The Link between Different Types of Prebiotics in Infant Formula and Infection Rates: A Review
Abstract
:1. Introduction
2. Materials and Methods
- Oligosaccharide OR FOS OR GOS OR fructooligosaccharide OR fructo-oligosaccharide OR galactooligosaccharide OR galacto-oligosaccharide OR prebiotic OR HMO OR human milk oligosaccharide OR LNnT OR 2′FL OR inulin OR PDX OR polydextrose.
- AND infection OR infectious OR respiratory tract infection OR RTI OR URTI OR fever OR antibiotic. AND formula milk OR milk OR formula OR infant formula.
3. Results
3.1. Galactooligosaccharides (GOSs)/Fructooligosaccharides (FOSs)
First Author, Year [Reference] | Country | Inclusion Criteria; Age at Inclusion | Intervention (Number Included) | Control (Number Included) | Duration of a. Intervention b. Observation | Outcomes |
---|---|---|---|---|---|---|
Arslanoglu, 2007 [30] | Italy | Term infants with parental atopic history; <2 weeks | EHF + GOSs/FOSs 9:1 8 g/L (+/− BF first 6 weeks) (102) | EHF (104) | a. 6 months b. 6 months | Primary outcomes ● Infectious episodes: 21/102 vs. 47/104 (p= 0.01) ● Infections requiring antibiotics: 11/102 vs. 22/104 (p= 0.1) ● Recurrent infections: 4/102 vs. 13/104 (p < 0.05) ● URTIs: 14/102 vs. 30/104 (p=0.07) ● GI infections: 1/102 vs. 4/104(p =0.18) Secondary outcome ● Faecal Bifidobacteria: mean 10.3 vs. 8.7 colony-forming units/g stool (p < 0.01) |
Arslanoglu, 2008 [26] | Italy | Term infants with parental atopic history; <2 weeks | EHF + GOSs/FOSs 9:1 8 g/L (+/− BF first 6 weeks) (66) | EHF (68) | a. 6 months b. 2 years | Primary outcomes ● Allergic manifestations (p < 0.05) - Atopic dermatitis 13.6% vs. 27.9% - Recurrent wheezing 7.6% vs. 20.6% - Allergic urticaria 1.5% vs. 10.3% Secondary outcomes ● Growth: mean body weight and length were similar ● Infectious episodes - Overall infections: mean 4.1 ± 3.1 vs. 5.9 ± 4.1(p < 0.01) - URTIs: mean 2.1 ± 1.8 vs. 3.2 ± 2.2 (p < 0.01) - LRTIs: mean 0.9 ± 1.1 vs. 1.3 ± 0.8 (p > 0.05) - GI infections: mean 0.4 ± 0.7 vs. 0.6 ± 0.9(p > 0.05) - Infections requiring antibiotics: mean 1.8 ± 2.3 vs. 2.7 ± 2.4 (p < 0.05) - Urinary tract infections: 0 ± 0 vs. 0.1 ± 0.5 (p = 0.06) |
Bruzzese, 2009 [27] | Italy | Healthy term infants after at least 2 weeks of exclusive breastfeeding; 15–120 days | Infant formula + GOSs/FOSs 9:1 4 g/L (169) | Infant formula (173) | a. 1 year b. 1 year | Primary outcomes ● Diarrhea episode/child: mean 0.12 ± 0.04 vs. 0.29 ± 0.05 (p = 0.015) ● URTIs: 60/94 vs. 65/109 (p = 0.4) ● Recurrent URTIs: 17/60 vs. 29/65 (p = 0.06) ● LRTIs: 4/94 vs. 6/109 (p > 0.05) ● Antibiotics prescribed: 1.03 ± 0.15 vs. 1.48 ± 0.16 (p = 0.038) Secondary outcomes ● Growth - Average weight, length, and head circumference: similar in both groups - Mean body weight: increased at 3 and 6 months, similar at 9 and 12 months - Mean body length: greater (p < 0.05) - Mean head circumference: similar |
Bocquet, 2013 [31] | France | Healthy term infants; <42 days | Infant formula + B. lactis + GOSs/FOSs 9:1 4 g/L (261) | Infant formula + B. lactis (267) | a. 1 year b. 1 year | Primary outcomes ● Mean number of infections: 4.9 ± 3.2 vs. 4.5 ± 3.2 (p = 0.18) ● No differences in type of infection - GI infections (p > 0.1) - Antibiotic use: 1.0 ± 1.2 vs. 0.9 ± 1.2 (p = 0.3) Secondary outcomes ● Anthropometric measurements: similar in both groups ● Tolerance: no differences in daily stool frequency and consistency or overall acceptance of the formula ● Adverse events: 60% in each group had one or more AE; none was related to the study formula |
