Lotan-Pompan, M.; Avnit-Sagi, T.; Kosower, N.; Malka, G.; Rein, M.; et al. Bread Affects Clinical Parameters and Induces Gut Microbiome-Associated Personal Glycemic Responses. Cell. Metab. 2017, 25, 1243–1253. [Google Scholar] [CrossRef] [Green Version]
- Beilin, L. Alcohol and hypertension: Balancing the risks and benefits. J. Hypertens. 2005, 23, 1953–1955. [Google Scholar] [CrossRef]
- Rimm, E.B.; Ellison, R.C. Alcohol in the Mediterranean diet. Am. J. Clin. Nutr. 1995, 61, 1378S–1382S. [Google Scholar] [CrossRef]
- Kerr, W.C.; Greenfield, T.K.; Tujague, J.; Brown, S.E. A drink is a drink? Variation in the amount of alcohol contained in beer, wine and spirits drinks in a US methodological sample. Alcohol. Clin. Exp. Res. 2005, 29, 2015–2021. [Google Scholar] [CrossRef]
- Eckstrom, E.; Neukam, S.; Kalin, L.; Wright, J. Physical Activity and Healthy Aging. Clin. Geriatr. Med. 2020, 36, 671–683. [Google Scholar] [CrossRef]
Clinical Variable | N = 300 (150M:150F) |
---|---|
Age (Years) | 59.6 ± 0.8 |
BMI (Kg/m2) | 27.1 ± 5.6 |
Waist circumference (cm) | 97.2 ± 0.8 |
SBP (mmHg) | 128.9 ± 0.9 |
DBP (mmHG) | 84.4 ± 1.9 |
Erythrocytes (106/µL) | 4.8 ± 0.1 |
WBC (103/µL) | 6.3 ± 0.1 |
Hemoglobin (g/dL) | 13.8 ± 0.1 |
Neutrophils (%) | 59.2 ± 0.5 |
Eosinophils (%) | 3.1 ± 0.3 |
Basophils (%) | 0.6 ± 0.1 |
Lymphocytes (%) | 30.7 ± 0.5 |
Monocytes (%) | 6.4 ± 0.2 |
Platelet count (10^6/μL) | 231.3 ± 3.6 |
Total cholesterol (mg/dL) | 178.8 ± 2.4 |
HDL-c (mg/dL) | 55.2 ± 1.1 |
LDL-c (mg/dL) | 102.1 ± 2 |
TG (mg/dL) | 117.6 ± 3.7 |
Glucose (mg/dL) | 98.7 ± 1.6 |
HbA1c (mmol/mol) | 39.9 ± 1 |
25-OH Vitamin D(ng/mL) | 22.6 ± 0.6 |
Hs-CRP (mg/L) | 4.7 ± 0.5 |
GGT (U/L) | 35.2 ± 1 |
AST (U/L) | 20.9 ± 0.6 |
ALT (U/L) | 28.3 ± 1 |
ALP (U/L) | 63.9 ± 1.4 |
CVR (Framingham) | 16.77 ± 1 |
FLI | 50 ± 2 |
VAI | 4.1 ± 0.2 |
HSI | 33.6 ± 0.4 |
NFS | −1 ± 0.1 |
MED DIET SCORE | 32.2 ± 0.3 |
MEDI-LITE SCORE | 12.8 ± 0.2 |
Clinical Variable | MDS > 32 N = 136 (61M:75F) | MDS ≤ 32 N = 164 (89M:75F) | p-Value |
---|---|---|---|
WC (cm) | 90.7 ± 1.9 | 92.1 ± 2.8 | ns |
BMI (Kg/m2) | 27.2 ± 0.4 | 28.8 ± 0.5 | ns |
SBP (mmHg) | 127 ± 1.8 | 129.8 ± 2 | ns |
DBP (mmHg) | 85.4 ± 0.8 | 84.1 ± 0.9 | ns |
Erythrocytes (106/µL) | 4.7 ± 0.1 | 4.8 ± 0.1 | ns |
