Safety Assessment and Probiotic Potential Comparison of Bifidobacterium longum subsp. infantis BLI-02, Lactobacillus plantarum LPL28, Lactobacillus acidophilus TYCA06, and Lactobacillus paracasei ET-66
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microorganisms
2.2. Minimum Inhibitory Concentration (MIC) of Antibiotics
2.3. Salmonella Typhimurium Reverse Mutation Assay (Ames Test)
2.4. Acute Oral Toxicity Test
2.5. In Vivo Mouse Spermatogonial Chromosomal Aberration Test
2.6. In Vivo Mammalian Erythrocyte Micronucleus Test
2.7. Repeated Dosage for 90-Day Oral Toxicity in Rats
2.8. Acid and High Bile Salt Tolerance of Lactic Acid Bacteria
2.9. In Vitro Adherence Assay of Viable LACTIC Acid Bacteria to Intestinal Caco-2 Cells
2.10. In Vitro Bacteriostatic Activity Assay of Lactic Acid Bacteria
2.10.1. The Modified Agar Overlay Method
2.10.2. The Liquid Culture Assays
2.11. Statistical Analysis
3. Results
3.1. The Antibiotic Resistance of B. longum subsp. infantis BLI-02, L. plantarum LPL28, L. acidophilus TYCA06, and L. paracasei ET-66
3.2. B. longum subsp. infantis BLI-02, L. plantarum LPL28, L. acidophilus TYCA06, and L. paracasei ET-66 Displayed No Mutagenic Activity In Vivo
3.3. B. longum subsp. infantis BLI-02, L. plantarum LPL28, L. acidophilus TYCA06, and L. paracasei ET-66 Displayed No Acute Oral Toxicity In Vitro
3.4. B. longum subsp. infantis BLI-02, L. plantarum LPL28, L. acidophilus TYCA06, and L. paracasei ET-66 Displayed neither Cytotoxicity to Bone Marrow nor Chromosomal Aberration Effect on Mouse Spermatogonia
3.5. B. longum subsp. infantis BLI-02, L. plantarum LPL28, L. acidophilus TYCA06, and L. paracasei ET-66 Displayed No Chronic Oral Toxicity
3.6. B. longum subsp. infantis BLI-02, L. plantarum LPL28, L. acidophilus TYCA06, and L. paracasei ET-66 Displayed No Effects on Hematological and Blood Biochemistry Parameters
3.7. B. longum subsp. infantis BLI-02, L. plantarum LPL28, L. acidophilus TYCA06, and L. paracasei ET-66 Displayed Probiotic Potential against Human Pathogens
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Donohue, D.C.; Salminen, S. Safety of probiotic bacteria. Asia Pac. J. Clin. Nutr. 1996, 5, 25–28. [Google Scholar] [PubMed]
- Adams, M.R.; Marteau, P. On the safety of lactic acid bacteria from food. Int. J. Food Microbiol. 1995, 27, 263–264. [Google Scholar] [CrossRef] [PubMed]
- Araya, M.; Morelli, L.; Reid, G.; Sanders, M.E.; Stanton, C.; Pineiro, M.; Ben Embarek, P. Guidelines for the evaluation of probiotics in food. In Joint FAO/WHO Working Group Report on Drafting Guidelines for the Evaluation of Probiotics in Food; Food and Agriculture Organization of the United Nations: London, UK, 2002; pp. 1–11. [Google Scholar]
- Reuter, G. Comparative Studies on the Bifidus Flora in the Feces of Infants and Adults. With a Contribution to Classification and Nomenclature of Bifidus Strains. Zentralbl. Bakteriol. Orig. 1963, 191, 486–507. [Google Scholar] [PubMed]
- Sakata, S.; Kitahara, M.; Sakamoto, M.; Hayashi, H.; Fukuyama, M.; Benno, Y. Unification of Bifidobacterium infantis and Bifidobacterium suis as Bifidobacterium longum. Int. J. Syst. Evol. Microbiol. 2002, 52, 1945–1951. [Google Scholar] [CrossRef] [PubMed]
- Yao, S.; Zhao, Z.; Wang, W.; Liu, X. Bifidobacterium longum: Protection against Inflammatory Bowel Disease. J. Immunol. Res. 2021, 2021, 8030297. [Google Scholar] [CrossRef] [PubMed]