van Stuijvenberg, 2011 [32] | Netherlands, Austria, Switzerland, Italy, Germany | Healthy term infants; <8 weeks | Infant formula + GOSs/FOSs 9:1 6.8 g/L + pectine-derived acidic OSs 1.2 g/L (414) | ● Infant formula (416) ● Breastfeeding (300) | a. 1 year b. 1 year | Primary outcomes ● Fever episodes: - ITT analysis: median 1.19 [0.2–9.34] vs. 1.16 [0.2–6.38] (p > 0.05) - PP analysis for first 6 months: median 0.13 [0.12–2.31] vs. 0.13 [0.12–2.36] (p < 0.05) ● Antibiotic use: median 0.05 [0.05–0.11] vs. 0.05 [0.05–0.16] (p > 0.05) |
van Stuijvenberg, 2015 [33] | Netherlands, Austria, Switzerland, Italy, Germany | Healthy term infants; <8 weeks | Infant formula + GOSs/FOSs 9:1 6.8 g/L + pectine-derived acidic OSs 1.2 g/L (232) | ● Infant formula (243) ● Breastfeeding (197) | a. 1 year b. 5 years | Primary outcomes ● Fever episodes at 3 to 5 years: median episodes per year 1.17 [0.5–2.08] vs. 1.2 [0.52–2.57] (p = 0.22) ● Episodes of coughing, wheezing, vomiting, and diarrhoea: similar (p > 0.1) Secondary outcomes ● Duration of diarrhoea in days: median 1 (0–4) vs. 2 (0–7) (p = 0.01) ● Duration of coughing, wheezing, rhinitis, and vomiting: similar (p > 0.1) ● Runny nose: median episodes per year in the breastfed infants 3.62 [1.97–5.76] vs. intervention group 2.59 [1.02–5.26] vs. control group 2.19 [0.99–4.95] ● Antibiotic use: 172/232 vs. 203/243 (p > 0.05) ● Antipyretic use: 224/232 vs. 237/243 (p > 0.05) |
3.2. Human Milk Oligosaccharides
First Author, Year [Reference] | Country | Inclusion Criteria; Age at Inclusion | Intervention (Number Included) | Control (Number Included) | Duration a. Intervention b. Observation | Outcomes |
---|---|---|---|---|---|---|
Marriage, 2015 [34] | USA | Healthy term infants; <5 days | ● Test 1 (T1) Infant formula + GOSs 2.2 g/L + 2′-FL 0.2 g/L (104) ● Test 2 (T2) Infant formula + GOSs 1.4 g/L + 2′ -FL 1 g/L (109) | ● Control (C) Infant formula + GOSs 2.4 g/L (101) ● Breastfeeding (BF) (106) | a. 4 months b. 4 months | Primary outcome Anthropometric measures: no difference in mean weight, length, and head circumference Secondary outcomes ● Mean daily formula intake: similar ● Tolerance: - Stool per day: more in BF group, similar in T1–T2–C group (p < 0.01) - Stool consistency: higher in formula groups vs. BF - Spitting and vomiting: more in T1–T2–C group versus BF group (p < 0.05) ● Adverse events: - More infections in C and T2 groups (RTI, OM, viral infections, oral candidiasis): Test 1 11/104 vs. Test 2 38/109 vs. Control 28/101 (p < 0.05) - Eczema: more in C group (5) than T1 and T2 (0) (p < 0.05) ● 2′FL uptake in plasma and excretion in urine: - Plasma uptake higher in BF > T2 > T1 - Urine excretion BF, T2 > T1 > C |
Puccio, 2017 [28] | Italy, Belgium | Healthy term infants; <14 days | Infant formula + 2′-FL 1 g/L + LNnT 0.5 g/L (88) | Infant formula (87) | a. 6 months b. 12 months | Primary outcome Weight gain: similar in both groups Secondary outcomes ● Other anthropometric measures: similar ● Formula intake: similar ● GI tolerance: similar ● Stools softer at 1 and 2 months, no differences > 2 months ● Behavioural patterns: similar ● Morbidity - Infants with at least 1 infection: 69.3% vs. 82.8% (p = 0.051) - Bronchitis: 9/88 vs. 24/87 (p < 0.01) - LRTIs: 17/88 vs. 30/87 (p < 0.05) - Antibiotic use: 37/88 vs. 53/87 (p < 0.05) |
Storm, 2019 [35] | USA | Healthy term infants; <19 days | Partially hydrolysed formula + B. lactis+ 2′ -FL 0.25 g/L (38) | Partially hydrolysed formula+ B. lactis (40) | a. 6 weeks b 6 weeks | Primary outcome Tolerance: GSQ 20.9 ± 4.8 vs. 20.7 ± 4.3 (p = 0.82) Secondary outcomes ● Stool frequency, consistency, and ease of passing: similar ● Spit up, vomiting, crying, fussing: no difference ● Formula intake: similar ● Adverse events: - infections: 9/40 vs. 3/38—p 0.05-URTI: 0/38 vs. 4/10 (p = 0.12) ● Anthropometric measures: similar |
