Antibacterial Effect of Sesame Protein-Derived Peptides against Escherichia coli and Staphylococcus aureus: In Silico and In Vitro Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Analysis of the Sequence Similarity and Amino Acid Content of Sesame Sequences
2.2. In Silico Simulation of Sesame Protein Hydrolysis in the Gastrointestinal Tract
2.3. In Silico Prediction of the Antibacterial Activity of Released Peptides
2.4. In Silico Prediction of Physicochemical Properties of ABPs
2.5. Prediction of ABPs Toxicity and Allergenicity
2.6. Molecular Docking
2.7. Strain Activation
2.8. Plate Colony Count of Bacteria
2.9. MIC Measurement
3. Results
3.1. Sesame Protein Sequence and Amino Acid Composition
3.2. In Silico Gastrointestinal Enzymatic Hydrolysis of Sesame Proteins
3.3. In Silico Prediction of Antimicrobial Activity and Physicochemical Properties of Peptides
3.4. Toxicity and Allergenicity Prediction of ABPs
3.5. Structure-Based Virtual Screening
3.6. Molecular Interaction and Binding Mode
3.7. Antibacterial Activity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sansi, M.S.; Iram, D.; Zanab, S.; Vij, S.; Puniya, A.K.; Singh, A.; Ashutosh; Meena, S. Antimicrobial Bioactive Peptides from Goat Milk Proteins: In Silico Prediction and Analysis. J. Food Biochem. 2022, 46, e14311. [Google Scholar] [CrossRef] [PubMed]
- Plaza-Rodríguez, C.; Haberbeck, L.U.; Desvignes, V.; Dalgaard, P.; Sanaa, M.; Nauta, M.; Filter, M.; Guillier, L. Towards Transparent and Consistent Exchange of Knowledge for Improved Microbiological Food Safety. Curr. Opin. Food Sci. 2018, 19, 129–137. [Google Scholar] [CrossRef]
- Yan, J.; Liang, X.; Liu, C.; Cheng, Y.; Zhou, L.; Wang, K.; Zhao, L. Influence of Proline Substitution on the Bioactivity of Mammalian-Derived Antimicrobial Peptide NK-2. Probiotics Antimicrob. Prot. 2018, 10, 118–127. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zeng, X.; Yang, Q.; Qiao, S. Antimicrobial Peptides as Potential Alternatives to Antibiotics in Food Animal Industry. Int. J. Mol. Sci. 2016, 17, 603. [Google Scholar] [CrossRef] [PubMed]
- Gálvez, A.; López, R.L.; Pulido, R.P.; Burgos, M.J.G. Natural Antimicrobials for Food Biopreservation. In Food Biopreservation; SpringerBriefs in Food, Health, and Nutrition; Springer: New York, NY, USA, 2014; pp. 3–14. ISBN 978-1-4939-2028-0. [Google Scholar]
- Da Silva, J.; Leal, E.C.; Carvalho, E. Bioactive Antimicrobial Peptides as Therapeutic Agents for Infected Diabetic Foot Ulcers. Biomolecules 2021, 11, 1894. [Google Scholar] [CrossRef] [PubMed]
- Barbosa Pelegrini, P.; Del Sarto, R.P.; Silva, O.N.; Franco, O.L.; Grossi-de-Sa, M.F. Antibacterial Peptides from Plants: What They Are and How They Probably Work. Biochem. Res. Int. 2011, 2011, 250349. [Google Scholar] [CrossRef]
- Seyfi, R.; Kahaki, F.A.; Ebrahimi, T.; Montazersaheb, S.; Eyvazi, S.; Babaeipour, V.; Tarhriz, V. Antimicrobial Peptides (AMPs): Roles, Functions and Mechanism of Action. Int. J. Pept. Res. Ther. 2020, 26, 1451–1463. [Google Scholar] [CrossRef]