- Pinto-Sanchez, M.I.; Hall, G.B.; Ghajar, K.; Nardelli, A.; Bolino, C.; Lau, J.T.; Martin, F.P.; Cominetti, O.; Welsh, C.; Rieder, A.; et al. Probiotic Bifidobacterium longum NCC3001 Reduces Depression Scores and Alters Brain Activity: A Pilot Study in Patients with Irritable Bowel Syndrome. Gastroenterology 2017, 153, 448–459.e8. [Google Scholar] [CrossRef] [PubMed]
- Vitellio, P.; Celano, G.; Bonfrate, L.; Gobbetti, M.; Portincasa, P.; De Angelis, M. Effects of Bifidobacterium longum and Lactobacillus rhamnosus on Gut Microbiota in Patients with Lactose Intolerance and Persisting Functional Gastrointestinal Symptoms: A Randomised, Double-Blind, Cross-Over Study. Nutrients 2019, 11, 886. [Google Scholar] [CrossRef]
- Dong, J.; Ping, L.; Meng, Y.; Zhang, K.; Tang, H.; Liu, D.; Li, B.; Huo, G. Bifidobacterium longum BL-10 with Antioxidant Capacity Ameliorates Lipopolysaccharide-Induced Acute Liver Injury in Mice by the Nuclear Factor-kappaB Pathway. J. Agric. Food Chem. 2022, 70, 8680–8692. [Google Scholar] [CrossRef]
- Underwood, M.A.; German, J.B.; Lebrilla, C.B.; Mills, D.A. Bifidobacterium longum subspecies infantis: Champion colonizer of the infant gut. Pediatr. Res. 2015, 77, 229–235. [Google Scholar] [CrossRef]
- Wang, I.K.; Yen, T.H.; Hsieh, P.S.; Ho, H.H.; Kuo, Y.W.; Huang, Y.Y.; Kuo, Y.L.; Li, C.Y.; Lin, H.C.; Wang, J.Y. Effect of a Probiotic Combination in an Experimental Mouse Model and Clinical Patients with Chronic Kidney Disease: A Pilot Study. Front. Nutr. 2021, 8, 661794. [Google Scholar] [CrossRef]
- Lin, W.Y.; Kuo, Y.W.; Lin, J.H.; Lin, C.H.; Chen, J.F.; Tsai, S.Y.; Lee, M.C.; Hsu, Y.J.; Huang, C.C.; Tsou, Y.A.; et al. Probiotic Strains Isolated from an Olympic Woman’s Weightlifting Gold Medalist Increase Weight Loss and Exercise Performance in a Mouse Model. Nutrients 2022, 14, 1270. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.Y.; Lin, J.H.; Kuo, Y.W.; Chiang, P.R.; Ho, H.H. Probiotics and their Metabolites Reduce Oxidative Stress in Middle-Aged Mice. Curr. Microbiol. 2022, 79, 104. [Google Scholar] [CrossRef] [PubMed]
- Kuo, Y.W.; Huang, Y.Y.; Tsai, S.Y.; Wang, J.Y.; Lin, J.H.; Syu, Z.J.; Wang, H.S.; Hsu, Y.C.; Chen, J.F.; Hsia, K.C.; et al. Probiotic Formula Ameliorates Renal Dysfunction Indicators, Glycemic Levels, and Blood Pressure in a Diabetic Nephropathy Mouse Model. Nutrients 2023, 15, 2803. [Google Scholar] [CrossRef] [PubMed]
- Hsu, Y.-C.; Huang, Y.-Y.; Tsai, S.-Y.; Kuo, Y.-W.; Lin, J.-H.; Ho, H.-H.; Chen, J.-F.; Hsia, K.-C.; Sun, Y. Efficacy of Probiotic Supplements on Brain-Derived Neurotrophic Factor, Inflammatory Biomarkers, Oxidative Stress and Cognitive Function in Patients with Alzheimer’s Dementia: A 12-Week Randomized, Double-Blind Active-Controlled Study. Nutrients 2024, 16, 16. [Google Scholar] [CrossRef]
- Kleerebezem, M.; Boekhorst, J.; van Kranenburg, R.; Molenaar, D.; Kuipers, O.P.; Leer, R.; Tarchini, R.; Peters, S.A.; Sandbrink, H.M.; Fiers, M.W.; et al. Complete genome sequence of Lactobacillus plantarum WCFS1. Proc. Natl. Acad. Sci. USA 2003, 100, 1990–1995. [Google Scholar] [CrossRef] [PubMed]
- De Vuyst, L.; Vrancken, G.; Ravyts, F.; Rimaux, T.; Weckx, S. Biodiversity, ecological determinants, and metabolic exploitation of sourdough microbiota. Food Microbiol. 2009, 26, 666–675. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Li, C.; Niu, Z.; Kang, H.; Wang, M.; Zhang, B.; Tian, H. Colonization and immunoregulation of Lactobacillus plantarum BF_15, a novel probiotic strain from the feces of breast-fed infants. Food Funct. 2020, 11, 3156–3166. [Google Scholar] [CrossRef]