Parschat, 2021 [36] | Germany, Italy, Spain | Healthy term infants; <14 days | Infant formula + 2′ FL 2.99 g/L + 3 FL 0.75 g/L + LNT 1.5 g/L + 3′ SL 0.23 g/L + 6′ SL 0.28 g/L (113) | ● Infant formula (112) ● Breastfeeding (116) | a. 4 months b. 6 months | Primary outcome Weight gain: none inferior Secondary outcomes ● Other anthropometric measures: similar ● GI tolerance: similar ● Defaecation: stools softer and more frequent ● Adverse events: - Incidence of AEs was similar in CG and TG, higher than the BF group - Incidence of infections similar in the 3 groups: 32/113 vs. 28/112 vs. 34/116 (p = 0.5 and 0.8) |
Vandenplas, 2022 [37] | Europe, Singapore | Infants with CMPA; <6 months | EHF + 2′ FL 1 g/L + LNnT 0.5 g/L Reduced protein content (2.2 g/dL) (94) | EHF (protein 2.47 g/dL) (96) | a. 4 months b. 4 months | Primary outcome Weight gain: none inferior Secondary outcomes ● Other anthropometric measures: similar ● Safety:rate of AE similar ● Morbidity: infections - LRTIs: 13/94 vs. 20/6 (p = 0.25); RRR 34% - URTIs: 60 in 39 infants (41.5%) vs. 94 in 42 infants (43.8%) (p = 0.77); RRR 5.2% - Frequency URTIs: 1.5 vs. 2.2 episodes/year; 0.09 vs. 0.15 episode/month ( p = 0.003) - GI infections: 10/94 vs. 17/96 (p = 0.21);—RRR 40% - Other viral infections: 19/94 vs. 19/96(p =1) - Urinary tract infections: 4/94 vs. 0/96 (p = 0.06) - Antibiotic use: 23/94 vs. 25/96 (p = 0.82) - Antipyretic use: 35/94 vs. 40/96 (p = 0.6) |
Lasekan, 2022 [38] | USA | Healthy term infants; <14 days | Infant formula+ 2′ FL 3 g/L+ 3 FL 0.8 g/L+ LNT 1.5 g/L+ 3′ SL 0.2 g/L+ 6′ SL 0.3 g/L (130) | ● Infant formula (129) ● Breastfeeding (104) | a. 4 months b. 4 months | Primary outcome Weight gain and other anthropometric measures: similar Secondary outcomes ● GI tolerance - Vomit/spit up: similar (p = 0.5) - Stools softer (higher MRSC (p = 0.038) and more frequent (p = 0.004) ● Adverse events: - Number of AEs similar: 31.7% vs. 32% vs. 26.5% - Antipyretic use: 4/130 vs. 4/129 vs. 8/104 (p > 0.05) - Antibiotic use: 4/130 vs. 4/129 vs. 4/104 (p > 0.05) |
3.3. Other Prebiotics
4. Discussion
4.1. Overall Incidence of Infections
4.2. Upper Respiratory Tract Infections
4.3. Lower Respiratory Tract Infection
4.4. Gastrointestinal Infections
4.5. Other Infections
4.6. Antibiotic Use
4.7. Variables and Confounders
4.7.1. Probiotics
4.7.2. Breastfeeding
4.7.3. Dose and Intervention Period
4.7.4. Type of Prebiotic
4.7.5. Low Infection Rates
4.7.6. Atopy/Allergy
4.7.7. Caesarean Section
4.7.8. Setting
4.8. Systematic Reviews
4.9. Future
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Agostoni, C.; Braegger, C.; Decsi, T.; Kolacek, S.; Koletzko, B.; Michaelsen, K.F.; Mihatsch, W.; Moreno, L.A.; Puntis, J.; Shamir, R.; et al. Breast-feeding: A Commentary by the ESPGHAN Committee on Nutrition. J. Pediatr. Gastroenterol. Nutr. 2009, 49, 112–125. [Google Scholar] [CrossRef] [PubMed]
- Horta, B.L.; De Sousa, B.A.; De Mola, C.L. Breastfeeding and neurodevelopmental outcomes. Curr. Opin. Clin. Nutr. Metab. Care 2018, 21, 174–178. [Google Scholar] [CrossRef] [PubMed]
- Victora, C.G.; Bahl, R.; Barros, A.J.; Franca, G.V.; Horton, S.; Krasevec, J.; Murch, S.; Sankar, M.J.; Walker, N.; Rollins, N.C.; et al. Breastfeeding in the 21st century: Epidemiology, mechanisms, and lifelong effect. Lancet 2016, 387, 475–490. [Google Scholar] [CrossRef] [PubMed]
