Nutritional Assessments by Bioimpedance Technique in Dialysis Patients
Abstract
:1. Introduction
2. Principles and the Validation of Bioimpedance in ESKD
2.1. Basic Technological Principles of the Bioimpedance Technique
2.2. Limitations and Challenges
2.3. Practical Considerations during Bioimpedance Measurement
2.4. Validation Studies of the Bioimpedance Technique in ESKD Patients
3. Association of Bioimpedance-Derived Nutritional Parameters and Clinical Outcomes
3.1. Patients on Peritoneal Dialysis
3.2. Patients on Hemodialysis
4. Clinical Implications of Bioimpedance Technique: Toward an Integrated Nutritional Assessment in Dialysis Patients
5. Conclusions and Future Directions
- What is the optimal cut-off of bioimpedance-derived parameters (e.g., LTI or FTI) to identify or diagnose malnutrition, as well as in predicting the PEW (or other complications) in patients with ESKD?
- Defining the clinically acceptable limit of accuracy for the bioimpedance technique.
- Does modification of bioimpedance-derived parameters by nutrition intervention result in improvements in clinical endpoints?
- How frequently should bioimpedance be performed in ESKD patients to screen and monitor nutrition status?
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Bikbov, B.; Purcell, C.A.; Levey, A.S.; Smith, M.; Abdoli, A.; Abebe, M.; Adebayo, O.M.; Afarideh, M.; Agarwal, S.K.; Agudelo-Botero, M.; et al. Global, regional, and national burden of chronic kidney disease, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2020, 395, 709–733. [Google Scholar] [CrossRef]
- Foley, R.N.; Parfrey, P.S.; Harnett, J.D.; Kent, G.M.; Murray, D.C.; Barre, P.E. Hypoalbuminemia, cardiac morbidity, and mortality in end-stage renal disease. J. Am. Soc. Nephrol. 1996, 7, 728–736. [Google Scholar] [CrossRef]
- Kalantar-Zadeh, K.; Kilpatrick, R.D.; Kuwae, N.; McAllister, C.J.; Alcorn, H.; Kopple, J.D., Jr.; Greenland, S. Revisiting mortality predictability of serum albumin in the dialysis population: Time dependency, longitudinal changes and population-attributable fraction. Nephrol. Dial. Transplant. 2005, 20, 1880–1888. [Google Scholar] [CrossRef]
- Canada-USA (CANUSA) Peritoneal Dialysis Study Group. Adequacy of dialysis and nutrition in continuous peritoneal dialysis: Association with clinical outcomes. J. Am. Soc. Nephrol. 1996, 7, 198–207. [Google Scholar] [CrossRef]
- Leinig, C.E.; Moraes, T.; Ribeiro, S.; Riella, M.C.; Olandoski, M.; Martins, C.; Pecoits-Filho, R. Predictive value of malnutrition markers for mortality in peritoneal dialysis patients. J. Ren. Nutr. 2011, 21, 176–183. [Google Scholar] [CrossRef]
- Fouque, D.; Kalantar-Zadeh, K.; Kopple, J.; Cano, N.; Chauveau, P.; Cuppari, L.; Franch, H.; Guarnieri, G.; Ikizler, T.A.; Kaysen, G.; et al. A proposed nomenclature and diagnostic criteria for protein-energy wasting in acute and chronic kidney disease. Kidney Int. 2008, 73, 391–398. [Google Scholar] [CrossRef]
- Carrero, J.J.; Thomas, F.; Nagy, K.; Arogundade, F.; Avesani, C.M.; Chan, M.; Chmielewski, M.; Cordeiro, A.C.; Espinosa-Cuevas, A.; Fiaccadori, E.; et al. Global Prevalence of Protein-Energy Wasting in Kidney Disease: A Meta-analysis of Contemporary Observational Studies from the International Society of Renal Nutrition and Metabolism. J. Ren. Nutr. 2018, 28, 380–392. [Google Scholar] [CrossRef]
- Johansen, K.L.; Lee, C. Body composition in chronic kidney disease. Curr. Opin. Nephrol. Hypertens. 2015, 24, 268–275. [Google Scholar] [CrossRef]
- de Mutsert, R.; Grootendorst, D.C.; Boeschoten, E.W.; Brandts, H.; van Manen, J.G.; Krediet, R.T.; Dekker, F.W. Subjective global assessment of nutritional status is strongly associated with mortality in chronic dialysis patients. Am. J. Clin. Nutr. 2009, 89, 787–793. [Google Scholar] [CrossRef]
- As’habi, A.; Tabibi, H.; Nozary-Heshmati, B.; Mahdavi-Mazdeh, M.; Hedayati, M. Comparison of various scoring methods for the diagnosis of protein-energy wasting in hemodialysis patients. Int. Urol. Nephrol. 2014, 46, 999–1004. [Google Scholar] [CrossRef]
- Steiber, A.L.; Kalantar-Zadeh, K.; Secker, D.; McCarthy, M.; Sehgal, A.; McCann, L. Subjective Global Assessment in chronic kidney disease: A review. J. Ren. Nutr. 2004, 14, 191–200. [Google Scholar] [CrossRef]