WBC (103/µL) | 6 ± 0.2 | 6.1 ± 0.1 | ns |
Hemoglobin (g/dL) | 13.8 ± 0.1 | 13.8 ± 0.1 | ns |
Neutrophils (%) | 59.1 ± 0.8 | 59.6 ± 0.7 | ns |
Eosinophils (%) | 2.9 ± 0.2 | 2.6 ± 0.1 | ns |
Basophils (%) | 0.6 ± 0.1 | 0.6 ± 0.1 | ns |
Lymphocytes (%) | 30.9 ± 0.7 | 31.2 ± 0.6 | ns |
Monocytes (%) | 6.3 ± 0.2 | 6.1 ± 0.1 | ns |
Platelet count (106/μL) | 228.8 ± 5.2 | 233.5 ± 5 | ns |
Total cholesterol (mg/dL) | 176.2 ± 3.3 | 181.9 ± 3.3 | ns |
HDL-c (mg/dL) | 51.8 ± 1.3 | 53.2 ± 1.4 | ns |
LDL-c (mg/dL) | 99 ± 2.9 | 104.8 ± 2.9 | <0.05 |
TG (mg/dL) | 116 ± 5.6 | 120.6 ± 5.2 | ns |
Glucose (mg/dL) | 98.5 ± 2.1 | 102.4 ± 2.3 | ns |
HbA1c (mmol/mol) | 40.2 ± 1.2 | 40.4 ± 1.3 | ns |
25-OH Vitamin D(ng/mL) | 22.6 ± 0.8 | 22 ± 1 | ns |
Hs-CRP (mg/L) | 4.1 ± 0.5 | 4.2 ± 0.5 | ns |
GGT (U/L) | 33.7 ± 2.8 | 37.4 ± 3.1 | <0.05 |
AST (U/L) | 23.86 ± 0.8 | 24.1 ± 3.1 | ns |
ALT (U/L) | 31.1 ± 1.6 | 30.19 ± 1.4 | ns |
ALP (U/L) | 72.9 ± 2 | 75.63 ± 2.1 | ns |
CVR (Framingham) | 17.2 ± 3.2 | 19.98 ± 1.2 | ns |
FLI | 43 ± 7.3 | 55.66 ± 2.9 | <0.05 |
VAI | 3 ± 0.8 | 4.01 ± 0.4 | <0.05 |
HSI | 36.7 ± 0.8 | 37.39 ± 0.6 | ns |
NFS | −1 ± 0.2 | −0.73 ± 0.7 | <0.05 |
Clinical Variable | MEDI-LITE > 12 N = 104 (49M:55F) | MEDI-LITE ≤ 12 N = 196 (101M:95F) | p-Value |
---|---|---|---|
WC (cm) | 89.3 ± 2.4 | 92.7 ± 1.7 | ns |
BMI (Kg/m2) | 28.3 ± 0.6 | 27.9 ± 0.4 | ns |
SBP (mmHg) | 128.3 ± 1.3 | 128.7 ± 1.8 | ns |
DBP (mmHg) | 85 ± 1.1 | 86 ± 2.2 | ns |
Erythrocytes (106/µL) | 4.7 ± 0.1 | 4.8 ± 0.1 | ns |
WBC (103/µL) | 6.1 ± 0.1 | 6.1 ± 0.1 | ns |
Hemoglobin (g/dL) | 14 ± 0.1 | 13.7 ± 0.1 | ns |
Neutrophils (%) | 59.4 ± 1 | 59.4 ± 0.6 | ns |
Eosinophils (%) | 2.8 ± 0.2 | 2.7 ± 0.1 | ns |
Basophils (%) | 0.5 ± 0.1 | 0.6 ± 0.1 | ns |
Lymphocytes (%) | 30.7 ± 0.8 | 31.2 ± 0.5 | ns |
Monocytes (%) | 6.4 ± 0.2 | 6.2 ± 0.1 | ns |
Platelet count (106/μL) | 232.5 ± 6.3 | 231.1 ± 4.4 | ns |
Total cholesterol (mg/dL) | 181.7 ± 4.1 | 178.1 ± 2.9 | ns |
HDL-c (mg/dL) | 53.6 ± 1.9 | 54.4 ± 1.2 | ns |
LDL-c (mg/dL) | 105 ± 3.6 | 100.8 ± 2.5 | ns |
TG (mg/dL) | 118 ± 6. | 118.6 ± 4.8 | ns |
Glucose (mg/dL) | 103.7 ± 3.5 | 98.9 ± 1.6 | ns |
HbA1c (mmol/mol) | 41.3 ± 1.7 | 39.9 ± 1 | ns |
25-OH Vitamin D(ng/mL) | 24.1 ± 1.1 | 22.1 ± 0.8 | ns |