- Harmsen, H.J.; Wildeboer–Veloo, A.C.; Raangs, G.C.; Wagendorp, A.A.; Klijn, N.; Bindels, J.G.; Welling, G.W. Analysis of Intestinal Flora Development in Breast-Fed and Formula-Fed Infants by Using Molecular Identification and Detection Methods. J. Pediatr. Gastroenterol. Nutr. 2000, 30, 61–67. [Google Scholar] [CrossRef]
- Asakuma, S.; Hatakeyama, E.; Urashima, T.; Yoshida, E.; Katayama, T.; Yamamoto, K.; Kumagai, H.; Ashida, H.; Hirose, J.; Kitaoka, M. Physiology of Consumption of Human Milk Oligosaccharides by Infant Gut-associated Bifidobacteria. J. Biol. Chem. 2011, 286, 34583–34592. [Google Scholar] [CrossRef]
- Berger, B.; Porta, N.; Foata, F.; Grathwohl, D.; Delley, M.; Moine, D.; Charpagne, A.; Siegwald, L.; Descombes, P.; Alliet, P.; et al. Linking Human Milk Oligosaccharides, Infant Fecal Community Types, and Later Risk To Require Antibiotics. Mbio 2020, 11, e03196-19. [Google Scholar] [CrossRef]
- Andreas, N.J.; Kampmann, B.; Le-Doare, K.M. Human breast milk: A review on its composition and bioactivity. Early Hum. Dev. 2015, 91, 629–635. [Google Scholar] [CrossRef]
- Soyyılmaz, B.; Mikš, M.H.; Röhrig, C.H.; Matwiejuk, M.; Meszaros-Matwiejuk, A.; Vigsnæs, L.K. The Mean of Milk: A Review of Human Milk Oligosaccharide Concentrations throughout Lactation. Nutrients 2021, 13, 2737. [Google Scholar] [CrossRef]
- Martin-Sosa, S.; Martin, M.J.; Hueso, P. The sialylated fraction of milk oligosaccharides is partially responsible for binding to enterotoxigenic and uropathogenic Escherichia coli human strains. J. Nutr. 2002, 132, 3067–3072. [Google Scholar] [CrossRef]
- Lin, A.E.; Autran, C.A.; Szyszka, A.; Escajadillo, T.; Huang, M.; Godula, K.; Prudden, A.R.; Boons, G.-J.; Lewis, A.L.; Doran, K.S.; et al. Human milk oligosaccharides inhibit growth of group B. J. Biol. Chem. 2017, 292, 11243–11249. [Google Scholar] [CrossRef]
- He, Y.; Lawlor, N.T.; Newburg, D.S. Human Milk Components Modulate Toll-Like Receptor–Mediated Inflammation. Adv. Nutr. 2016, 7, 102–111. [Google Scholar] [CrossRef] [PubMed]
- Doherty, A.M.; Lodge, C.J.; Dharmage, S.C.; Dai, X.; Bode, L.; Lowe, A.J. Human Milk Oligosaccharides and Associations With Immune-Mediated Disease and Infection in Childhood: A Systematic Review. Front. Pediatr. 2018, 6, 91. [Google Scholar] [CrossRef] [PubMed]
- Newburg, D.S. Innate Immunity and Human Milk. J. Nutr. 2005, 135, 1308–1312. [Google Scholar] [CrossRef] [PubMed]
- Donovan, S.M.; Comstock, S.S. Human Milk Oligosaccharides Influence Neonatal Mucosal and Systemic Immunity. Ann. Nutr. Metab. 2016, 69 (Suppl. 2), 41–51. [Google Scholar] [CrossRef]
- Vandenplas, Y.; Berger, B.; Carnielli, V.P.; Ksiazyk, J.; Lagström, H.; Sanchez Luna, M.; Migacheva, N.; Mosselmans, J.-M.; Picaud, J.-C.; Possner, M.; et al. Human Milk Oligosaccharides: 2′-Fucosyllactose (2′-FL) and Lacto-N-Neotetraose (LNnT) in Infant Formula. Nutrients 2018, 10, 1161. [Google Scholar] [CrossRef]
- Wiciński, M.; Sawicka, E.; Gębalski, J.; Kubiak, K.; Malinowski, B. Human Milk Oligosaccharides: Health Benefits, Potential Applications in Infant Formulas, and Pharmacology. Nutrients 2020, 12, 266. [Google Scholar] [CrossRef]
- Vissing, N.H.; Chawes, B.L.; Rasmussen, M.A.; Bisgaard, H. Epidemiology and Risk Factors of Infection in Early Childhood. Pediatrics 2018, 141, e20170933. [Google Scholar] [CrossRef]
- Monto, A.S. Epidemiology of viral respiratory infections. Am. J. Med. 2002, 112 (Suppl. 6A), S4–S12. [Google Scholar] [CrossRef]