- Steenson, J.; Vivanti, A.; Isenring, E. Inter-rater reliability of the Subjective Global Assessment: A systematic literature review. Nutrition 2013, 29, 350–352. [Google Scholar] [CrossRef]
- Davies, S.J.; Davenport, A. The role of bioimpedance and biomarkers in helping to aid clinical decision-making of volume assessments in dialysis patients. Kidney Int. 2014, 86, 489–496. [Google Scholar] [CrossRef]
- Broers, N.J.H.; Canaud, B.; Dekker, M.J.E.; van der Sande, F.M.; Stuard, S.; Wabel, P.; Kooman, J.P. Three compartment bioimpedance spectroscopy in the nutritional assessment and the outcome of patients with advanced or end stage kidney disease: What have we learned so far? Hemodial. Int. 2020, 24, 148–161. [Google Scholar] [CrossRef]
- Schwenk, A.; Beisenherz, A.; Römer, K.; Kremer, G.; Salzberger, B.; Elia, M. Phase angle from bioelectrical impedance analysis remains an independent predictive marker in HIV-infected patients in the era of highly active antiretroviral treatment. Am. J. Clin. Nutr. 2000, 72, 496–501. [Google Scholar] [CrossRef]
- Selberg, O.; Selberg, D. Norms and correlates of bioimpedance phase angle in healthy human subjects, hospitalized patients, and patients with liver cirrhosis. Eur. J. Appl. Physiol. 2002, 86, 509–516. [Google Scholar] [CrossRef]
- Gupta, D.; Lammersfeld, C.A.; Vashi, P.G.; King, J.; Dahlk, S.L.; Grutsch, J.F.; Lis, C.G. Bioelectrical impedance phase angle as a prognostic indicator in breast cancer. BMC Cancer 2008, 8, 249. [Google Scholar] [CrossRef]
- Cederholm, T.; Jensen, G.L.; Correia, M.; Gonzalez, M.C.; Fukushima, R.; Higashiguchi, T.; Baptista, G.; Barazzoni, R.; Blaauw, R.; Coats, A.; et al. GLIM criteria for the diagnosis of malnutrition—A consensus report from the global clinical nutrition community. Clin. Nutr. 2019, 38, 1–9. [Google Scholar] [CrossRef]
- Zoccali, C.; Moissl, U.; Chazot, C.; Mallamaci, F.; Tripepi, G.; Arkossy, O.; Wabel, P.; Stuard, S. Chronic Fluid Overload and Mortality in ESRD. J. Am. Soc. Nephrol. 2017, 28, 2491–2497. [Google Scholar] [CrossRef]
- Van Biesen, W.; Verger, C.; Heaf, J.; Vrtovsnik, F.; Britto, Z.M.L.; Do, J.Y.; Prieto-Velasco, M.; Martínez, J.P.; Crepaldi, C.; De Los Ríos, T.; et al. Evolution Over Time of Volume Status and PD-Related Practice Patterns in an Incident Peritoneal Dialysis Cohort. Clin. J. Am. Soc. Nephrol. 2019, 14, 882–893. [Google Scholar] [CrossRef]
- Ng, J.K.; Kwan, B.C.; Chan, G.C.; Chow, K.M.; Pang, W.F.; Cheng, P.M.; Leung, C.B.; Li, P.K.; Szeto, C.C. Predictors and prognostic significance of persistent fluid overload: A longitudinal study in Chinese peritoneal dialysis patients. Perit. Dial. Int. 2023, 43, 252–262. [Google Scholar] [CrossRef]
- Ward, L.C. Bioelectrical impedance analysis for body composition assessment: Reflections on accuracy, clinical utility, and standardisation. Eur. J. Clin. Nutr. 2019, 73, 194–199. [Google Scholar] [CrossRef]
- Kyle, U.G.; Bosaeus, I.; De Lorenzo, A.D.; Deurenberg, P.; Elia, M.; Gómez, J.M.; Heitmann, B.L.; Kent-Smith, L.; Melchior, J.-C.; Pirlich, M.; et al. Bioelectrical impedance analysis—Part I: Review of principles and methods. Clin. Nutr. 2004, 23, 1226–1243. [Google Scholar] [CrossRef]
- Mulasi, U.; Kuchnia, A.J.; Cole, A.J.; Earthman, C.P. Bioimpedance at the Bedside: Current Applications, Limitations, and Opportunities. Nutr. Clin. Pract. 2015, 30, 180–193. [Google Scholar] [CrossRef]
- Chamney, P.W.; Wabel, P.; Moissl, U.M.; Müller, M.J.; Bosy-Westphal, A.; Korth, O.; Fuller, N.J. A whole-body model to distinguish excess fluid from the hydration of major body tissues. Am. J. Clin. Nutr. 2007, 85, 80–89. [Google Scholar] [CrossRef]
- Tabinor, M.; Elphick, E.; Dudson, M.; Kwok, C.S.; Lambie, M.; Davies, S.J. Bioimpedance-defined overhydration predicts survival in end stage kidney failure (ESKF): Systematic review and subgroup meta-analysis. Sci. Rep. 2018, 8, 4441. [Google Scholar] [CrossRef]
- Wabel, P.; Moissl, U.; Chamney, P.; Jirka, T.; Machek, P.; Ponce, P.; Taborsky, P.; Tetta, C.; Velasco, N.; Vlasak, J.; et al. Towards improved cardiovascular management: The necessity of combining blood pressure and fluid overload. Nephrol. Dial. Transpl. 2008, 23, 2965–2971. [Google Scholar] [CrossRef]