- Anderson, R.C.; Cookson, A.L.; McNabb, W.C.; Kelly, W.J.; Roy, N.C. Lactobacillus plantarum DSM 2648 is a potential probiotic that enhances intestinal barrier function. FEMS Microbiol. Lett. 2010, 309, 184–192. [Google Scholar] [CrossRef]
- Kim, M.; Seo, D.H.; Park, Y.S.; Cha, I.T.; Seo, M.J. Isolation of Lactobacillus plantarum subsp. plantarum Producing C(30) Carotenoid 4,4′-Diaponeurosporene and the Assessment of Its Antioxidant Activity. J. Microbiol. Biotechnol. 2019, 29, 1925–1930. [Google Scholar] [CrossRef]
- Ho, Y.T.; Tsai, Y.C.; Kuo, T.B.J.; Yang, C.C.H. Effects of Lactobacillus plantarum PS128 on Depressive Symptoms and Sleep Quality in Self-Reported Insomniacs: A Randomized, Double-Blind, Placebo-Controlled Pilot Trial. Nutrients 2021, 13, 2820. [Google Scholar] [CrossRef]
- Prete, R.; Long, S.L.; Gallardo, A.L.; Gahan, C.G.; Corsetti, A.; Joyce, S.A. Beneficial bile acid metabolism from Lactobacillus plantarum of food origin. Sci. Rep. 2020, 10, 1165. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.W.; Chen, Y.T.; Ho, H.H.; Hsieh, P.S.; Kuo, Y.W.; Lin, J.H.; Liu, C.R.; Huang, Y.F.; Chen, C.W.; Hsu, C.H.; et al. Lozenges with probiotic strains enhance oral immune response and health. Oral Dis. 2022, 28, 1723–1732. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.W.; Chen, Y.T.; Ho, H.H.; Kuo, Y.W.; Lin, W.Y.; Chen, J.F.; Lin, J.H.; Liu, C.R.; Lin, C.H.; Yeh, Y.T.; et al. Impact of the food grade heat-killed probiotic and postbiotic oral lozenges in oral hygiene. Aging 2022, 14, 2221–2238. [Google Scholar] [CrossRef] [PubMed]
- Seddik, H.A.; Bendali, F.; Gancel, F.; Fliss, I.; Spano, G.; Drider, D. Lactobacillus plantarum and Its Probiotic and Food Potentialities. Probiotics Antimicrob. Proteins 2017, 9, 111–122. [Google Scholar] [CrossRef] [PubMed]
- El-Saadony, M.T.; Alagawany, M.; Patra, A.K.; Kar, I.; Tiwari, R.; Dawood, M.A.O.; Dhama, K.; Abdel-Latif, H.M.R. The functionality of probiotics in aquaculture: An overview. Fish Shellfish Immunol. 2021, 117, 36–52. [Google Scholar] [CrossRef] [PubMed]
- Raman, J.; Kim, J.S.; Choi, K.R.; Eun, H.; Yang, D.; Ko, Y.J.; Kim, S.J. Application of Lactic Acid Bacteria (LAB) in Sustainable Agriculture: Advantages and Limitations. Int. J. Mol. Sci. 2022, 23, 7784. [Google Scholar] [CrossRef] [PubMed]
- Bull, M.; Plummer, S.; Marchesi, J.; Mahenthiralingam, E. The life history of Lactobacillus acidophilus as a probiotic: A tale of revisionary taxonomy, misidentification and commercial success. FEMS Microbiol. Lett. 2013, 349, 77–87. [Google Scholar] [CrossRef]
- Gao, H.; Li, X.; Chen, X.; Hai, D.; Wei, C.; Zhang, L.; Li, P. The Functional Roles of Lactobacillus acidophilus in Different Physiological and Pathological Processes. J. Microbiol. Biotechnol. 2022, 32, 1226–1233. [Google Scholar] [CrossRef]
- Pi, W.; Ryu, J.S.; Roh, J. Lactobacillus acidophilus contributes to a healthy environment for vaginal epithelial cells. Korean J. Parasitol. 2011, 49, 295–298. [Google Scholar] [CrossRef]
- Lukasik, J.; Dierikx, T.; Besseling-van der Vaart, I.; de Meij, T.; Szajewska, H.; Multispecies Probiotic in AAD Study Group. Multispecies Probiotic for the Prevention of Antibiotic-Associated Diarrhea in Children: A Randomized Clinical Trial. JAMA Pediatr. 2022, 176, 860–866. [Google Scholar] [CrossRef]