- Lambert, S.B.; Allen, K.M.; Carter, R.C.; Nolan, T.M. The cost of community-managed viral respiratory illnesses in a cohort of healthy preschool-aged children. Respir. Res. 2008, 9, 11. [Google Scholar] [CrossRef]
- Zhao, Y.; Dong, B.R.; Hao, Q. Probiotics for preventing acute upper respiratory tract infections. Cochrane Database Syst. Rev. 2022, 8, CD006895. [Google Scholar] [CrossRef]
- Adjibade, M.; Davisse-Paturet, C.; Bernard, J.Y.; Adel-Patient, K.; Divaret-Chauveau, A.; Lioret, S.; Charles, M.A.; de Lauzon-Guillain, B. Enrichment of infant formula with long-chain polyunsaturated fatty acids and risk of infection and allergy in the nationwide ELFE birth cohort. Allergy 2022, 77, 1522–1533. [Google Scholar] [CrossRef] [PubMed]
- Herrmann, F.; Nieto-Ruiz, A.; Sepúlveda-Valbuena, N.; Miranda, M.T.; Diéguez, E.; Jiménez, J.; De-Castellar, R.; García-Ricobaraza, M.; García-Santos, J.A.; Bermúdez, M.G.; et al. Infant formula enriched with milk fat globule membrane, long-chain polyunsaturated fatty acids, synbiotics, gangliosides, nucleotides and sialic acid reduces infections during the first 18 months of life: The COGNIS study. J. Funct. Foods 2021, 83, 104529. [Google Scholar] [CrossRef]
- Hernell, O.; Timby, N.; Domellöf, M.; Lönnerdal, B. Clinical Benefits of Milk Fat Globule Membranes for Infants and Children. J. Pediatr. 2016, 173, S60–S65. [Google Scholar] [CrossRef] [PubMed]
- Skórka, A.; Pieścik-Lech, M.; Kołodziej, M.; Szajewska, H. Infant formulae supplemented with prebiotics: Are they better than unsupplemented formulae? An updated systematic review. Br. J. Nutr. 2018, 119, 810–825. [Google Scholar] [CrossRef] [PubMed]
- Salminen, S.; Stahl, B.; Vinderola, G.; Szajewska, H. Infant Formula Supplemented with Biotics: Current Knowledge and Future Perspectives. Nutrients 2020, 12, 1952. [Google Scholar] [CrossRef]
- Arslanoglu, S.; Moro, G.E.; Schmitt, J.; Tandoi, L.; Rizzardi, S.; Boehm, G. Early Dietary Intervention with a Mixture of Prebiotic Oligosaccharides Reduces the Incidence of Allergic Manifestations and Infections during the First Two Years of Life. J. Nutr. 2008, 138, 1091–1095. [Google Scholar] [CrossRef]
- Bruzzese, E.; Volpicelli, M.; Squeglia, V.; Bruzzese, D.; Salvini, F.; Bisceglia, M.; Lionetti, P.; Cinquetti, M.; Iacono, G.; Amarri, S.; et al. A formula containing galacto- and fructo-oligosaccharides prevents intestinal and extra-intestinal infections: An observational study. Clin. Nutr. 2009, 28, 156–161. [Google Scholar] [CrossRef]
- Puccio, G.; Alliet, P.; Cajozzo, C.; Janssens, E.; Corsello, G.; Sprenger, N.; Wernimont, S.; Egli, D.; Gosoniu, L.; Steenhout, P. Effects of Infant Formula With Human Milk Oligosaccharides on Growth and Morbidity: A randomized multicenter trial. J. Pediatr. Gastroenterol. Nutr. 2017, 64, 624–631. [Google Scholar] [CrossRef]
- Rashidi, K.; Darand, M.; Garousi, N.; Dehghani, A.; Alizadeh, S. Effect of infant formula supplemented with prebiotics and probiotics on incidence of respiratory tract infections: A systematic review and meta-analysis of randomized clinical trials. Complement. Ther. Med. 2021, 63, 102795. [Google Scholar] [CrossRef]
- Arslanoglu, S.; Moro, G.E.; Boehm, G. Early Supplementation of Prebiotic Oligosaccharides Protects Formula-Fed Infants against Infections during the First 6 Months of Life. J. Nutr. 2007, 137, 2420–2424. [Google Scholar] [CrossRef]
- Bocquet, A.; Lachambre, E.; Kempf, C.; Beck, L. Effect of Infant and Follow-on Formulas Containing B lactis and Galacto- and Fructo-oligosaccharides on Infection in Healthy Term Infants. J. Pediatr. Gastroenterol. Nutr. 2013, 57, 180–187. [Google Scholar] [CrossRef] [PubMed]