Hs-CRP (mg/L) | 4.2 ± 0.4 | 4.1 ± 0.4 | ns |
GGT (U/L) | 32.1 ± 3.4 | 37.1 ± 2.6 | <0.05 |
AST (U/L) | 22.9 ± 1 | 24.5 ± 0.8 | ns |
ALT (U/L) | 28.7 ± 1.4 | 31.6 ± 1.4 | ns |
ALP (U/L) | 72.5 ± 2.7 | 73.1 ± 1.7 | ns |
CVR (Framingham) | 21.3 ± 1.7 | 20.2 ± 1.2 | ns |
FLI | 51.9 ± 3.4 | 51.7 ± 3.7 | ns |
VAI | 4.1 ± 0.3 | 4.2 ± 0.2 | ns |
HSI | 36.9 ± 0.8 | 36.3 ± 0.5 | ns |
NFS | −0.9 ± 0.22 | −1.1 ± 0.1 | ns |
Clinical Variable | CMDS >14 N = 97 (40M:57F) | CMDS ≤ 14 203 (110M:93F) | p-Value |
---|---|---|---|
WC (mmHg) | 87.9 ± 2.1 | 97.4 ± 0.8 | <0.01 |
BMI (Kg/m2) | 25.1 ± 0.5 | 29.7 ± 5.5 | <0.05 |
SBP (mmHg) | 122 ± 1.4 | 131.6 ± 1 | <0.05 |
DBP (mmHg) | 81.3 ± 1.7 | 84.1 ± 1 | ns |
Erythrocytes (106/µL) | 4.8 ± 0.1 | 4.8 ± 0.1 | ns |
WBC (103/µL) | 5.8 ± 0.2 | 6.5 ± 0.1 | ns |
Hemoglobin (g/dL) | 13.7 ± 0.1 | 13.9 ± 1 | ns |
Neutrophils (%) | 59.2 ± 1 | 59.5 ± 0.6 | ns |
Eosinophils (%) | 2.9 ± 0.2 | 2.6 ± 0.1 | ns |
Basophils (%) | 0.6 ± 0.3 | 0.6 ± 0.3 | ns |
Lymphocytes (%) | 31 ± 0.9 | 31.1 ± 0.5 | ns |
Monocytes (%) | 6.3 ± 0.2 | 6.2 ± 0.1 | ns |
Platelet count (106/μL) | 227.3 ± 5.6 | 203.1 ± 4.6 | <0.05 |
Total cholesterol (mg/dL) | 179.6 ± 4.1 | 191.9 ± 3 | <0.05 |
HDL-c (mg/dL) | 59.1 ± 1.4 | 49.6 ± 1.2 | <0.01 |
LDL-c (mg/dL) | 104.1 ± 3.7 | 111 ± 2.5 | ns |
TG (mg/dL) | 89.9 ± 4.6 | 131.6 ± 4.9 | <0.005 |
Glucose (mg/dL) | 92.3 ± 2.5 | 106.4 ± 1.9 | <0.01 |
HbA1c (mmol/mol) | 35.2 ± 1.3 | 43.5 ± 1.1 | <0.05 |
25-OH Vitamin D(ng/mL) | 26 ± 1.4 | 18.4 ± 0.7 | <0.05 |
Hs-CRP (mg/L) | 3.7 ± 0.3 | 5 ± 0.4 | ns |
GGT (U/L) | 32.6 ± 4 | 39 ± 2.4 | <0.05 |
AST (U/L) | 22.7 ± 1 | 26.6 ± 0.8 | ns |
ALT (U/L) | 29.4 ± 2 | 31.3 ± 1.3 | ns |
ALP (U/L) | 70.5 ± 2.3 | 81.2 ± 1.8 | <0.05 |
CVR (Framingham) | 12.1 ± 1.2 | 24.4 ± 1.3 | <0.01 |
FLI | 33.9 ± 2.8 | 60.8 ± 2.2 | <0.001 |
VAI | 2.8 ± 0.2 | 4.8 ± 0.2 | <0.05 |
HSI | 33.6 ± 0.6 | 39.9 ± 0.5 | <0.05 |
NFS | −1.9 ± 0.2 | −0.5 ± 0.1 | <0.005 |
Clinical Variable | MEDI-LITE | MDS | CMDS | |||
---|---|---|---|---|---|---|
Spearman (r) | p-Value | Spearman (r) | p-Value | Spearman (r) | p-Value | |
BMI (Kg/m2) | −0.05 | 0.4 | −0.05 | 0.4 | −0.39 | <0.05 |
Waist circumference (cm) | −0.05 | 0.54 | 0.04 | 0.31 | −0.60 | <0.001 |
HDL-c (mg/L) | 0.14 | 0.59 | 0.09 | 0.13 | 0.47 | <0.001 |