- Tahmourespour, A.; Kermanshahi, R.K. The effect of a probiotic strain (Lactobacillus acidophilus) on the plaque formation of oral Streptococci. Bosn. J. Basic Med. Sci. 2011, 11, 37–40. [Google Scholar] [CrossRef] [PubMed]
- You, I.; Mahiddine, F.Y.; Park, H.; Kim, M.J. Lactobacillus acidophilus novel strain, MJCD175, as a potential probiotic for oral health in dogs. Front. Vet. Sci. 2022, 9, 946890. [Google Scholar] [CrossRef] [PubMed]
- Ho, H.H.; Chen, C.W.; Yi, T.H.; Huang, Y.F.; Kuo, Y.W.; Lin, J.H.; Chen, J.F.; Tsai, S.Y.; Chan, L.P.; Liang, C.H. Novel application of a Co-Fermented postbiotics of TYCA06/AP-32/CP-9/collagen in the improvement of acne vulgaris—A randomized clinical study of efficacy evaluation. J. Cosmet. Dermatol. 2022, 21, 6249–6260. [Google Scholar] [CrossRef] [PubMed]
- Collins, M.D.; Phillips, B.A.; Zanoni, P. Deoxyribonucleic acid homology studies of Lactobacillus casei, Lactobacillus paracasei sp. nov., subsp. paracasei and subsp. tolerans, and Lactobacillus rhamnosus sp. nov., comb. nov. Int. J. Syst. Evol. Microbiol. 1989, 39, 105–108. [Google Scholar] [CrossRef]
- Chiang, S.S.; Pan, T.M. Beneficial effects of Lactobacillus paracasei subsp. paracasei NTU 101 and its fermented products. Appl. Microbiol. Biotechnol. 2012, 93, 903–916. [Google Scholar] [CrossRef] [PubMed]
- Benyacoub, J.; Bosco, N.; Blanchard, C.; Demont, A.; Philippe, D.; Castiel-Higounenc, I.; Gueniche, A. Immune modulation property of Lactobacillus paracasei NCC2461 (ST11) strain and impact on skin defences. Benef. Microbes 2014, 5, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Archambault, L.; Koshy-Chenthittayil, S.; Thompson, A.; Dongari-Bagtzoglou, A.; Laubenbacher, R.; Mendes, P. Understanding Lactobacillus paracasei and Streptococcus oralis Biofilm Interactions through Agent-Based Modeling. mSphere 2021, 6, e0087521. [Google Scholar] [CrossRef]
- Suo, H.; Liu, S.; Li, J.; Ding, Y.; Wang, H.; Zhang, Y.; Zhao, X.; Song, J.L. Lactobacillus paracasei ssp. paracasei YBJ01 reduced d-galactose-induced oxidation in male Kuming mice. J. Dairy Sci. 2018, 101, 10664–10674. [Google Scholar] [CrossRef]
- Ohlsson, C.; Engdahl, C.; Fak, F.; Andersson, A.; Windahl, S.H.; Farman, H.H.; Moverare-Skrtic, S.; Islander, U.; Sjogren, K. Probiotics protect mice from ovariectomy-induced cortical bone loss. PLoS ONE 2014, 9, e92368. [Google Scholar] [CrossRef]
- Chen, Y.T.; Hsieh, P.S.; Ho, H.H.; Hsieh, S.H.; Kuo, Y.W.; Yang, S.F.; Lin, C.W. Antibacterial activity of viable and heat-killed probiotic strains against oral pathogens. Lett. Appl. Microbiol. 2020, 70, 310–317. [Google Scholar] [CrossRef]
- Lin, W.Y.; Kuo, Y.W.; Chen, C.W.; Huang, Y.F.; Hsu, C.H.; Lin, J.H.; Liu, C.R.; Chen, J.F.; Hsia, K.C.; Ho, H.H. Viable and Heat-Killed Probiotic Strains Improve Oral Immunity by Elevating the IgA Concentration in the Oral Mucosa. Curr. Microbiol. 2021, 78, 3541–3549. [Google Scholar] [CrossRef] [PubMed]
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; et al. Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, A.S.; Silva, J.; Ho, P.; Teixeira, P.; Malcata, F.X.; Gibbs, P. Relevant factors for the preparation of freeze-dried lactic acid bacteria. Int. Dairy J. 2004, 14, 12. [Google Scholar] [CrossRef]
- Dianawati, D.; Mishra, V.; Shah, N.P. Survival of Microencapsulated Probiotic Bacteria after Processing and during Storage: A Review. Crit. Rev. Food Sci. Nutr. 2016, 56, 1685–1716. [Google Scholar] [CrossRef] [PubMed]