- Van Stuijvenberg, M.; Eisses, A.M.; Grüber, C.; Mosca, F.; Arslanoglu, S.; Chirico, G.; Braegger, C.P.; Riedler, J.; Boehm, G.; Sauer, P.J. Do prebiotics reduce the number of fever episodes in healthy children in their first year of life: A randomised controlled trial. Br. J. Nutr. 2011, 106, 1740–1748. [Google Scholar] [CrossRef] [PubMed]
- Van Stuijvenberg, M.; Stam, J.; Grüber, C.; Mosca, F.; Arslanoglu, S.; Chirico, G.; Braegger, C.P.; Riedler, J.; Boehm, G.; Sauer, P.J.J.; et al. Similar Occurrence of Febrile Episodes Reported in Non-Atopic Children at Three to Five Years of Age after Prebiotics Supplemented Infant Formula. PLoS ONE 2015, 10, e0129927. [Google Scholar] [CrossRef]
- Marriage, B.J.; Buck, R.H.; Goehring, K.C.; Oliver, J.S.; Williams, J.A. Infants Fed a Lower Calorie Formula With 2′FL Show Growth and 2′FL Uptake Like Breast-Fed Infants. J. Pediatr. Gastroenterol. Nutr. 2015, 61, 649–658. [Google Scholar] [CrossRef]
- Storm, H.M.; Shepard, J.; Czerkies, L.M.; Kineman, B.; Cohen, S.S.; Reichert, H.; Carvalho, R. 2’-Fucosyllactose Is Well Tolerated in a 100% Whey, Partially Hydrolyzed Infant Formula with. Glob. Pediatr. Health 2019, 6, 2333794X19833995. [Google Scholar] [CrossRef]
- Parschat, K.; Melsaether, C.; Jäpelt, K.R.; Jennewein, S. Clinical Evaluation of 16-Week Supplementation with 5HMO-Mix in Healthy-Term Human Infants to Determine Tolerability, Safety, and Effect on Growth. Nutrients 2021, 13, 2871. [Google Scholar] [CrossRef] [PubMed]
- Vandenplas, Y.; Żołnowska, M.; Canani, R.B.; Ludman, S.; Tengelyi, Z.; Moreno-Álvarez, A.; Goh, A.E.N.; Gosoniu, M.L.; Kirwan, B.-A.; Tadi, M.; et al. Effects of an Extensively Hydrolyzed Formula Supplemented with Two Human Milk Oligosaccharides on Growth, Tolerability, Safety and Infection Risk in Infants with Cow’s Milk Protein Allergy: A Randomized, Multi-Center Trial. Nutrients 2022, 14, 530. [Google Scholar] [CrossRef]
- Lasekan, J.; Choe, Y.; Dvoretskiy, S.; Devitt, A.; Zhang, S.; Mackey, A.; Wulf, K.; Buck, R.; Steele, C.; Johnson, M.; et al. Growth and Gastrointestinal Tolerance in Healthy Term Infants Fed Milk-Based Infant Formula Supplemented with Five Human Milk Oligosaccharides (HMOs): A Randomized Multicenter Trial. Nutrients 2022, 14, 2625. [Google Scholar] [CrossRef]
- Sierra, C.; Bernal, M.-J.; Blasco-Alonso, J.; Martínez, R.; Dalmau, J.; Ortuño, I.; Espín, B.; Vasallo, M.-I.; GIL Ortega, D.; Vidal, M.-L.; et al. Prebiotic effect during the first year of life in healthy infants fed formula containing GOS as the only prebiotic: A multicentre, randomised, double-blind and placebo-controlled trial. Eur. J. Nutr. 2015, 54, 89–99. [Google Scholar] [CrossRef]
- Ranucci, G.; Buccigrossi, V.; Borgia, E.; Piacentini, D.; Visentin, F.; Cantarutti, L.; Baiardi, P.; Felisi, M.; Spagnuolo, M.I.; Zanconato, S.; et al. Galacto-Oligosaccharide/Polidextrose Enriched Formula Protects against Respiratory Infections in Infants at High Risk of Atopy: A Randomized Clinical Trial. Nutrients 2018, 10, 286. [Google Scholar] [CrossRef]
- Nomayo, A.; Schwiertz, A.; Rossi, R.; Timme, K.; Foster, J.; Zelenka, R.; Tvrdik, J.; Jochum, F. Infant formula with cow’s milk fat and prebiotics affects intestinal flora, but not the incidence of infections during infancy in a double-blind randomized controlled trial. Mol. Cell. Pediatr. 2020, 7, 6. [Google Scholar] [CrossRef] [PubMed]
- Estorninos, E.; Lawenko, R.B.; Palestroque, E.; Lebumfacil, J.; Marko, M.; Cercamondi, C.I. Infant formula containing bovine milk-derived oligosaccharides supports age-appropriate growth and improves stooling pattern. Pediatr. Res. 2022, 91, 1485–1492. [Google Scholar] [CrossRef] [PubMed]
