Geographical Distribution of Dietary Patterns and Their Association with T2DM in Chinese Adults Aged 45 y and Above: A Nationwide Cross-Sectional Study
Abstract
:1. Introduction
2. Methods
2.1. Data Source and Survey Population
2.2. General Information Collection and Dietary Nutrients Assessment
2.3. Ascertainment of T2DM
2.4. Identification of Dietary Patterns
2.5. Covariant Index
2.6. Statistical Analyze
3. Results
3.1. Characteristics of Subjects according to T2DM Status
3.2. Dietary Patterns
3.3. Characteristics of Subjects according to Dietary Pattern Scores Quartile Distribution
3.4. The Spatial Distribution of the Three Dietary Patterns
3.5. The Relationship between Dietary Patterns and T2DM
4. Discussion
4.1. Key Findings of the Study
4.2. The Impact of Geographical Differences on Dietary Patterns
4.3. Association between Dietary Patterns and T2DM
4.4. Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BMI | Body Mass Index |
MUFA | Monounsaturated fatty acid |
PUFA | Polyunsaturated fatty acid |
SFA | Saturated fatty acid |
CI | Confidence Interval |
References
- World Health Organization. Global Report on Diabetes. 2016; World Health Organization: Geneva, Switzerland, 2018.
- Zimmet, P.; Alberti, K.G.; Shaw, J. Global and societal implications of the diabetes epidemic. Nature 2001, 414, 782–787. [Google Scholar] [CrossRef] [PubMed]
- IDF. IDF Diabetes Atlas, 8th ed.; IDF: Brussels, Belgium, 2017; pp. 905–911. [Google Scholar]
- Zhu, D.; Chinese Diabetes Society. Guidelines for the prevention and treatment of type 2 diabetes in China (2020 edition). J. Clin. Endocrinol. Metab. 2021, 13, 315–409. [Google Scholar]
- Hu, F.B. Globalization of diabetes: The role of diet, lifestyle, and genes. Diabetes Care 2011, 34, 1249–1257. [Google Scholar] [CrossRef] [PubMed]
- Abubakar, I.I.; Tillmann, T.; Banerjee, A. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: A systematic analysis for the Global Burden of Disease Study 2013. Lancet 2015, 385, 117–171. [Google Scholar] [CrossRef]
- Dening, J.; Mohebbi, M.; Abbott, G.; George, E.S.; Ball, K.; Islam, S.M.S. A web-based low carbohydrate diet intervention significantly improves glycaemic control in adults with type 2 diabetes: Results of the T2Diet Study randomised controlled trial. Nutr. Diabetes 2023, 13, 12. [Google Scholar] [CrossRef] [PubMed]
- Georgoulis, M.; Kontogianni, M.D.; Yiannakouris, N. Mediterranean diet and diabetes: Prevention and treatment. Nutrients 2014, 6, 1406–1423. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Li, Y.; Yang, X.; Hemler, E.C.; Fang, Y.; Zhao, L.; Zhang, J.; Yang, Z.; Wang, Z.; He, L.; et al. The dietary transition and its association with cardiometabolic mortality among Chinese adults, 1982–2012: A cross-sectional population-based study. Lancet Diabetes Endocrinol. 2019, 7, 540–548. [Google Scholar] [CrossRef]
- Li, Y.; Guo, C.; Cao, Y. Secular incidence trends and effect of population aging on mortality due to type 1 and type 2 diabetes mellitus in China from 1990 to 2019: Findings from the Global Burden of Disease Study 2019. BMJ Open Diabetes Res. Care 2021, 9, e002529. [Google Scholar] [CrossRef]
- Sun, P.; Wen, H.; Liu, X.; Ma, Y.; Jang, J.; Yu, C. Time trends in type 2 diabetes mellitus incidence across the BRICS from 1990 to 2019: An age-period-cohort analysis. BMC Public Health 2022, 22, 65. [Google Scholar] [CrossRef]
- Xu, J.; Wu, L.; Deng, J.; Yang, L.; Wang, Y.; Tian, H.; Ji, Y.; Xia, Q.; Han, Z.; Cheng, Y.; et al. Population attributable fractions of fatty liver disease for type 2 diabetes Mellitus. BMC Endocr. Disord. 2023, 23, 201. [Google Scholar] [CrossRef]
- Yu, D.; Zhao, L.; Zhang, J.; Yang, Z.; Yang, L.; Huang, J.; Fang, H.; Guo, Q.; Xu, X.; Ju, L.; et al. China Nutrition and Health Surveys (1982–2017). China CDC Wkly. 2021, 3, 193–195. [Google Scholar] [CrossRef] [PubMed]
- Fu, P.; Yi, G.; Zhang, J.; Song, Y.; Wang, J.; Jin, C.; Ji, C.; Li, Y.; Song, P. Anthropometric Measurements Method in Health Surveillance. 2013; pp. 1–10. Available online: http://www.nhc.gov.cn/zwgkzt/pgkzn/content_lmtt.shtml (accessed on 12 November 2023).