- ISO 10932:2010; Milk and Milk Products: Determination of the Minimal Inhibitory Concentration (MIC) of Antibiotics Applicable to Bifidobacteria and Non-enterococcal Lactic Acid Bacteria. International Organization for Standardization: Geneva, Switzerland, 2010.
- EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP). Guidance on the assessment of bacterial susceptibility to antimicrobials of human and veterinary importance. EFSA J. 2012, 10, 2740. [Google Scholar]
- Ammor, M.S.; Florez, A.B.; Mayo, B. Antibiotic resistance in non-enterococcal lactic acid bacteria and bifidobacteria. Food Microbiol. 2007, 24, 559–570. [Google Scholar] [CrossRef] [PubMed]
- Nawaz, M.; Wang, J.; Zhou, A.; Ma, C.; Wu, X.; Moore, J.E.; Millar, B.C.; Xu, J. Characterization and transfer of antibiotic resistance in lactic acid bacteria from fermented food products. Curr. Microbiol. 2011, 62, 1081–1089. [Google Scholar] [CrossRef]
- Munita, J.M.; Arias, C.A. Mechanisms of Antibiotic Resistance. Microbiol. Spectr. 2016, 4, 481–511. [Google Scholar] [CrossRef]
- Pei, Z.; Li, X.; Cui, S.; Yang, B.; Lu, W.; Zhao, J.; Mao, B.; Chen, W. Population genomics of Lacticaseibacillus paracasei: Pan-genome, integrated prophage, antibiotic resistance, and carbohydrate utilization. World J. Microbiol. Biotechnol. 2023, 39, 280. [Google Scholar] [CrossRef]
- Walum, E. Acute oral toxicity. Environ. Health Perspect. 1998, 106 (Suppl. 2), 497–503. [Google Scholar] [CrossRef]
- Dearfield, K.L.; Auletta, A.E.; Cimino, M.C.; Moore, M.M. Considerations in the U.S. Environmental Protection Agency’s testing approach for mutagenicity. Mutat. Res. 1991, 258, 259–283. [Google Scholar] [CrossRef] [PubMed]
- Ware, R.E.; Dertinger, S.D. Absence of hydroxyurea-induced mutational effects supports higher utilisation for the treatment of sickle cell anaemia. Br. J. Haematol. 2021, 194, 252–266. [Google Scholar] [CrossRef] [PubMed]
- Chiu, Y.J.; Nam, M.K.; Tsai, Y.T.; Huang, C.C.; Tsai, C.C. Genotoxicity assessment of multispecies probiotics using reverse mutation, mammalian chromosomal aberration, and rodent micronucleus tests. Sci. World J. 2013, 2013, 254239. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, M.; Hashiguchi, M.; Shiga, T.; Tamura, H.O.; Mochizuki, M. Meta-Analysis: Effects of Probiotic Supplementation on Lipid Profiles in Normal to Mildly Hypercholesterolemic Individuals. PLoS ONE 2015, 10, e0139795. [Google Scholar] [CrossRef] [PubMed]
- Mukerji, P.; Roper, J.M.; Stahl, B.; Smith, A.B.; Burns, F.; Rae, J.C.; Yeung, N.; Lyra, A.; Svard, L.; Saarinen, M.T.; et al. Safety evaluation of AB-LIFE((R)) (Lactobacillus plantarum CECT 7527, 7528 and 7529): Antibiotic resistance and 90-day repeated-dose study in rats. Food Chem. Toxicol. 2016, 92, 117–128. [Google Scholar] [CrossRef] [PubMed]
- Stage, M.; Wichmann, A.; Jorgensen, M.; Vera-Jimenez, N.I.; Wielje, M.; Nielsen, D.S.; Sandelin, A.; Chen, Y.; Baker, A. Lactobacillus rhamnosus GG Genomic and Phenotypic Stability in an Industrial Production Process. Appl. Environ. Microbiol. 2020, 86, e02780-19. [Google Scholar] [CrossRef] [PubMed]
- Jungersen, M.; Wind, A.; Johansen, E.; Christensen, J.E.; Stuer-Lauridsen, B.; Eskesen, D. The Science behind the Probiotic Strain Bifidobacterium animalis subsp. lactis BB-12((R)). Microorganisms 2014, 2, 92–110. [Google Scholar] [CrossRef]
- Dianawati, D.; Shah, N.P. Survival, acid and bile tolerance, and surface hydrophobicity of microencapsulated B. animalis ssp. lactis Bb12 during storage at room temperature. J. Food Sci. 2011, 76, M592–M599. [Google Scholar] [CrossRef]