- Harmouche, N.; Aisenbrey, C.; Porcelli, F.; Xia, Y.; Nelson, S.E.D.; Chen, X.; Raya, J.; Vermeer, L.; Aparicio, C.; Veglia, G.; et al. Solution and Solid-State Nuclear Magnetic Resonance Structural Investigations of the Antimicrobial Designer Peptide GL13K in Membranes. Biochemistry 2017, 56, 4269–4278. [Google Scholar] [CrossRef]
- Li, X.; Zuo, S.; Wang, B.; Zhang, K.; Wang, Y. Antimicrobial Mechanisms and Clinical Application Prospects of Antimicrobial Peptides. Molecules 2022, 27, 2675. [Google Scholar] [CrossRef]
- Huan, Y.; Kong, Q.; Mou, H.; Yi, H. Antimicrobial Peptides: Classification, Design, Application and Research Progress in Multiple Fields. Front. Microbiol. 2020, 11, 582779. [Google Scholar] [CrossRef]
- Zhang, L.; Gallo, R.L. Antimicrobial Peptides. Curr. Biol. 2016, 26, R14–R19. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Dong, N.; Wang, Z.; Ma, Z.; Zhang, L.; Ma, Q.; Shan, A. Design of Imperfectly Amphipathic α-Helical Antimicrobial Peptides with Enhanced Cell Selectivity. Acta Biomater. 2014, 10, 244–257. [Google Scholar] [CrossRef] [PubMed]
- Sood, R.; Kinnunen, P.K.J. Cholesterol, Lanosterol, and Ergosterol Attenuate the Membrane Association of LL-37(W27F) and Temporin L. Biochim. Biophys. Acta (BBA)-Biomembr. 2008, 1778, 1460–1466. [Google Scholar] [CrossRef] [PubMed]
- Watson, J.L.; Gillies, E.R. Amphipathic β-Strand Mimics as Potential Membrane Disruptive Antibiotics. J. Org. Chem. 2009, 74, 5953–5960. [Google Scholar] [CrossRef] [PubMed]
- Gong, H.; Zhang, J.; Hu, X.; Li, Z.; Fa, K.; Liu, H.; Waigh, T.A.; McBain, A.; Lu, J.R. Hydrophobic Control of the Bioactivity and Cytotoxicity of de Novo-Designed Antimicrobial Peptides. ACS Appl. Mater. Interfaces 2019, 11, 34609–34620. [Google Scholar] [CrossRef] [PubMed]
- Ovung, A.; Bhattacharyya, J. Sulfonamide Drugs: Structure, Antibacterial Property, Toxicity, and Biophysical Interactions. Biophys. Rev. 2021, 13, 259–272. [Google Scholar] [CrossRef]
- Dennis, M.L.; Lee, M.D.; Harjani, J.R.; Ahmed, M.; DeBono, A.J.; Pitcher, N.P.; Wang, Z.; Chhabra, S.; Barlow, N.; Rahmani, R.; et al. 8-Mercaptoguanine Derivatives as Inhibitors of Dihydropteroate Synthase. Chem. A Eur. J. 2018, 24, 1922–1930. [Google Scholar] [CrossRef]
- Vassiliades, S.V.; Borges, L.G.; Giarolla, J.; Parise-Filho, R. Folate Pathway Inhibitors, An Underestimated and Underexplored Molecular Target for New Anti-Tuberculosis Agents. Mini Rev. Med. Chem. 2023, 23, 1711–1732. [Google Scholar] [CrossRef]
- Becker, A.E.; Wu, P.-K.; Park, J.-I. eIF5A-Independent Role of DHPS in p21CIP1 and Cell Fate Regulation. Int. J. Mol. Sci. 2021, 22, 13187. [Google Scholar] [CrossRef]
- Chai, T.-T.; Tan, Y.-N.; Ee, K.-Y.; Xiao, J.; Wong, F.-C. Seeds, Fermented Foods, and Agricultural by-Products as Sources of Plant-Derived Antibacterial Peptides. Crit. Rev. Food Sci. Nutr. 2019, 59, S162–S177. [Google Scholar] [CrossRef]