- American Diabetes Association. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2018. Diabetes Care 2018, 41, S13–S27. [Google Scholar] [CrossRef] [PubMed]
- Song, F.; Cho, M.S. Geography of Food Consumption Patterns between South and North China. Foods 2017, 6, 34. [Google Scholar] [CrossRef]
- Macklin, M.G.; Lewin, J. The rivers of civilization. Quat. Sci. Rev. 2015, 114, 228–244. [Google Scholar] [CrossRef]
- Fan, J.; Yu, H. Nature protection and human development in the Selincuo region: Conflict resolution. Sci. Bull. 2019, 64, 425–427. [Google Scholar] [CrossRef]
- Wang, J.; Lin, X.; Bloomgarden, Z.T.; Ning, G. The Jiangnan diet, a healthy diet pattern for Chinese. J. Diabetes 2020, 12, 365–371. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.J. New archaeobotanic data for the study of the origins of agriculture in China. Curr. Anthr. 2011, 52, S295–S306. [Google Scholar] [CrossRef]
- Qin, E.; Wang, J.; Qin, R.; Liu, H.; Xiong, H.; Liu, J.; Wang, H.; Zhang, L. Dietary structure analysis and dietary nutrition recommendations in different regions of China. Food Nutr. China 2020, 26, 82–87. [Google Scholar]
- Xiao, Z.; Sun, X.; Zhaxi, D.; Zhang, F.; Ji, Y.; Cheng, T.; Li, X.; Xu, X. Distinct Nutrient Intake Style in Inhabitants of Ultra-High-Altitude Areas in North of Tibet, China: A Cross-Sectional Study Based on Newly Developed Tibetan Food Frequency Questionnaires. Front. Nutr. 2021, 8, 743896. [Google Scholar] [CrossRef]
- Medina-Remón, A.; Kirwan, R.; Lamuela-Raventós, R.M.; Estruch, R. Dietary patterns and the risk of obesity, type 2 diabetes mellitus, cardiovascular diseases, asthma, and neurodegenerative diseases. Crit. Rev. Food Sci. Nutr. 2018, 58, 262–296. [Google Scholar] [CrossRef]
- Tonstad, S.; Stewart, K.; Oda, K.; Batech, M.; Herring, R.P.; Fraser, G.E. Vegetarian diets and incidence of diabetes in the Adventist Health Study-2. Nutr. Metab. Cardiovasc. Diseases. 2013, 23, 292–299. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Zhang, D.; Jiang, X.; Jiang, W. Fruit and vegetable consumption and risk of type 2 diabetes mellitus: A dose-response meta-analysis of prospective cohort studies. Nutr. Metab. Cardiovasc. Diseases. 2015, 25, 140–147. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Q.; Li, Z.; Nie, R.; Meng, X.; Yang, X.J. Comparison of the Effects of a Bean-Based and a White Rice-Based Breakfast Diet on Postprandial Glucose and Insulin Levels in Chinese Patients with Type 2 Diabetes. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2021, 27, e930349. [Google Scholar] [CrossRef] [PubMed]
- Mullins, A.P.; Arjmandi, B.H. Health Benefits of Plant-Based Nutrition: Focus on Beans in Cardiometabolic Diseases. Nutrients 2021, 13, 519. [Google Scholar] [CrossRef] [PubMed]
- Reister, E.J.; Belote, L.N.; Leidy, H.J. The Benefits of Including Hummus and Hummus Ingredients into the American Diet to Promote Diet Quality and Health: A Comprehensive Review. Nutrients 2020, 12, 3678. [Google Scholar] [CrossRef] [PubMed]