- Kankainen, M.; Paulin, L.; Tynkkynen, S.; von Ossowski, I.; Reunanen, J.; Partanen, P.; Satokari, R.; Vesterlund, S.; Hendrickx, A.P.; Lebeer, S.; et al. Comparative genomic analysis of Lactobacillus rhamnosus GG reveals pili containing a human-mucus binding protein. Proc. Natl. Acad. Sci. USA 2009, 106, 17193–17198. [Google Scholar] [CrossRef]
- Morgan, C.A.; Herman, N.; White, P.A.; Vesey, G. Preservation of micro-organisms by drying; A review. J. Microbiol. Methods 2006, 66, 183–193. [Google Scholar] [CrossRef]
- Blum, S.; Reniero, R.; Schiffrin, E.J.; Crittenden, R.; Mattila-Sandholm, T.; Ouwehand, A.C.; Salminen, S.; von Wright, A.; Saarela, M.; Saxelin, M.; et al. Adhesion studies for probiotics: Need for validation and refinement. Trends Food Sci. Technol. 1999, 10, 6. [Google Scholar] [CrossRef]
- Weiland-Brauer, N. Friends or Foes-Microbial Interactions in Nature. Biology 2021, 10, 496. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.T.; Hu, Y.F.; Lee, B.H.; Huang, C.Y.; Lin, Y.R.; Huang, S.N.; Chen, Y.Y.; Chang, J.J.; Nan, F.H. Dietary of Lactobacillus paracasei and Bifidobacterium longum improve nonspecific immune responses, growth performance, and resistance against Vibrio parahaemolyticus in Penaeus vannamei. Fish Shellfish Immunol. 2022, 128, 307–315. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.H.; Tsai, W.H.; Wu, H.Y.; Chen, C.Y.; Yeh, W.L.; Chen, Y.H.; Hsu, H.Y.; Chen, W.W.; Chen, Y.W.; Chang, W.W.; et al. Probiotic Lactobacillus spp. act Against Helicobacter pylori-induced Inflammation. J. Clin. Med. 2019, 8, 90. [Google Scholar] [CrossRef]
- Bueno, M.R.; Ishikawa, K.H.; Almeida-Santos, G.; Ando-Suguimoto, E.S.; Shimabukuro, N.; Kawamoto, D.; Mayer, M.P.A. Lactobacilli Attenuate the Effect of Aggregatibacter actinomycetemcomitans Infection in Gingival Epithelial Cells. Front. Microbiol. 2022, 13, 846192. [Google Scholar] [CrossRef]
- Darbandi, A.; Asadi, A.; Mahdizade Ari, M.; Ohadi, E.; Talebi, M.; Halaj Zadeh, M.; Darb Emamie, A.; Ghanavati, R.; Kakanj, M. Bacteriocins: Properties and potential use as antimicrobials. J. Clin. Lab. Anal. 2022, 36, e24093. [Google Scholar] [CrossRef]
Antibiotics | BLI-02 | LPL28 | TYCA06 | ET-66 |
---|---|---|---|---|
Gentamicin | 8/64 | 4/16 | 4/16 | 2/32 |
Kanamycin | n.r.b | 64/64 | 64/64 | 128/64 |
Streptomycin | 16/128 | 16/n.r. | 4/16 | 16/64 |
Tetracycline | 0.5/8 | 16/32 | 0.5/4 | 2/4 |
Erythromycin | 0.125/1 | 0.25/1 | 0.125/1 | 1/1 |
Clindamycin | 0.063/1 | 0.063/2 | 0.5/1 | 0.25/1 |
Chloramphenicol | 2/4 | 8/8 | 2/4 | 8/4 |
Ampicillin | 0.125/2 | 0.25/2 | 1/1 | 2/4 |
Vancomycin | 2/2 | n.r. b | 1/2 | n.r. b |
Strain | Gender | Dosage (g/kg BW) | Animal Number (n) | Week 0 (g) | Week 1 (g) | Week 2 (g) | Death Number (n) | LD50 (g/kg BW) |
---|---|---|---|---|---|---|---|---|
BLI-02 | Male | 10 | 10 | 19.17 ± 0.82 | 29.86 ± 1.26 | 35.04 ± 1.45 | 0 | >10 |
Female | 10 | 10 | 17.04 ± 0.59 | 20.52 ± 1.06 | 21.86 ± 1.17 | 0 | >10 | |
LPL28 | Male | 10 | 10 | 18.83 ± 0.68 | 29.88 ± 1.18 | 35.09 ± 1.17 | 0 | >10 |
Female | 10 | 10 | 17.15 ± 0.43 | 20.46 ± 0.73 | 21.58 ± 0.77 | 0 | >10 | |
TYCA06 | Male | 10 | 10 | 18.75 ± 0.62 | 29.27 ± 1.31 | 34.28 ± 1.72 | 0 | >10 |
Female | 10 | 10 | 17.22 ± 0.57 | 20.67 ± 0.71 | 22.24 ± 0.82 | 0 | >10 | |
ET-66 | Male | 10 | 10 | 19.23 ± 0.62 | 30.08 ± 0.80 | 35.60 ± 0.95 | 0 | >10 |