- Sergi, G.; De Rui, M.; Stubbs, B.; Veronese, N.; Manzato, E. Measurement of lean body mass using bioelectrical impedance analysis: A consideration of the pros and cons. Aging Clin. Exp. Res. 2017, 29, 591–597. [Google Scholar] [CrossRef]
- Kyle, U.G.; Genton, L.; Karsegard, L.; Slosman, D.O.; Pichard, C. Single prediction equation for bioelectrical impedance analysis in adults aged 20–94 years. Nutrition 2001, 17, 248–253. [Google Scholar] [CrossRef]
- Sun, S.S.; Chumlea, W.C.; Heymsfield, S.B.; Lukaski, H.C.; Schoeller, D.; Friedl, K.; Kuczmarski, R.J.; Flegal, K.M.; Johnson, C.L.; Hubbard, V.S. Development of bioelectrical impedance analysis prediction equations for body composition with the use of a multicomponent model for use in epidemiologic surveys. Am. J. Clin. Nutr. 2003, 77, 331–340. [Google Scholar] [CrossRef]
- Dey, D.K.; Bosaeus, I.; Lissner, L.; Steen, B. Body composition estimated by bioelectrical impedance in the Swedish elderly. Development of population-based prediction equation and reference values of fat-free mass and body fat for 70- and 75-y olds. Eur. J. Clin. Nutr. 2003, 57, 909–916. [Google Scholar] [CrossRef]
- Deurenberg, P.; Schouten, F.J.M.; Tagliabue, A. Multi-frequency impedance for the prediction of extracellular water and total body water. Br. J. Nutr. 1995, 73, 349–358. [Google Scholar] [CrossRef]
- Barbosa-Silva, M.C.G.; Barros, A.J.D.; Wang, J.; Heymsfield, S.B.; Pierson, R.N. Bioelectrical impedance analysis: Population reference values for phase angle by age and sex. Am. J. Clin. Nutr. 2005, 82, 49–52. [Google Scholar] [CrossRef]
- Kyle, U.G.; Bosaeus, I.; De Lorenzo, A.D.; Deurenberg, P.; Elia, M.; Manuel Gómez, J.; Lilienthal Heitmann, B.; Kent-Smith, L.; Melchior, J.C.; Pirlich, M.; et al. Bioelectrical impedance analysis—Part II: Utilization in clinical practice. Clin. Nutr. 2004, 23, 1430–1453. [Google Scholar] [CrossRef]
- Piccoli, A.; Rossi, B.; Pillon, L.; Bucciante, G. A new method for monitoring body fluid variation by bioimpedance analysis: The RXc graph. Kidney Int. 1994, 46, 534–539. [Google Scholar] [CrossRef]
- Ukai, T.; Watanabe, M. Do metal implants for total hip arthroplasty affect bioelectrical impedance analysis? A retrospective study. BMC Musculoskelet. Disord. 2023, 24, 763. [Google Scholar] [CrossRef]
- Gudivaka, R.; Schoeller, D.; Kushner, R.F. Effect of skin temperature on multifrequency bioelectrical impedance analysis. J. Appl. Physiol. 1996, 81, 838–845. [Google Scholar] [CrossRef]
- Deurenberg, P.; Weststrate, J.A.; Paymans, I.; van der Kooy, K. Factors affecting bioelectrical impedance measurements in humans. Eur. J. Clin. Nutr. 1988, 42, 1017–1022. [Google Scholar]
- Davenport, A. Does peritoneal dialysate affect body composition assessments using multi-frequency bioimpedance in peritoneal dialysis patients? Eur. J. Clin. Nutr. 2013, 67, 223–225. [Google Scholar] [CrossRef]
- Kang, S.H.; Cho, K.H.; Park, J.W.; Yoon, K.W.; Do, J.Y. Body composition measurements using bioimpedance analysis in peritoneal dialysis patients are affected by the presence of dialysate. Nephrology 2014, 19, 727–731. [Google Scholar] [CrossRef]
- Arroyo, D.; Panizo, N.; Abad, S.; Vega, A.; Rincón, A.; de José, A.P.; López-Gómez, J.M. Intraperitoneal fluid overestimates hydration status assessment by bioimpedance spectroscopy. Perit. Dial. Int. 2015, 35, 85–89. [Google Scholar] [CrossRef]
- Caron-Lienert, R.S.; Figueiredo, A.E.; da Costa, B.P.; Bombardelli, C.F.; Pizzato, A.C.; Conti, A.; Poli-de-Figueiredo, C.E. Evaluation of body composition and fluid volume using a body composition monitor: Does intraperitoneal fluid matter? Perit. Dial. Int. 2014, 34, 456–458. [Google Scholar] [CrossRef]
- Schwaiger, E.; Simon, A.; Wabel, P.; Schairer, B.; Berner, C.; Signorini, L.; Ernstbrunner, M.; Evstatiev, R.; Schwabl, P.; Hinterholzer, G.; et al. Bioimpedance spectroscopy for fluid status assessment in patients with decompensated liver cirrhosis: Implications for peritoneal dialysis. Sci. Rep. 2020, 10, 2869. [Google Scholar] [CrossRef]
- Chan, G.C.; Fung, W.W.; Szeto, C.C.; Ng, J.K. From MIA to FIFA: The vicious matrix of frailty, inflammation, fluid overload and atherosclerosis in peritoneal dialysis. Nephrology 2023, 28, 215–226. [Google Scholar] [CrossRef]
- Alexandrou, M.E.; Balafa, O.; Sarafidis, P. Assessment of Hydration Status in Peritoneal Dialysis Patients: Validity, Prognostic Value, Strengths, and Limitations of Available Techniques. Am. J. Nephrol. 2020, 51, 589–612. [Google Scholar] [CrossRef]