- Lattimer, J.M.; Haub, M.D. Effects of dietary fiber and its components on metabolic health. Nutrients 2010, 2, 1266–1289. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Willett, W.C.; Manson, J.E.; Hu, F.B.; Rosner, B.; Colditz, G. Relation between changes in intakes of dietary fiber and grain products and changes in weight and development of obesity among middle-aged women. Am. J. Clin. Nutr. 2003, 78, 920–927. [Google Scholar] [CrossRef]
- Weickert, M.O.; Pfeiffer, A.F. Metabolic effects of dietary fiber consumption and prevention of diabetes. J. Nutr. 2008, 138, 439–442. [Google Scholar] [CrossRef]
- Qin, P.; Wang, T.; Luo, Y.; Research, F. A review on plant-based proteins from soybean: Health benefits and soy product development. J. Agric. Food Res. 2022, 7, 100265. [Google Scholar] [CrossRef]
- Chen, L.; Liu, B.; Ren, L.; Du, H.; Fei, C.; Qian, C.; Li, B.; Zhang, R.; Liu, H.; Li, Z.; et al. High-fiber diet ameliorates gut microbiota, serum metabolism and emotional mood in type 2 diabetes patients. Front. Cell. Infect. Microbiol. 2023, 13, 1069954. [Google Scholar] [CrossRef]
- Shi, W.; Huang, X.; Schooling, C.M.; Zhao, J.V. Red meat consumption, cardiovascular diseases, and diabetes: A systematic review and meta-analysis. Eur. Heart J. 2023, 44, 2626–2635. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Hodge, A.; Hendryx, M.; Byles, J.E. BMI trajectory and subsequent risk of type 2 diabetes among middle-aged women. Nutr. Metab. Cardiovasc. Dis. 2021, 31, 1063–1070. [Google Scholar] [CrossRef] [PubMed]
- Shu, L.; Zheng, P.F.; Zhang, X.Y.; Si, C.J.; Yu, X.L.; Gao, W.; Zhang, L.; Liao, D. Association between Dietary Patterns and the Indicators of Obesity among Chinese: A Cross-Sectional Study. Nutrients 2015, 7, 7995–8009. [Google Scholar] [CrossRef]
- Kouvari, M.; Notara, V.; Kalogeropoulos, N.; Panagiotakos, D.B. Diabetes mellitus associated with processed and unprocessed red meat: An overview. Int. J. Food Sci. Nutr. 2016, 67, 735–743. [Google Scholar] [CrossRef] [PubMed]
- Pierre, F.H.; Martin, O.C.; Santarelli, R.L.; Taché, S.; Naud, N.; Guéraud, F.; Audebert, M.; Dupuy, J.; Meunier, N.; Attaix, D.; et al. Calcium and α-tocopherol suppress cured-meat promotion of chemically induced colon carcinogenesis in rats and reduce associated biomarkers in human volunteers. Am. J. Clin. Nutr. 2013, 98, 1255–1262. [Google Scholar] [CrossRef] [PubMed]
- Bendinelli, B.; Palli, D.; Masala, G.; Sharp, S.J.; Schulze, M.B.; Guevara, M.; van der A, F.D.; Sera, F.; Amiano, P.; Balkau, B.; et al. Association between dietary meat consumption and incident type 2 diabetes: The EPIC-InterAct study. Diabetologia 2013, 56, 47–59. [Google Scholar] [CrossRef] [PubMed]
- Kouvari, M.; Tyrovolas, S.; Panagiotakos, D.B. Red meat consumption and healthy ageing: A review. Maturitas 2016, 84, 17–24. [Google Scholar] [CrossRef]
- Hopps, E.; Noto, D.; Caimi, G.; Averna, M.R. A novel component of the metabolic syndrome: The oxidative stress. Nutr. Metab. Cardiovasc. Dis. 2010, 20, 72–77. [Google Scholar] [CrossRef]
- van Woudenbergh, G.J.; Kuijsten, A.; Tigcheler, B.; Sijbrands, E.J.; van Rooij, F.J.; Hofman, A.; Witteman, J.C.; Feskens, E.J. Meat consumption and its association with C-reactive protein and incident type 2 diabetes: The Rotterdam Study. Diabetes Care 2012, 35, 1499–1505. [Google Scholar] [CrossRef]