Female | 10 | 10 | 17.26 ± 0.64 | 20.84 ± 1.24 | 22.03 ± 1.29 | 0 | >10 |
Strain | Dosage (g/kg BW) | Animal Number (n) | Cell Number (n) | Chromosome Aberration (n) | Aberration Percentage (%) |
---|---|---|---|---|---|
Negative control | 0 a | 5 | 500 | 6 | 0.8 ± 1.3 |
Positive control | 0.04 b | 5 | 500 | 51 | 7.2 ± 1.3 ** |
BLI-02 (L) | 2.5 | 5 | 500 | 9 | 1.8 ± 1.3 |
BLI-02 (M) | 5 | 5 | 500 | 12 | 1.8 ± 1.3 |
BLI-02 (H) | 10 | 5 | 500 | 13 | 1.6 ± 0.9 |
LPL28 (L) | 2.5 | 5 | 500 | 7 | 1.0 ± 0.7 |
LPL28 (M) | 5 | 5 | 500 | 14 | 1.8 ± 1.5 |
LPL28 (H) | 10 | 5 | 500 | 11 | 1.6 ± 1.1 |
TYCA06 (L) | 2.5 | 5 | 500 | 10 | 1.2 ± 1.6 |
TYCA06 (M) | 5 | 5 | 500 | 13 | 2.0 ± 2.1 |
TYCA06 (H) | 10 | 5 | 500 | 13 | 1.8 ± 1.3 |
ET-66 (L) | 2.5 | 5 | 500 | 8 | 0.6 ± 1.3 |
ET-66 (M) | 5 | 5 | 500 | 7 | 0.6 ± 0.5 |
ET-66 (H) | 10 | 5 | 500 | 12 | 2.0 ± 1.4 |
Parameter | Control | BLI-02 | LPL28 | TYCA06 | ET-66 |
---|---|---|---|---|---|
Male | |||||
HB (g/L) | 153 ± 6 | 138 ± 8 | 151 ± 5 | 153 ± 6 | 149 ± 5 |
RBC (×1012/L) | 7.89 ± 0.40 | 6.85 ± 0.43 | 7.49 ± 0.40 | 7.95 ± 0.26 | 7.30 ± 0.39 |
HCT (%) | 40.1 ± 1.9 | 38.6 ± 2.1 | 38.4 ± 1.6 | 39.6 ± 1.4 | 40.0 ± 1.4 |
WBC (×109/L) | 10.01 ± 0.98 | 9.58 ± 1.12 | 9.19 ± 0.93 | 9.43 ± 1.42 | 9.43 ± 1.07 |
PLT (×109/L) | 1056 ± 87 | 946 ± 99 | 1012 ± 69 | 1037 ± 73 | 978 ± 74 |
LYMPH (%) | 82.7 ± 5.2 | 79.7 ± 7.6 | 73.6 ± 5.5 | 73.1 ± 6.1 | 74.1 ± 8.9 |
Neutrophil (%) | 14.3 ± 0.7 | 14.6 ± 1.0 | 15.5 ± 0.7 | 15.0 ± 1.0 | 14.8 ± 0.8 |
Acidophil (%) | 2.2 ± 0.4 | 2.1 ± 0.4 | 2.2 ± 0.4 | 2.1 ± 0.5 | 1.8 ± 0.4 |
Basophil (%) | 0.4 ± 0.1 | 0.3 ± 0.1 | 0.4 ± 0.1 | 0.3 ± 0.1 | 0.3 ± 0.1 |
APTT (s) | 32.0 ± 7.1 | 31.1 ± 3.4 | 33.0 ± 5.2 | 31.5 ± 4.1 | 32.3 ± 5.1 |
PT (s) | 16.7 ± 2.2 | 16.1 ± 1.3 | 16.5 ± 1.5 | 17.0 ± 1.4 | 16.3 ± 1.2 |
Female | |||||
HB (g/L) | 158 ± 5 | 152 ± 7 | 151 ± 3 | 157 ± 4 | 154 ± 4 |
RBC (×1012/L) | 7.75 ± 0.41 | 7.77 ± 0.36 | 7.42 ± 0.50 | 7.62 ± 0.46 | 7.86 ± 0.39 |
HCT (%) | 39.4 ± 1.3 | 39.0 ± 1.5 | 40.1 ± 1.4 | 40.4 ± 1.3 | 39.0 ± 1.5 |
WBC (×109/L) | 8.59 ± 0.98 | 7.90 ± 1.40 | 7.73 ± 1.02 | 7.99 ± 1.43 | 7.68 ± 1.22 |
PLT (×109/L) | 1071 ± 86 | 1066 ± 79 | 1051 ± 68 | 1038 ± 78 | 1090 ± 84 |
LYMPH (%) | 80.1 ± 6.6 | 77.0 ± 7.0 | 75.7 ± 5.4 | 77.6 ± 5.5 | 74.8 ± 6.6 |
Neutrophil (%) | 14.1 ± 1.1 | 14.2 ± 0.7 | 13.7 ± 0.9 | 13.3 ± 0.6 | 14.0 ± 1.0 |
Acidophil (%) | 1.4 ± 0.3 | 1.6 ± 0.5 | 2.0 ± 0.2 | 1.4 ± 0.3 | 1.5 ± 0.4 |
Basophil (%) | 0.4 ± 0.1 | 0.4 ± 0.2 | 0.5 ± 0.1 | 0.4 ± 0.1 | 0.3 ± 0.1 |
APTT (s) | 32.6 ± 5.0 | 32.1 ± 4.6 | 30.0 ± 4.5 | 31.1 ± 4.0 | 32.4 ± 4.3 |
PT (s) | 17.1 ± 1.5 | 16.8 ± 1.4 | 16.4 ± 1.3 | 17.0 ± 1.4 | 16.2 ± 1.2 |
Parameter | Control | BLI-02 | LPL28 | TYCA06 | ET-66 |
---|---|---|---|---|---|
Male | |||||
ALT (U/L) | 48.6 ± 5.9 | 47.3 ± 7.3 | 42.4 ± 6.6 | 46.3 ± 7.2 | 46.0 ± 7.7 |
AST (U/L) | 138.8 ± 16.3 | 142.4 ± 12.1 | 137.5 ± 7.1 | 138.5 ± 15.2 | 138.7 ± 10.9 |
ALP (U/L) | 194.1 ± 9.9 | 195.5 ± 10.6 | 191.7 ± 12.3 | 198.7 ± 13.3 | 196.6 ± 10.1 |
γ-GT (U/L) | 1.2 ± 0.4 | 1.3 ± 0.3 | 1.4 ± 0.4 | 1.3 ± 0.3 | 1.4 ± 0.3 |
Urea (mmol/L) | 6.55 ± 0.91 | 5.93 ± 0.89 | 5.75 ± 0.48 | 6.42 ± 0.95 | 6.42 ± 0.93 |
CRE (μmol/L) | 50.1 ± 4.5 | 49.5 ± 5.8 | 50.9 ± 4.3 | 49.8 ± 3.8 | 51.2 ± 4.8 |
GLU (mmol/L) | 6.69 ± 0.67 | 6.99 ± 0.59 | 6.62 ± 0.55 | 6.58 ± 0.41 | 6.67 ± 0.43 |
TP (g/L) | 50.0 ± 10.5 | 47.7 ± 10.0 | 51.2 ± 7.6 | 47.0 ± 11.1 | 49.6 ± 10.6 |
ALB (g/L) | 22.7 ± 3.8 | 24.2 ± 3.0 | 21.0 ± 3.8 | 22.6 ± 4.0 | 21.4 ± 4.1 |