- Neumer, F.; Urraca, O.; Alonso, J.; Palencia, J.; Varea, V.; Theis, S.; Rodriguez-Palmero, M.; Moreno-Muñoz, J.; Guarner, F.; Veereman, G.; et al. Long-Term Safety and Efficacy of Prebiotic Enriched Infant Formula—A Randomized Controlled Trial. Nutrients 2021, 13, 1276. [Google Scholar] [CrossRef]
- Bowatte, G.; Tham, R.; Allen, K.J.; Tan, D.J.; Lau, M.; Dai, X.; Lodge, C.J. Breastfeeding and childhood acute otitis media: A systematic review and meta-analysis. Acta Paediatr. 2015, 104, 85–95. [Google Scholar] [CrossRef] [PubMed]
- Kramer, M.S.; Kakuma, R. Optimal duration of exclusive breastfeeding. Cochrane Database Syst. Rev. 2012, 2012, CD003517. [Google Scholar] [CrossRef]
- Von Linstow, M.-L.; Høgh, M.; Nordbø, S.A.; Eugen-Olsen, J.; Koch, A.; Høgh, B. A community study of clinical traits and risk factors for human metapneumovirus and respiratory syncytial virus infection during the first year of life. Eur. J. Pediatr. 2008, 167, 1125–1133. [Google Scholar] [CrossRef]
- Tanislav, C.; Kostev, K. Investigation of the prevalence of non-COVID-19 infectious diseases during the COVID-19 pandemic. Public Health 2022, 203, 53–57. [Google Scholar] [CrossRef]
- James, K.M.; Peebles, R.S.; Hartert, T.V. Response to infections in patients with asthma and atopic disease: An epiphenomenon or reflection of host susceptibility? J. Allergy Clin. Immunol. 2012, 130, 343–351. [Google Scholar] [CrossRef]
- Helby, J.; Nordestgaard, B.G.; Benfield, T.; Bojesen, S.E. Asthma, other atopic conditions and risk of infections in 105 519 general population never and ever smokers. J. Intern. Med. 2017, 282, 254–267. [Google Scholar] [CrossRef]
- Williams, L.M.; Stoodley, I.L.; Berthon, B.S.; Wood, L.G. The Effects of Prebiotics, Synbiotics, and Short-Chain Fatty Acids on Respiratory Tract Infections and Immune Function: A Systematic Review and Meta-Analysis. Adv. Nutr. 2022, 13, 167–192. [Google Scholar] [CrossRef]
- Van Stigt, A.H.; Rengerink, K.O.; Bloemenkamp, K.W.M.; de Waal, W.; Prevaes, S.M.P.J.; Le, T.-M.; van Wijk, F.; Nederend, M.; Hellinga, A.H.; Lammers, C.S.; et al. Analysing the protection from respiratory tract infections and allergic diseases early in life by human milk components: The PRIMA birth cohort. BMC Infect. Dis. 2022, 22, 152. [Google Scholar] [CrossRef] [PubMed]
Is there a link between the type of prebiotic added to infant formula and the reduction in the incidence of infection in infants? | |
Patient | Term healthy infants < 6 months |
Intervention | Prebiotics added to infant formula |
Control | Infant formula |
Outcome | Primary outcome: Reduction in the incidence of infections Secondary outcomes: Reduction in the prescription of antibiotics and their links with the type of prebiotic. Effects on subtypes of infection (e.g., upper airway, lower airway, intestinal infection, others) |
First author, Year [Reference] | Country | Inclusion Criteria; Age at Inclusion | Intervention [Number Included] | Control [Number Included] | Duration a. Intervention b. Observation | Outcome |
---|---|---|---|---|---|---|
Sierra, 2014 [39] | Spain | Healthy term infants; <8 weeks | Infant formula + GOSs 4.4 g/L Follow-on formula + GOSs 5 g/L (177) | Infant formula Follow-on formula (188) | a. 1 year b. 1 year | Primary outcomes ● Effects on intestinal microbiota: lower faecal pH (p = 0.019); lower decreasing trend of secretory IgA (p = 0.08); lower butyric acid concentration (p = 0.04); ncreased Bifidobacterium counts (p = 0.01) ● Frequency of defecation higher (p < 0.001) ● Softer stools (p < 0.05) ● Infections: - Episodes of URTI/infant: 1.84 ± 2.01 vs. 1.65 ± 1.83 (p = 0.4) - Episodes of diarrhoea/infant: 0.27 ± 0.67 vs. 0.20 ± 0.52 (p = 0.36) - Use of antibiotics: 17.8% vs. 19.8% (p = 0.48) ● Allergic manifestations: 39/132 vs. 28/132 (p = 0.12) |