- Panorchan, K.; Nongnuch, A.; El-Kateb, S.; Goodlad, C.; Davenport, A. Changes in muscle and fat mass with haemodialysis detected by multi-frequency bioelectrical impedance analysis. Eur. J. Clin. Nutr. 2015, 69, 1109–1112. [Google Scholar] [CrossRef]
- Tangvoraphonkchai, K.; Davenport, A. Changes in body composition following haemodialysis as assessed by bioimpedance spectroscopy. Eur. J. Clin. Nutr. 2017, 71, 169–172. [Google Scholar] [CrossRef]
- Konings, C.J.; Kooman, J.P.; Schonck, M.; van Kreel, B.; Heidendal, G.A.; Cheriex, E.C.; van der Sande, F.M.; Leunissen, K.M. Influence of fluid status on techniques used to assess body composition in peritoneal dialysis patients. Perit. Dial. Int. 2003, 23, 184–190. [Google Scholar] [CrossRef]
- Popovic, V.; Zerahn, B.; Heaf, J.G. Comparison of Dual Energy X-ray Absorptiometry and Bioimpedance in Assessing Body Composition and Nutrition in Peritoneal Dialysis Patients. J. Ren. Nutr. 2017, 27, 355–363. [Google Scholar] [CrossRef]
- Reis, N.; Vaninni, F.C.D.; Silva, M.Z.C.; de Oliveira, R.C.; Reis, F.M.; Costa, F.L.; Martin, L.C.; Barretti, P. Agreement of Single-Frequency Electrical Bioimpedance in the Evaluation of Fat Free Mass and Fat Mass in Peritoneal Dialysis Patients. Front. Nutr. 2021, 8, 686513. [Google Scholar] [CrossRef]
- Fürstenberg, A.; Davenport, A. Assessment of body composition in peritoneal dialysis patients using bioelectrical impedance and dual-energy x-ray absorptiometry. Am. J. Nephrol. 2011, 33, 150–156. [Google Scholar] [CrossRef]
- Fürstenberg, A.; Davenport, A. Comparison of multifrequency bioelectrical impedance analysis and dual-energy X-ray absorptiometry assessments in outpatient hemodialysis patients. Am. J. Kidney Dis. 2011, 57, 123–129. [Google Scholar] [CrossRef]
- Eyre, S.; Bosaeus, I.; Jensen, G.; Saeed, A. Using Bioimpedance Spectroscopy for Diagnosis of Malnutrition in Chronic Kidney Disease Stage 5-Is It Useful? J. Ren. Nutr. 2022, 32, 170–177. [Google Scholar] [CrossRef]
- Rodrigues, N.C.; Sala, P.C.; Horie, L.M.; Dias, M.C.; Torrinhas, R.S.; Romão, J.E., Jr.; Cecconello, I.; Waitzberg, D.L. Bioelectrical impedance analysis and skinfold thickness sum in assessing body fat mass of renal dialysis patients. J. Ren. Nutr. 2012, 22, 409–415.e2. [Google Scholar] [CrossRef]
- Bross, R.; Chandramohan, G.; Kovesdy, C.P.; Oreopoulos, A.; Noori, N.; Golden, S.; Benner, D.; Kopple, J.D.; Kalantar-Zadeh, K. Comparing body composition assessment tests in long-term hemodialysis patients. Am. J. Kidney Dis. 2010, 55, 885–896. [Google Scholar] [CrossRef]
- Ikizler, T.A.; Burrowes, J.D.; Byham-Gray, L.D.; Campbell, K.L.; Carrero, J.-J.; Chan, W.; Fouque, D.; Friedman, A.N.; Ghaddar, S.; Goldstein-Fuchs, D.J.; et al. KDOQI Clinical Practice Guideline for Nutrition in CKD: 2020 Update. Am. J. Kidney Dis. 2020, 76, S1–S107. [Google Scholar] [CrossRef]
- Ng, J.K.; Chan, G.C.; Kam, K.K.; Tian, N.; Than, W.H.; Cheng, P.M.; Law, M.C.; Pang, W.F.; Szeto, C.C.; Li, P.K. The Impact of Volume Overload on the Longitudinal Change of Adipose and Lean Tissue Mass in Incident Chinese Peritoneal Dialysis Patients. Nutrients 2022, 14, 4076. [Google Scholar] [CrossRef]
- Andersen, O.S.; Smiseth, O.A.; Dokainish, H.; Abudiab, M.M.; Schutt, R.C.; Kumar, A.; Sato, K.; Harb, S.; Gude, E.; Remme, E.W.; et al. Estimating Left Ventricular Filling Pressure by Echocardiography. J. Am. Coll. Cardiol. 2017, 69, 1937–1948. [Google Scholar] [CrossRef]
- Horber, F.F.; Thomi, F.; Casez, J.P.; Fonteille, J.; Jaeger, P. Impact of hydration status on body composition as measured by dual energy X-ray absorptiometry in normal volunteers and patients on haemodialysis. Br. J. Radiol. 1992, 65, 895–900. [Google Scholar] [CrossRef]
- Van Der Ploeg, G.E.; Withers, R.T.; Laforgia, J. Percent body fat via DEXA: Comparison with a four-compartment model. J. Appl. Physiol. 2003, 94, 499–506. [Google Scholar] [CrossRef]
- Bellafronte, N.T.; Diani, L.M.; Vega-Piris, L.; Cuadrado, G.B.; Chiarello, P.G. Comparison between dual-energy X-ray absorptiometry and bioelectrical impedance for body composition measurements in adults with chronic kidney disease: A cross-sectional, longitudinal, multi-treatment analysis. Nutrition 2021, 82, 111059. [Google Scholar] [CrossRef]