- Song, Y.; Manson, J.E.; Buring, J.E.; Liu, S. A prospective study of red meat consumption and type 2 diabetes in middle-aged and elderly women: The women’s health study. Diabetes Care 2004, 27, 2108–2115. [Google Scholar] [CrossRef]
- Sprake, E.F.; Russell, J.M.; Cecil, J.E.; Cooper, R.J.; Grabowski, P.; Pourshahidi, L.K.; Barker, M.E. Dietary patterns of university students in the UK: A cross-sectional study. Nutr. J. 2018, 17, 90. [Google Scholar] [CrossRef] [PubMed]
- Rosenfeld, D.L.; Tomiyama, A.J. Gender differences in meat consumption and openness to vegetarianism. Appetite 2021, 166, 105475. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Ley, S.H.; Hu, F.B. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat. Rev. Endocrinol. 2018, 14, 88–98. [Google Scholar] [CrossRef] [PubMed]
- Lai, H.; Sun, M.; Liu, Y.; Zhu, H.; Li, M.; Pan, B.; Wang, Q.; Yang, Q.; Cao, X.; Tian, C.; et al. White rice consumption and risk of cardiometabolic and cancer outcomes: A systematic review and dose-response meta-analysis of prospective cohort studies. Crit. Rev. Food Sci. Nutr. 2022, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Du, S.M.; Ma, G.S. Current lifestyle factors that increase risk of T2DM in China. Eur. J. Clin. Nutr. 2017, 71, 832–838. [Google Scholar] [CrossRef]
- Li, C.; Sanchez, G.M.; Wu, Z.; Cheng, J.; Zhang, S.; Wang, Q.; Li, F.; Sun, G.; Meentemeyer, R.K. Spatiotemporal patterns and drivers of soil contamination with heavy metals during an intensive urbanization period (1989–2018) in southern China. Environ. Pollut. 2020, 260, 114075. [Google Scholar] [CrossRef]
- Yang, Y.Y.; Fan, L.; Wang, J.; Zhu, Y.D.; Li, X.; Wang, X.Q.; Yan, X.; Li, L.; Zhang, Y.J.; Yang, W.J.; et al. Characterization and exposure assessment of household fine particulate matter pollution in China. Indoor Air 2021, 31, 1391–1401. [Google Scholar] [CrossRef]
- Zheng, X.Y.; Ma, S.L.; Guan, W.J.; Xu, Y.J.; Tang, S.L.; Zheng, Y.J.; Liao, T.T.; Li, C.; Meng, R.L.; Zeng, Z.P.; et al. Impact of polluting fuels for cooking on diabetes mellitus and glucose metabolism in south urban China. Indoor Air 2022, 32, e12960. [Google Scholar] [CrossRef]
- Asbaghi, O.; Moradi, S.; Kashkooli, S.; Zobeiri, M.; Nezamoleslami, S.; Hojjati Kermani, M.A.; Lazaridi, A.V.; Miraghajani, M. The effects of oral magnesium supplementation on glycaemic control in patients with type 2 diabetes: A systematic review and dose-response meta-analysis of controlled clinical trials. Br. J. Nutr. 2022, 128, 2363–2372. [Google Scholar] [CrossRef]
- Fernández-Cao, J.C.; Warthon-Medina, M.; Moran, V.H.; Arija, V.; Doepking, C.; Serra-Majem, L.; Lowe, N.M. Zinc Intake and Status and Risk of Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis. Nutrients 2019, 11, 1027. [Google Scholar] [CrossRef]
- Khalili, L.; Valdes-Ramos, R.; Harbige, L.S. Effect of n-3 (Omega-3) Polyunsaturated Fatty Acid Supplementation on Metabolic and Inflammatory Biomarkers and Body Weight in Patients with Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis of RCTs. Metabolites 2021, 11, 742. [Google Scholar] [CrossRef] [PubMed]