Ranucci, 2018 [40] | Italy | Term infants with parental atopic history; Day 0 | Infant formula + GOSs/PDX 1:1 4 g/L (+/− BF) (201) | ● Infant formula (+/− BF) (199) ● Breastfeeding (140) | a. 48 weeks b. 96 weeks | Primary outcome ● Incidence of atopic dermatitis: - at 48 weeks: 49/118 vs. 50/104 (p = 0.62) - at 96 weeks: 56/118 vs. 60/104 (p = 0.28) Secondary outcomes ● Infections - Infants with at least 1 RTI at 48 weeks: 39/118 vs. 50/104 (p = 0.023) at 96 weeks: 77/118 vs. 73/104 (p > 0.05) - Patients with RRI until 96 weeks: 24/118 vs. 33/104 (p = 0.039) - Antibiotics prescribed: 58/118 vs. 58/104 (p > 0.05) - Patients > 3 x antibiotics prescribed: 22/118 vs. 26/104 (p = 0.056) - Acute gastroenteritis: 62/118 vs. 65/104 (p = 0.064) ● Intestinal microbiology: - Bifidobacteria load higher (p = 0.01) - Link between RI and lower Bifidobacteria load |
Nomayo, 2020 [33] | Germany | Healthy term infants; <10 days | Infant formula+ high amounts β-PA (20–25%) + GOS 5 g/L (47) | ● Infant formula (β-PA <10%) (47) ● Breastfeeding (34) | a. 12 weeks to 6 months b. 1 year | Primary outcome s ● Faecal Bifidobacteria: total count median 4.4 ± 5.4 × 108 vs. 0.7 ± 2.1 × 108 (p < 0.01) ● Infections: Overall: 3/22 vs. 2/19 (p = 0.65) - GI infections: 0/22 vs. 0/19 - RTI: 3/22 vs. 2/19 (p = 0.65) |
Estorninos, 2021 [35] | Philippines | Healthy term infants; 21—26 days | Alpha-lactalbumin and sn-2 palmitates enriched infant formula + MOSs 7.2 g/L (115) | Alpha-lactalbumin and sn-2 palmitates enriched infant formula (115) | a. 6 months b. 6 months | Primary outcome ● Weight gain similar (p = 0.7) ● Stool consistency was softer (p = 0.005) ● Tolerance: similar Secondary outcomes ● Adverse events: - URTIs: 59/115 vs. 57/115 - LRTIs: 24/115 vs. 24/115 |
Neumer, 2021 [36] | Spain, Belgium | Healthy term infants; <4 months | Infant formula + sc/lc inulin 1:1 8 g/L (81) | Infant formula (79) | a. 1 year b. 1 year | Primary outcomes ● Number of infections: mean 0.64 ± 1.05 vs. 0.55 ± 1.04 (p > 0.05) ● Lower mean duration infections in intervention group (p = 0.034) Secondary outcomes ● Anthropometric measures: similar ● Allergic manifestations: overall very low ● Wellbeing: total daily crying lower, but NS (p = 0.06) ● Gastrointestinal tolerance: similar ● Intestinal microbiota: - Total bacterial counts were similar; - Bifidobacterium count at 6 months: median 8.91 [8.31–9.41] vs. 8.15 [7.24–9.09] (p = 0.06); difference smaller at 12 months (p = 0.5) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cool, R.; Vandenplas, Y. The Link between Different Types of Prebiotics in Infant Formula and Infection Rates: A Review. Nutrients 2023, 15, 1942. https://doi.org/10.3390/nu15081942
Cool R, Vandenplas Y. The Link between Different Types of Prebiotics in Infant Formula and Infection Rates: A Review. Nutrients. 2023; 15(8):1942. https://doi.org/10.3390/nu15081942
Chicago/Turabian StyleCool, Roxane, and Yvan Vandenplas. 2023. "The Link between Different Types of Prebiotics in Infant Formula and Infection Rates: A Review" Nutrients 15, no. 8: 1942. https://doi.org/10.3390/nu15081942
APA StyleCool, R., & Vandenplas, Y. (2023). The Link between Different Types of Prebiotics in Infant Formula and Infection Rates: A Review. Nutrients, 15(8), 1942. https://doi.org/10.3390/nu15081942