- Mushnick, R.; Fein, P.A.; Mittman, N.; Goel, N.; Chattopadhyay, J.; Avram, M.M. Relationship of bioelectrical impedance parameters to nutrition and survival in peritoneal dialysis patients: Management of comorbidities in kidney disease in the 21st century: Anemia and bone disease. Kidney Int. 2003, 64, S53–S56. [Google Scholar] [CrossRef]
- Kim, C.; Kim, J.K.; Lee, H.S.; Kim, S.G.; Song, Y.R. Longitudinal changes in body composition are associated with all-cause mortality in patients on peritoneal dialysis. Clin. Nutr. 2021, 40, 120–126. [Google Scholar] [CrossRef]
- Chen, L.K.; Woo, J.; Assantachai, P.; Auyeung, T.W.; Chou, M.Y.; Iijima, K.; Jang, H.C.; Kang, L.; Kim, M.; Kim, S.; et al. Asian Working Group for Sarcopenia: 2019 Consensus Update on Sarcopenia Diagnosis and Treatment. J. Am. Med. Dir. Assoc. 2020, 21, 300–307.e2. [Google Scholar] [CrossRef]
- Wathanavasin, W.; Banjongjit, A.; Avihingsanon, Y.; Praditpornsilpa, K.; Tungsanga, K.; Eiam-Ong, S.; Susantitaphong, P. Prevalence of Sarcopenia and Its Impact on Cardiovascular Events and Mortality among Dialysis Patients: A Systematic Review and Meta-Analysis. Nutrients 2022, 14, 4077. [Google Scholar] [CrossRef]
- Lorenz, E.C.; Kennedy, C.C.; Rule, A.D.; LeBrasseur, N.K.; Kirkland, J.L.; Hickson, L.J. Frailty in CKD and Transplantation. Kidney Int. Rep. 2021, 6, 2270–2280. [Google Scholar] [CrossRef]
- Ng, J.K.; Kwan, B.C.; Chow, K.M.; Cheng, P.M.; Law, M.C.; Pang, W.F.; Leung, C.B.; Li, P.K.; Szeto, C.C. Frailty in Chinese Peritoneal Dialysis Patients: Prevalence and Prognostic Significance. Kidney Blood Press. Res. 2016, 41, 736–745. [Google Scholar] [CrossRef]
- Chan, G.C.; Ng, J.K.; Chow, K.M.; Kwong, V.W.; Pang, W.F.; Cheng, P.M.; Law, M.C.; Leung, C.B.; Li, P.K.; Szeto, C.C. Progression in Physical Frailty in Peritoneal Dialysis Patients. Kidney Blood Press. Res. 2021, 46, 342–351. [Google Scholar] [CrossRef]
- Lu, Q.; Cheng, L.-T.; Wang, T.; Wan, J.; Liao, L.-L.; Zeng, J.; Qin, C.; Li, K.-J. Visceral Fat, Arterial Stiffness, and Endothelial Function in Peritoneal Dialysis Patients. J. Ren. Nutr. 2008, 18, 495–502. [Google Scholar] [CrossRef]
- Verger, C.; Ronco, C.; Van Biesen, W.; Heaf, J.; Vrtovsnik, F.; Vera Rivera, M.; Puide, I.; Azar, R.; Gauly, A.; Atiye, S.; et al. Association of Prescription with Body Composition and Patient Outcomes in Incident Peritoneal Dialysis Patients. Front. Med. 2021, 8, 737165. [Google Scholar] [CrossRef]
- Parthasarathy, R.; Oei, E.; Fan, S.L. Clinical value of body composition monitor to evaluate lean and fat tissue mass in peritoneal dialysis. Eur. J. Clin. Nutr. 2019, 73, 1520–1528. [Google Scholar] [CrossRef] [PubMed]
- Marcelli, D.; Usvyat, L.A.; Kotanko, P.; Bayh, I.; Canaud, B.; Etter, M.; Gatti, E.; Grassmann, A.; Wang, Y.; Marelli, C.; et al. Body composition and survival in dialysis patients: Results from an international cohort study. Clin. J. Am. Soc. Nephrol. 2015, 10, 1192–1200. [Google Scholar] [CrossRef] [PubMed]
- Aatif, T.; Hassani, K.; Alayoud, A.; Maoujoud, O.; Ahid, S.; Benyahia, M.; Oualim, Z. Parameters to assess nutritional status in a Moroccan hemodialysis cohort. Arab. J. Nephrol. Transpl. 2013, 6, 89–97. [Google Scholar]
- Garagarza, C.; Flores, A.L.; Valente, A. Influence of Body Composition and Nutrition Parameters in Handgrip Strength: Are There Differences by Sex in Hemodialysis Patients? Nutr. Clin. Pr. 2018, 33, 247–254. [Google Scholar] [CrossRef] [PubMed]
- Rymarz, A.; Bartoszewicz, Z.; Szamotulska, K.; Niemczyk, S. The Associations Between Body Cell Mass and Nutritional and Inflammatory Markers in Patients with Chronic Kidney Disease and in Subjects Without Kidney Disease. J. Ren. Nutr. 2016, 26, 87–92. [Google Scholar] [CrossRef] [PubMed]
- Tan, R.S.; Liang, D.H.; Liu, Y.; Zhong, X.S.; Zhang, D.S.; Ma, J. Bioelectrical Impedance Analysis-Derived Phase Angle Predicts Protein-Energy Wasting in Maintenance Hemodialysis Patients. J. Ren. Nutr. 2019, 29, 295–301. [Google Scholar] [CrossRef] [PubMed]
- Beberashvili, I.; Azar, A.; Sinuani, I.; Shapiro, G.; Feldman, L.; Stav, K.; Sandbank, J.; Averbukh, Z. Bioimpedance phase angle predicts muscle function, quality of life and clinical outcome in maintenance hemodialysis patients. Eur. J. Clin. Nutr. 2014, 68, 683–689. [Google Scholar] [CrossRef]