- Tu, M.; Cheng, S.; Lu, W.; Du, M. Advancement and Prospects of Bioinformatics Analysis for Studying Bioactive Peptides from Food-Derived Protein: Sequence, Structure, and Functions. TrAC Trends Anal. Chem. 2018, 105, 7–17. [Google Scholar] [CrossRef]
- Pimchan, T.; Tian, F.; Thumanu, K.; Rodtong, S.; Yongsawatdigul, J. Isolation, Identification, and Mode of Action of Antibacterial Peptides Derived from Egg Yolk Hydrolysate. Poult. Sci. 2023, 102, 102695. [Google Scholar] [CrossRef] [PubMed]
- Vidal-Limon, A.; Aguilar-Toalá, J.E.; Liceaga, A.M. Integration of Molecular Docking Analysis and Molecular Dynamics Simulations for Studying Food Proteins and Bioactive Peptides. J. Agric. Food Chem. 2022, 70, 934–943. [Google Scholar] [CrossRef] [PubMed]
- Dror, R.O.; Dirks, R.M.; Grossman, J.P.; Xu, H.; Shaw, D.E. Biomolecular Simulation: A Computational Microscope for Molecular Biology. Annu. Rev. Biophys. 2012, 41, 429–452. [Google Scholar] [CrossRef]
- Zhao, L.; Ai, X.; Pan, F.; Zhou, N.; Zhao, L.; Cai, S.; Tang, X. Novel Peptides with Xanthine Oxidase Inhibitory Activity Identified from Macadamia Nuts: Integrated in Silico and in Vitro Analysis. Eur. Food Res. Technol. 2022, 248, 2031–2042. [Google Scholar] [CrossRef]
- Namiki, M. Nutraceutical Functions of Sesame: A Review. Crit. Rev. Food Sci. Nutr. 2007, 47, 651–673. [Google Scholar] [CrossRef]
- Zhang, Y.; Hou, L.; Wang, X. Nutrient Release and Antioxidant Properties of Functional Sesame Paste Formulated with Flaxseed during in Vitro Digestion. Int. J. Food Sci. Technol. 2022, 58, 334–342. [Google Scholar] [CrossRef]
- Baskaran, R.; Chauhan, S.S.; Parthasarathi, R.; Mogili, N.S. In Silico Investigation and Assessment of Plausible Novel Tyrosinase Inhibitory Peptides from Sesame Seeds. LWT 2021, 147, 111619. [Google Scholar] [CrossRef]
- Biswas, A.; Dhar, P.; Ghosh, S. Antihyperlipidemic Effect of Sesame (Sesamum indicum L.) Protein Isolate in Rats Fed a Normal and High Cholesterol Diet. J. Food Sci. 2010, 75, H274–H279. [Google Scholar] [CrossRef]
- Duan, X.; Leng, Y.; Chen, F.; Zhang, M.; Li, Z. Evaluation of Oilseed Proteins as Precursors of Antimicrobial Peptides Using Bioinformatics Method. Amino Acids 2023, 55, 359–370. [Google Scholar] [CrossRef]
- Rao, G.S.; Kumar, M. Structure-Based Design of a Potent and Selective Small Peptide Inhibitor of Mycobacterium Tuberculosis 6-Hydroxymethyl-7, 8-Dihydropteroate Synthase: A Computer Modelling Approach. Chem. Biol. Drug Des. 2008, 71, 540–545. [Google Scholar] [CrossRef] [PubMed]
- Hanwell, M.D.; Curtis, D.E.; Lonie, D.C.; Vandermeersch, T.; Zurek, E.; Hutchison, G.R. Avogadro: An Advanced Semantic Chemical Editor, Visualization, and Analysis Platform. J. Cheminform. 2012, 4, 17. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Rojas, A.; Rolff, J. Antimicrobial Activity of Cationic Antimicrobial Peptides against Stationary Phase Bacteria. Microbiology 2022, 13, 1029084. [Google Scholar] [CrossRef] [PubMed]