- Xia, J.; Yu, J.; Xu, H.; Zhou, Y.; Li, H.; Yin, S.; Xu, D.; Wang, Y.; Xia, H.; Liao, W.; et al. Comparative effects of vitamin and mineral supplements in the management of type 2 diabetes in primary care: A systematic review and network meta-analysis of randomized controlled trials. Pharmacol. Res. 2023, 188, 106647. [Google Scholar] [CrossRef] [PubMed]
Overall N = 36,648 | Non-T2DM N = 32,665 | T2DM N = 3983 | |
---|---|---|---|
Female (n, %) | 19,982 (54.5) | 17,680 (54.1) | 2302 (57.8) |
Age (Median, Q1, Q3,y) | 58.6 (51.5; 65.0) | 58.2 (51.2; 64.6) | 61.4 (54.2; 67.2) |
Age group (n, %) | |||
45–59 y | 20,297 (55.4) | 18,564 (56.8) | 1733 (43.5) |
60–74 y | 14,602 (39.8) | 12,579 (38.5) | 2023 (50.8) |
≥75 y | 1749 (4.8) | 1522 (4.7) | 227 (5.7) |
Rural (n, %) | 21,988 (60.0) | 20,113 (61.6) | 1875 (47.1) |
Income (n, %) | |||
<5000 Yuan/month | 28,981 (79.1) | 26,032 (79.7) | 2949 (74.0) |
5000–9999 Yuan/month | 5939 (16.2) | 5126 (15.7) | 813 (20.4) |
≥10,000 Yuan/month | 1728 (4.7) | 1507 (4.6) | 221 (5.6) |
Han ethnicity (n, %) | 33,291 (90.8) | 29,584 (90.6) | 3707 (93.1) |
Educational level (n, %) | |||
Below junior high school | 20,797 (56.7) | 18,667 (57.1) | 2130 (53.5) |
Junior high school | 14,526 (39.7) | 12,902 (39.5) | 1624 (40.7) |
Senior high school or above | 1325 (3.6) | 1096 (3.4) | 229 (5.8) |
Having a partner (n, %) | 34,619 (94.5) | 30,897 (94.6) | 3722 (93.4) |
Adequate physical activity (n, %) | 32,743 (89.3) | 29,344 (89.8) | 3399 (85.3) |
Smoking (n, %) | 9711 (26.5) | 8843 (27.1) | 868 (21.8) |
Drinking (n, %) | 13,131 (35.8) | 11,875 (36.4) | 1256 (31.5) |
BMI(Median, P25th, P75th, kg/m2) | 24.1 (21.9;26.5) | 23.9 (21.7;26.3) | 25.7 (23.5;28.1) |
BMI group (n, %) | |||
Underweight | 1164 (3.2) | 1119 (3.4) | 45 (1.1) |
Normal weight | 16,686 (45.5) | 15,521 (47.5) | 1165 (29.2) |
Overweight | 13,588 (37.1) | 11,852 (36.3) | 1736 (43.6) |
Obesity | 5210 (14.2) | 4173 (12.8) | 1037 (26.1) |
Family history of chronic diseases (n, %) | 16,703 (45.6) | 14,489 (44.4) | 2214 (55.6) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, W.; Li, Y.; Man, Q.; Zhang, Y.; Yu, L.; Zhao, R.; Zhang, J.; Song, P.; Ding, G. Geographical Distribution of Dietary Patterns and Their Association with T2DM in Chinese Adults Aged 45 y and Above: A Nationwide Cross-Sectional Study. Nutrients 2024, 16, 107. https://doi.org/10.3390/nu16010107
Dong W, Li Y, Man Q, Zhang Y, Yu L, Zhao R, Zhang J, Song P, Ding G. Geographical Distribution of Dietary Patterns and Their Association with T2DM in Chinese Adults Aged 45 y and Above: A Nationwide Cross-Sectional Study. Nutrients. 2024; 16(1):107. https://doi.org/10.3390/nu16010107
Chicago/Turabian StyleDong, Weihua, Yuqian Li, Qingqing Man, Yu Zhang, Lianlong Yu, Rongping Zhao, Jian Zhang, Pengkun Song, and Gangqiang Ding. 2024. "Geographical Distribution of Dietary Patterns and Their Association with T2DM in Chinese Adults Aged 45 y and Above: A Nationwide Cross-Sectional Study" Nutrients 16, no. 1: 107. https://doi.org/10.3390/nu16010107
APA StyleDong, W., Li, Y., Man, Q., Zhang, Y., Yu, L., Zhao, R., Zhang, J., Song, P., & Ding, G. (2024). Geographical Distribution of Dietary Patterns and Their Association with T2DM in Chinese Adults Aged 45 y and Above: A Nationwide Cross-Sectional Study. Nutrients, 16(1), 107. https://doi.org/10.3390/nu16010107