- Lin, T.Y.; Wu, M.Y.; Chen, H.S.; Hung, S.C.; Lim, P.S. Development and validation of a multifrequency bioimpedance spectroscopy equation to predict appendicular skeletal muscle mass in hemodialysis patients. Clin. Nutr. 2021, 40, 3288–3295. [Google Scholar] [CrossRef]
- Johansen, K.L.; Dalrymple, L.S.; Delgado, C.; Kaysen, G.A.; Kornak, J.; Grimes, B.; Chertow, G.M. Association between Body Composition and Frailty among Prevalent Hemodialysis Patients: A US Renal Data System Special Study. J. Am. Soc. Nephrol. 2014, 25, 381–389. [Google Scholar] [CrossRef]
- Tian, M.; Yuan, J.; He, P.; Yu, F.; Long, C.; Zha, Y. Lean-to-fat tissue ratio as a risk factor for cognitive impairment in patients undergoing maintenance hemodialysis. J. Psychosom. Res. 2023, 174, 111464. [Google Scholar] [CrossRef]
- Marcelli, D.; Brand, K.; Ponce, P.; Milkowski, A.; Marelli, C.; Ok, E.; Merello Godino, J.-I.; Gurevich, K.; Jirka, T.; Rosenberger, J.; et al. Longitudinal Changes in Body Composition in Patients after Initiation of Hemodialysis Therapy: Results from an International Cohort. J. Ren. Nutr. 2016, 26, 72–80. [Google Scholar] [CrossRef]
- Kalantar-Zadeh, K.; Rhee, C.M.; Chou, J.; Ahmadi, S.F.; Park, J.; Chen, J.L.; Amin, A.N. The Obesity Paradox in Kidney Disease: How to Reconcile it with Obesity Management. Kidney Int. Rep. 2017, 2, 271–281. [Google Scholar] [CrossRef]
- Caetano, C.; Valente, A.; Oliveira, T.; Garagarza, C. Body Composition and Mortality Predictors in Hemodialysis Patients. J. Ren. Nutr. 2016, 26, 81–86. [Google Scholar] [CrossRef]
- Duong, T.V.; Wu, P.Y.; Wong, T.C.; Chen, H.H.; Chen, T.H.; Hsu, Y.H.; Peng, S.J.; Kuo, K.L.; Liu, H.C.; Lin, E.T.; et al. Mid-arm circumference, body fat, nutritional and inflammatory biomarkers, blood glucose, dialysis adequacy influence all-cause mortality in hemodialysis patients: A prospective cohort study. Medicine 2019, 98, e14930. [Google Scholar] [CrossRef]
- Rosenberger, J.; Kissova, V.; Majernikova, M.; Straussova, Z.; Boldizsar, J. Body composition monitor assessing malnutrition in the hemodialysis population independently predicts mortality. J. Ren. Nutr. 2014, 24, 172–176. [Google Scholar] [CrossRef]
- Castellano, S.; Palomares, I.; Moissl, U.; Chamney, P.; Carretero, D.; Crespo, A.; Morente, C.; Ribera, L.; Wabel, P.; Ramos, R.; et al. Risk identification in haemodialysis patients by appropriate body composition assessment. Nefrologia 2016, 36, 268–274. [Google Scholar] [CrossRef]
- Yajima, T.; Yajima, K. Ratio of extracellular water to intracellular water and simplified creatinine index as predictors of all-cause mortality for patients receiving hemodialysis. PLoS ONE 2023, 18, e0282864. [Google Scholar] [CrossRef]
- Dekker, M.J.E.; Konings, C.; Canaud, B.; van der Sande, F.M.; Stuard, S.; Raimann, J.G.; Öztürk, E.; Usvyat, L.; Kotanko, P.; Kooman, J.P. Interactions Between Malnutrition, Inflammation, and Fluid Overload and Their Associations with Survival in Prevalent Hemodialysis Patients. J. Ren. Nutr. 2018, 28, 435–444. [Google Scholar] [CrossRef]
- Luce, M.; Barba, C.; Yi, D.; Mey, A.; Roussel, D.; Bres, E.; Benoit, B.; Pastural, M.; Granjon, S.; Szelag, J.C.; et al. Accumulation of natriuretic peptides is associated with protein energy wasting and activation of browning in white adipose tissue in chronic kidney disease. Kidney Int. 2020, 98, 663–672. [Google Scholar] [CrossRef] [PubMed]
- Canaud, B.; Morena-Carrere, M.; Leray-Moragues, H.; Cristol, J.-P. Fluid Overload and Tissue Sodium Accumulation as Main Drivers of Protein Energy Malnutrition in Dialysis Patients. Nutrients 2022, 14, 4489. [Google Scholar] [CrossRef] [PubMed]
- Arias-Guillén, M.; Perez, E.; Herrera, P.; Romano, B.; Ojeda, R.; Vera, M.; Ríos, J.; Fontseré, N.; Maduell, F. Bioimpedance Spectroscopy as a Practical Tool for the Early Detection and Prevention of Protein-Energy Wasting in Hemodialysis Patients. J. Ren. Nutr. 2018, 28, 324–332. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Moissl, U.; Cai, H.; Zhang, W.; Lim, P.S.; Ha Phan, H.A.; Wabel, P.; Etter, M. Reference ranges for lean and fat tissue index (LTI, FTI) in a large Asian population (SUN-260). Kidney Int. Rep. 2019, 4, S267–S268. [Google Scholar] [CrossRef]