- Giacometti, A.; Cirioni, O.; Barchiesi, F.; Del Prete, M.S.; Fortuna, M.; Caselli, F.; Scalise, G. In Vitro Susceptibility Tests for Cationic Peptides: Comparison of Broth Microdilution Methods for Bacteria That Grow Aerobically. Antimicrob. Agents Chemother. 2000, 44, 1694–1696. [Google Scholar] [CrossRef] [PubMed]
- Shivanna, S.K.; Nataraj, B.H. Revisiting Therapeutic and Toxicological Fingerprints of Milk-Derived Bioactive Peptides: An Overview. Food Biosci. 2020, 38, 100771. [Google Scholar] [CrossRef]
- Tai, S.S.K.; Wu, L.S.H.; Chen, E.C.F.; Tzen, J.T.C. Molecular Cloning of 11S Globulin and 2S Albumin, the Two Major Seed Storage Proteins in Sesame. J. Agric. Food Chem. 1999, 47, 4932–4938. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Ai, X.; Zhu, Z.; Zhang, M.; Pan, F.; Yang, Z.; Wang, O.; Zhao, L.; Zhao, L. Pancreatic Lipase Inhibitory Effects of Peptides Derived from Sesame Proteins: In Silico and in Vitro Analyses. Int. J. Biol. Macromol. 2022, 222, 1531–1537. [Google Scholar] [CrossRef]
- Duan, X.; Zhang, M.; Chen, F. Prediction and Analysis of Antimicrobial Peptides from Rapeseed Protein Using in Silico Approach. J. Food Biochem. 2021, 45, e13598. [Google Scholar] [CrossRef]
- Dong, G.-F.; Zheng, L.; Huang, S.-H.; Gao, J.; Zuo, Y.-C. Amino Acid Reduction Can Help to Improve the Identification of Antimicrobial Peptides and Their Functional Activities. Front. Genet. 2021, 12, 669328. [Google Scholar] [CrossRef]
- Janiesch, C.; Zschech, P.; Heinrich, K. Machine Learning and Deep Learning. Electron Mark. 2021, 31, 685–695. [Google Scholar] [CrossRef]
- Xu, J.; Li, F.; Leier, A.; Xiang, D.; Shen, H.-H.; Lago, T.T.M.; Li, J.; Yu, D.-J.; Song, J. Comprehensive Assessment of Machine Learning-Based Methods for Predicting Antimicrobial Peptides. Brief Bioinform. 2021, 22, bbab083. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Kapoor, P.; Chaudhary, K.; Gautam, A.; Kumar, R.; Open Source Drug Discovery Consortium; Raghava, G.P.S. In Silico Approach for Predicting Toxicity of Peptides and Proteins. PLoS ONE 2013, 8, e73957. [Google Scholar] [CrossRef] [PubMed]
- Dimitrov, I.; Naneva, L.; Doytchinova, I.; Bangov, I. AllergenFP: Allergenicity Prediction by Descriptor Fingerprints. Bioinformatics 2014, 30, 846–851. [Google Scholar] [CrossRef] [PubMed]
- Zupin, L.; dos Santos-Silva, C.A.; Al Mughrbi, A.R.H.; Vilela, L.M.B.; Benko-Iseppon, A.M.; Crovella, S. Bioactive Antimicrobial Peptides: A New Weapon to Counteract Zoonosis. Microorganisms 2022, 10, 1591. [Google Scholar] [CrossRef] [PubMed]
- Bessalle, R.; Haas, H.; Goria, A.; Shalit, I.; Fridkin, M. Augmentation of the Antibacterial Activity of Magainin by Positive-Charge Chain Extension. Antimicrob. Agents Chemother. 1992, 36, 313–317. [Google Scholar] [CrossRef]