TC (mmol/L) | 1.28 ± 0.42 | 1.53 ± 0.31 | 1.29 ± 0.28 | 1.31 ± 0.37 | 1.31 ± 0.32 |
TG (mmol/L) | 0.95 ± 0.14 | 1.04 ± 0.20 | 0.99 ± 0.20 | 1.04 ± 0.23 | 1.10 ± 0.18 |
Cl (mmol/L) | 125.1 ± 16.1 | 128.9 ± 16.8 | 121.9 ± 14.1 | 124.7 ± 11.8 | 124.8 ± 13.6 |
K (mmol/L) | 5.43 ± 0.67 | 5.78 ± 1.08 | 5.85 ± 0.62 | 5.97 ± 1.00 | 5.21 ± 0.86 |
Na (mmol/L) | 162.7 ± 16.1 | 162.4 ± 17.5 | 165.5 ± 14.9 | 160.9 ± 14.1 | 155.5 ± 15.9 |
Female | |||||
ALT (U/L) | 26.7 ± 3.6 | 31.8 ± 4.0 | 27.7 ± 4.5 | 27.7 ± 4.5 | 29.5 ± 5.7 |
AST (U/L) | 111.0 ± 16.0 | 110.2 ± 15.2 | 103.4 ± 10.4 | 108.0 ± 16.2 | 108.9 ± 20.3 |
ALP (U/L) | 140.9 ± 25.8 | 136.1 ± 25.9 | 149.3 ± 26.6 | 150.0 ± 26.3 | 148.1 ± 18.9 |
γ-GT (U/L) | 1.4 ± 0.4 | 1.4 ± 0.3 | 1.2 ± 0.2 | 1.3 ± 0.3 | 1.4 ± 0.3 |
Urea (mmol/L) | 7.63 ± 0.86 | 7.98 ± 0.81 | 7.51 ± 1.08 | 8.02 ± 1.10 | 7.43 ± 1.11 |
CRE (μmol/L) | 52.1 ± 4.3 | 48.4 ± 3.6 | 48.7 ± 4.1 | 47.7 ± 4.4 | 51.1 ± 2.5 |
GLU (mmol/L) | 6.73 ± 0.57 | 6.59 ± 0.54 | 6.76 ± 0.51 | 6.83 ± 0.68 | 6.97 ± 0.57 |
TP (g/L) | 64.0 ± 16.1 | 67.7 ± 11.1 | 64.0 ± 11.9 | 66.1 ± 16.1 | 61.5 ± 14.6 |
ALB (g/L) | 32.0 ± 5.0 | 30.4 ± 6.0 | 30.1 ± 4.9 | 27.3 ± 4.7 | 29.8 ± 4.0 |
TC (mmol/L) | 1.47 ± 0.45 | 1.75 ± 0.44 | 1.79 ± 0.44 | 1.48 ± 0.42 | 1.46 ± 0.45 |
TG (mmol/L) | 0.95 ± 0.24 | 1.06 ± 0.12 | 0.98 ± 0.23 | 1.00 ± 0.26 | 1.03 ± 0.21 |
Cl (mmol/L) | 115.6 ± 9.0 | 113.3 ± 5.6 | 117.0 ± 5.0 | 114.9 ± 8.7 | 112.0 ± 6.8 |
K (mmol/L) | 5.20 ± 0.72 | 4.72 ± 1.06 | 5.60 ± 1.15 | 5.50 ± 0.90 | 5.05 ± 0.90 |
Na (mmol/L) | 151.7 ± 5.4 | 146.8 ± 5.1 | 152.0 ± 4.8 | 149.6 ± 7.9 | 146.1 ± 7.0 |
BLI-02 | LPL28 | TYCA06 | ET-66 | |
---|---|---|---|---|
Vibrio parahaemolyticus a | >5 cm | >3 cm | >2 cm | >4 cm |
Helicobacter pylori b | 16.37% ±3.26% | 11.33% ±2.19% | 64.77% ±20.70% | 22.28% ±6.22% |
Aggregatibacter actinomycetemcomitans a | >2 cm | >2 cm | >2 cm | >3 cm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.-F.; Hsia, K.-C.; Kuo, Y.-W.; Chen, S.-H.; Huang, Y.-Y.; Li, C.-M.; Hsu, Y.-C.; Tsai, S.-Y.; Ho, H.-H. Safety Assessment and Probiotic Potential Comparison of Bifidobacterium longum subsp. infantis BLI-02, Lactobacillus plantarum LPL28, Lactobacillus acidophilus TYCA06, and Lactobacillus paracasei ET-66. Nutrients 2024, 16, 126. https://doi.org/10.3390/nu16010126
Chen J-F, Hsia K-C, Kuo Y-W, Chen S-H, Huang Y-Y, Li C-M, Hsu Y-C, Tsai S-Y, Ho H-H. Safety Assessment and Probiotic Potential Comparison of Bifidobacterium longum subsp. infantis BLI-02, Lactobacillus plantarum LPL28, Lactobacillus acidophilus TYCA06, and Lactobacillus paracasei ET-66. Nutrients. 2024; 16(1):126. https://doi.org/10.3390/nu16010126
Chicago/Turabian StyleChen, Jui-Fen, Ko-Chiang Hsia, Yi-Wei Kuo, Shu-Hui Chen, Yen-Yu Huang, Ching-Min Li, Yu-Chieh Hsu, Shin-Yu Tsai, and Hsieh-Hsun Ho. 2024. "Safety Assessment and Probiotic Potential Comparison of Bifidobacterium longum subsp. infantis BLI-02, Lactobacillus plantarum LPL28, Lactobacillus acidophilus TYCA06, and Lactobacillus paracasei ET-66" Nutrients 16, no. 1: 126. https://doi.org/10.3390/nu16010126
APA StyleChen, J. -F., Hsia, K. -C., Kuo, Y. -W., Chen, S. -H., Huang, Y. -Y., Li, C. -M., Hsu, Y. -C., Tsai, S. -Y., & Ho, H. -H. (2024). Safety Assessment and Probiotic Potential Comparison of Bifidobacterium longum subsp. infantis BLI-02, Lactobacillus plantarum LPL28, Lactobacillus acidophilus TYCA06, and Lactobacillus paracasei ET-66. Nutrients, 16(1), 126. https://doi.org/10.3390/nu16010126