- Yamada, S.; Tsuruya, K.; Kitazono, T.; Nakano, T. Emerging cross-talks between chronic kidney disease–mineral and bone disorder (CKD–MBD) and malnutrition–inflammation complex syndrome (MICS) in patients receiving dialysis. Clin. Exp. Nephrol. 2022, 26, 613–629. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Grabner, A.; Yanucil, C.; Schramm, K.; Czaya, B.; Krick, S.; Czaja, M.J.; Bartz, R.; Abraham, R.; Di Marco, G.S.; et al. Fibroblast growth factor 23 directly targets hepatocytes to promote inflammation in chronic kidney disease. Kidney Int. 2016, 90, 985–996. [Google Scholar] [CrossRef] [PubMed]
- Kir, S.; Komaba, H.; Garcia, A.P.; Economopoulos, K.P.; Liu, W.; Lanske, B.; Hodin, R.A.; Spiegelman, B.M. PTH/PTHrP Receptor Mediates Cachexia in Models of Kidney Failure and Cancer. Cell Metab. 2016, 23, 315–323. [Google Scholar] [CrossRef] [PubMed]
- Isoyama, N.; Qureshi, A.R.; Avesani, C.M.; Lindholm, B.; Bàràny, P.; Heimbürger, O.; Cederholm, T.; Stenvinkel, P.; Carrero, J.J. Comparative associations of muscle mass and muscle strength with mortality in dialysis patients. Clin. J. Am. Soc. Nephrol. 2014, 9, 1720–1728. [Google Scholar] [CrossRef] [PubMed]
- Kittiskulnam, P.; Chertow, G.M.; Carrero, J.J.; Delgado, C.; Kaysen, G.A.; Johansen, K.L. Sarcopenia and its individual criteria are associated, in part, with mortality among patients on hemodialysis. Kidney Int. 2017, 92, 238–247. [Google Scholar] [CrossRef]
- Kim, J.C.; Kalantar-Zadeh, K.; Kopple, J.D. Frailty and protein-energy wasting in elderly patients with end stage kidney disease. J. Am. Soc. Nephrol. 2013, 24, 337–351. [Google Scholar] [CrossRef]
- Oh, K.H.; Baek, S.H.; Joo, K.W.; Kim, D.K.; Kim, Y.S.; Kim, S.; Oh, Y.K.; Han, B.G.; Chang, J.H.; Chung, W.; et al. Does Routine Bioimpedance-Guided Fluid Management Provide Additional Benefit to Non-Anuric Peritoneal Dialysis Patients? Results from COMPASS Clinical Trial. Perit. Dial. Int. 2018, 38, 131–138. [Google Scholar] [CrossRef]
- Tian, N.; Yang, X.; Guo, Q.; Zhou, Q.; Yi, C.; Lin, J.; Cao, P.; Ye, H.; Chen, M.; Yu, X. Bioimpedance Guided Fluid Management in Peritoneal Dialysis: A Randomized Controlled Trial. Clin. J. Am. Soc. Nephrol. 2020, 15, 685–694. [Google Scholar] [CrossRef]
- Davies, S.J.; Coyle, D.; Lindley, E.J.; Keane, D.; Belcher, J.; Caskey, F.J.; Dasgupta, I.; Davenport, A.; Farrington, K.; Mitra, S.; et al. Bio-impedance spectroscopy added to a fluid management protocol does not improve preservation of residual kidney function in incident hemodialysis patients in a randomized controlled trial. Kidney Int. 2023, 104, 587–598. [Google Scholar] [CrossRef]
Single-Frequency BIA | Multi-Frequency BIA | Bioimpedance Spectroscopy | |
---|---|---|---|
Frequency of current | Single frequency at 50 kHz | Multiple fixed frequencies (commonly at 1, 5, 50, 250, 500, and 1000 kHz) | A spectrum of frequencies (at least 50 frequencies from 5 to 1000 kHz) |
Physiological model | Two-compartment model (FM and FFM) | Two-compartment model (FM and FFM) | Three-compartment model (OH, ATM, and LTM) |
Mathematical algorithm | Bioimpedance data fit into linear regression equation (derived from specific reference population) | Bioimpedance data fit into linear regression equation (derived from specific reference population) | Bioimpedance data fit into the Cole model (nonlinear least-square curve fitting model) to calculate the volume of body compartments, the result of which are applied to the three-compartment model by Chamney et al. [25] |
Output parameters | Phase angle, edema index, and vector analysis | Phase angle and edema index | OH, LTI, and FTI |
Examples of devices | BIA 450 (Biodynamics®, Seattle, WA, USA) | Inbody 720 (Biospace, Seoul, Republic of Korea) | Body Composition Monitor (Fresenius Medical Care, Bad Homburg, Germany) |
Author, Year | Subjects | BIA Device | Reference Method | Equation | R2 | SEE |
Kyle et al., 2004 [29] | 343 White healthy subjects aged 2–94 years | SF-BIA (Xitron 4000B; ImpediMed, Carlsbad, CA, USA) | DEXA (Hologic QDR-4500; Hologic, Bedford, MA, USA) | FFM (kg) = −4.104 + (0.518 × height2/resistance) + (0.231 × weight) + (0.130 × reactance) + (4.229 × sex: men = 1, women = 0) | 0.97 | 1.72 kg |