- Dathe, M. Hydrophobicity, Hydrophobic Moment and Angle Subtended by Charged Residues Modulate Antibacterial and Haemolytic Activity of Amphipathic Helical Peptides. FEBS Lett. 1997, 403, 208–212. [Google Scholar] [CrossRef]
- Dathe, M.; Nikolenko, H.; Meyer, J.; Beyermann, M.; Bienert, M. Optimization of the Antimicrobial Activity of Magainin Peptides by Modification of Charge. FEBS Lett. 2001, 501, 146–150. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, M.; Pan, F.; Li, J.; Dou, R.; Wang, X.; Wang, Y.; He, Y.; Wang, S.; Cai, S. In Silico Analysis of Novel Dipeptidyl Peptidase-IV Inhibitory Peptides Released from Macadamia Integrifolia Antimicrobial Protein 2 (MiAMP2) and the Possible Pathways Involved in Diabetes Protection. Curr. Res. Food Sci. 2021, 4, 603–611. [Google Scholar] [CrossRef]
- Hou, X.; Feng, C.; Li, S.; Luo, Q.; Shen, G.; Wu, H.; Li, M.; Liu, X.; Chen, A.; Ye, M.; et al. Mechanism of Antimicrobial Peptide NP-6 from Sichuan Pepper Seeds against E. Coli and Effects of Different Environmental Factors on Its Activity. Appl. Microbiol. Biotechnol. 2019, 103, 6593–6604. [Google Scholar] [CrossRef]
- Jiang, Z.; Vasil, A.I.; Hale, J.D.; Hancock, R.E.W.; Vasil, M.L.; Hodges, R.S. Effects of Net Charge and the Number of Positively Charged Residues on the Biological Activity of Amphipathic A-helical Cationic Antimicrobial Peptides. Biopolymers 2008, 90, 369–383. [Google Scholar] [CrossRef]
- Wang, J.; Dou, X.; Song, J.; Lyu, Y.; Zhu, X.; Xu, L.; Li, W.; Shan, A. Antimicrobial Peptides: Promising Alternatives in the Post Feeding Antibiotic Era. Med. Res. Rev. 2019, 39, 831–859. [Google Scholar] [CrossRef] [PubMed]
- Cutrona, K.J.; Kaufman, B.A.; Figueroa, D.M.; Elmore, D.E. Role of Arginine and Lysine in the Antimicrobial Mechanism of Histone-derived Antimicrobial Peptides. FEBS Lett. 2015, 589, 3915–3920. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Li, S.; Brennan, C.S.; Wang, Q. Antimicrobial Activity of Arg–Ser–Ser against the Food-borne Pathogen Pseudomonas Aeruginosa. Int. J. Food Sci. Technol. 2020, 55, 379–388. [Google Scholar] [CrossRef]
- Hädicke, A.; Blume, A. Binding of Cationic Peptides (KX) 4 K to DPPG Bilayers. Increasing the Hydrophobicity of the Uncharged Amino Acid X Drives Formation of Membrane Bound β-Sheets: A DSC and FT-IR Study. Biochim. Biophys. Acta (BBA)-Biomembr. 2016, 1858, 1196–1206. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Li, S.; Zhao, J.; Shuang, Q.; Xia, Y.; Zhang, F. A Novel Endogenous Antimicrobial Peptide MP-4 Derived from Koumiss of Inner Mongolia by Peptidomics, and Effects on Staphylococcus Aureus. LWT 2024, 191, 115595. [Google Scholar] [CrossRef]
- Mao, F.; Bao, Y.; Wong, N.-K.; Huang, M.; Liu, K.; Zhang, X.; Yang, Z.; Yi, W.; Shu, X.; Xiang, Z.; et al. Large-Scale Plasma Peptidomic Profiling Reveals a Novel, Nontoxic, Crassostrea Hongkongensis-Derived Antimicrobial Peptide against Foodborne Pathogens. Mar. Drugs 2021, 19, 420. [Google Scholar] [CrossRef]