TG (mg/dL) | −0.03 | 0.6 | −0.02 | 0.68 | −0.45 | <0.001 |
Glucose (mg/dL) | 0.06 | 0.29 | −0.06 | 0.32 | −0.41 | <0.001 |
HbA1c (mmol/mol) | 0.14 | 0.06 | 0.09 | 0.2 | −0.36 | <0.005 |
25-OH Vitamin D(ng/mL) | 0.2 | <0.001 | 0.15 | <0.01 | 0.55 | <0.001 |
CVR (Framingham) | −0.06 | 0.5 | 0.13 | 0.5 | −0.61 | <0.001 |
FLI | −0.11 | 0.8 | −0.03 | 0.7 | −0.62 | <0.001 |
VAI | −0.05 | 0.4 | −0.04 | 0.5 | −0.45 | <0.001 |
HSI | 0.08 | 0.2 | −0.05 | 0.4 | −0.39 | <0.001 |
NFS | 0.02 | 0.7 | −0.02 | 0.7 | −0.56 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Matteis, C.; Crudele, L.; Battaglia, S.; Loconte, T.; Rotondo, A.; Ferrulli, R.; Gadaleta, R.M.; Piazzolla, G.; Suppressa, P.; Sabbà, C.; et al. Identification of a Novel Score for Adherence to the Mediterranean Diet That Is Inversely Associated with Visceral Adiposity and Cardiovascular Risk: The Chrono Med Diet Score (CMDS). Nutrients 2023, 15, 1910. https://doi.org/10.3390/nu15081910
De Matteis C, Crudele L, Battaglia S, Loconte T, Rotondo A, Ferrulli R, Gadaleta RM, Piazzolla G, Suppressa P, Sabbà C, et al. Identification of a Novel Score for Adherence to the Mediterranean Diet That Is Inversely Associated with Visceral Adiposity and Cardiovascular Risk: The Chrono Med Diet Score (CMDS). Nutrients. 2023; 15(8):1910. https://doi.org/10.3390/nu15081910
Chicago/Turabian StyleDe Matteis, Carlo, Lucilla Crudele, Stefano Battaglia, Tiziana Loconte, Arianna Rotondo, Roberta Ferrulli, Raffaella Maria Gadaleta, Giuseppina Piazzolla, Patrizia Suppressa, Carlo Sabbà, and et al. 2023. "Identification of a Novel Score for Adherence to the Mediterranean Diet That Is Inversely Associated with Visceral Adiposity and Cardiovascular Risk: The Chrono Med Diet Score (CMDS)" Nutrients 15, no. 8: 1910. https://doi.org/10.3390/nu15081910
APA StyleDe Matteis, C., Crudele, L., Battaglia, S., Loconte, T., Rotondo, A., Ferrulli, R., Gadaleta, R. M., Piazzolla, G., Suppressa, P., Sabbà, C., Cariello, M., & Moschetta, A. (2023). Identification of a Novel Score for Adherence to the Mediterranean Diet That Is Inversely Associated with Visceral Adiposity and Cardiovascular Risk: The Chrono Med Diet Score (CMDS). Nutrients, 15(8), 1910. https://doi.org/10.3390/nu15081910