Sun et al., 2003 [30] | 1474 White and 355 Black subjects aged 12–94 years | SF-BIA (model 101; RJL Systems, Inc., Detroit, MI, USA) | TBW: deuterium dilution FFM: DEXA (Lunar Inc., Madison, WI, USA) | Male: TBW (L) = 1.20 + 0.45 × height2/resistance + 0.18 × weight Female: TBW (L) = 3.75 + 0.45 × height2/resistance + 0.11 × weight Male: FFM (kg) = −10.68 + 0.65 × height2/resistance + 0.26 × weight + 0.02 × resistance Female: FFM (kg) = −9.53 + 0.69 × height2/resistance + 0.17 × weight + 0.02 × resistance | 0.84 0.79 0.90 0.83 | 3.8 L 2.6 L 3.9 kg 2.9 kg |
Dey et al., 2003 [31] | 101 Swedish elderly subjects (≥70 years) | SF-BIA (model 101; RJL Systems, Inc., Detroit, MI, USA) | Four compartment models | FFM (kg) = 11.78 + (0.499 × height2/resistance) + (0.134 × weight) + (3.449 × Sex) FM (kg) = weight − FFM | 0.95 | 2.64 kg |
Deurenberg et al., 1995 [32] | 137 Dutch healthy controls | MF-BIA (Dietosytem, Milano, Italy) | TBW: deuterium dilution ECW: bromide dilution | TBW (L) = 6.69 + (0.35 × height2/resistance [at 100 kHz]) + (0.17 × weight) − (0.11 × age) + (2.66 × sex: men = 1, women = 0) ECW (L) = 2.30 + (0.20 x height2/resistance [at 1 kHz]) + (0.07 × weight) – (0.02 × age) | 0.95 0.89 | 1.73 L 0.98 L |
Barbosa-Silva et al., 2005 [33] | 1967 healthy controls (multiethnicity) | SF-BIA (model 101; RJL Systems, Mt Clemens, MI, USA) | N/A | Phase angle (degree) = arc tangent ratio of reactance to resistance × (180/π) | 0.49 | N/A |
Domains | Comments | Remarks |
---|---|---|
Instrument related | ||
Device | Consistent signal of reproducible amplitude | Regular calibration Same machine is preferred in serial measurements |
Electrodes | Electrodes should be placed according to the manufacturers’ instructions and should not be reused | Two electrodes on the dorsum of a hand (one on the head of the metacarpal and one on the mid-point between the styloid processes of radius and ulnar) and foot (one on the head of the metatarsal and one on the mid-point between medial and lateral malleoli), respectively (preferably on the same side in subsequent measurements). The proximity (<5 cm) of electrodes should be avoided |
Subject related | ||
Position | Supine with each limb slightly away from the body (30–45 degrees) | Standing is associated with a transient decrease in impedance |
Skin temperature | Non-febrile subjects in ambient temperatures | Cutaneous vasodilation lowers impedance |
Food and drinks | Fasting for at least 4 h is preferred | Consumption of food and beverages may decrease impedance by 4–15 ohms |
Exercise | Avoid exercise for 8 h | Exercise approximately reduces resistance by 3% and reactance by 8% immediately after exercise |
Environment | Avoid touching the metallic frame of a bed | Electrical interference |
Disease related | ||
Chronic kidney disease | Ideally measured in the euvolemic state (especially for SF-BIA and MF-BIA) | The determination of lean mass may be confounded by hypervolemia (see detailed discussion in Section 2.3) |
Peritoneal dialysis | Ideally performed with an ‘empty abdomen’ (i.e., peritoneal dialysis solution drained out) | The absolute difference of parameters between a ‘full’ and ‘empty’ abdomen is small with uncertain clinical significance (see detailed discussion in Section 2.2) |
Hemodialysis | Measurements should be performed 60 min after hemodialysis Do not place the electrodes on the side of the body with an arteriovenous dialysis fistula or when the central venous catheter is connected to a dialysis machine | Lean mass decreases and fat mass increases after hemodialysis, and these changes correlate with the changes of extracellular water removed during dialysis |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ng, J.K.-C.; Lau, S.L.-F.; Chan, G.C.-K.; Tian, N.; Li, P.K.-T. Nutritional Assessments by Bioimpedance Technique in Dialysis Patients. Nutrients 2024, 16, 15. https://doi.org/10.3390/nu16010015
Ng JK-C, Lau SL-F, Chan GC-K, Tian N, Li PK-T. Nutritional Assessments by Bioimpedance Technique in Dialysis Patients. Nutrients. 2024; 16(1):15. https://doi.org/10.3390/nu16010015
Chicago/Turabian StyleNg, Jack Kit-Chung, Sam Lik-Fung Lau, Gordon Chun-Kau Chan, Na Tian, and Philip Kam-Tao Li. 2024. "Nutritional Assessments by Bioimpedance Technique in Dialysis Patients" Nutrients 16, no. 1: 15. https://doi.org/10.3390/nu16010015