- Emelianova, A.A.; Kuzmin, D.V.; Panteleev, P.V.; Sorokin, M.; Buzdin, A.A.; Ovchinnikova, T.V. Anticancer Activity of the Goat Antimicrobial Peptide ChMAP-28. Front. Pharmacol. 2018, 9, 1501. [Google Scholar] [CrossRef]
- Zhou, X.; Peng, L.-Y.; Wang, Z.-C.; Wang, W.; Zhu, Z.; Huang, X.-H.; Chen, L.-B.; Song, Q.-S.; Bao, Y.-Y. Identification of Novel Antimicrobial Peptides from Rice Planthopper, Nilaparvata Lugens. Insect Biochem. Mol. Biol. 2019, 113, 103215. [Google Scholar] [CrossRef]
Amino Acid Composition | 11S Globulin Seed Storage Protein 2 | 2S Seed Storage Protein 1 |
---|---|---|
Ala (A) | 34 | 12 |
Arg (R) | 43 | 15 |
Asn (N) | 21 | 3 |
Asp (D) | 18 | 1 |
Cys (C) | 5 | 10 |
Gln (Q) | 38 | 16 |
Glu (E) | 33 | 18 |
Gly (G) | 33 | 6 |
His (H) | 11 | 4 |
Ile (I) | 20 | 2 |
Leu (L) | 35 | 7 |
Lys (K) | 9 | 2 |
Met (M) | 15 | 16 |
Phe (F) | 18 | 6 |
Pro (P) | 19 | 3 |
Ser (S) | 36 | 9 |
Thr (T) | 23 | 5 |
Trp (W) | 4 | 2 |
Tyr (Y) | 12 | 4 |
Val (V) | 32 | 7 |
Number of amino acids | 459 | 148 |
Theoretical pI | 7.73 | 6.10 |
Aliphatic index | 74.36 | 45.54 |
GRAVY index | −0.537 | −0.589 |
Peptides | Binding Energy (kcal/mol) | The Interacting Residues of Binding Site and the Specific Interaction for Each Ligand Considered |
---|---|---|
Ser-Thr-Ile-Arg | −8.0 | ASN22, PRO64, ASN144, MET148, GLU150, ALA151, PRO152, GLY191, ARG220, PRO232, ARG255 (van der waals); PRO145, THR147, GLN149, GLY189, LYS192, SER219, SER222, ARG235 (Conventional Hydrogen Bond); PHE190 (Carbon Hydrogen Bond); PHE190 (Pi-Sigma); LYS221 (Alkyl) |
Pro-Ser-Pro-Arg | −7.1 | THR62, ARG63, PRO64, MET141, PHE188, PHE190, LYS192, ARG220, GLN226, ARG255 (van der waals); GLN142, ASN144, PRO145, THR147, GLY189, SER222 (Conventional Hydrogen Bond); LYS221, SER222 (Carbon Hydrogen Bond) |
Ser-Gln-Arg | −7.2 | ARG63, PRO64, ASN144, GLU150, ALA151, PHE190, ASN193, ASN197, MET223 (van der waals); THR62, PRO145, THR147, GLN149, GLY189, GLY191, LYS192, SER222, GLN226 (Conventional Hydrogen Bond); GLN142 (Carbon Hydrogen Bond) |
Gly-Ser-Val-Arg | −7.2 | ARG63, GLY143, MET148, GLU150, ALA151, PRO152, PHE190, GLY191, ASN193, ASN197, GLN226 (van der waals); THR62, ASN144, PRO145, GLN149, GLY189, LYS192, SER222 (Conventional Hydrogen Bond); GLN142, THR147 (Carbon Hydrogen Bond); PRO64 (Alkyl) |
Ala-Gly-Gly-Val-Pro-Arg | −8.1 | ILE20, ASN22, GLU60, SER61, THR62, ASN144, PHE188, GLY191, SER222, GLN226, ARG235, HIS257 (van der waals); PRO145, THR147, GLY189, ARG255 (Conventional Hydrogen Bond); GLN149, LYS221 (Carbon Hydrogen Bond); PHE190 (Pi-Sigma); ARG63, PRO64 (Alkyl); PHE190 (Pi-Alkyl) |
Val-Thr-Arg | −6.4 | MET141, GLY143, ASN144, GLN149, GLU150, ALA151, PRO152, PHE190, GLY191, ASN193, GLN226 (van der waals); GLN142, THR147, GLY189, LYS192 (Conventional Hydrogen Bond); PRO145, SER222 (Carbon Hydrogen Bond); PRO64, MET148 (Alkyl) |
Trp-Lys | −7.2 | PRO64, GLY143, ASN144, PRO145, GLN149, ALA151, PRO152, PHE190, SER222, ARG235 (van der waals); GLN142, GLY189, ARG220 (Conventional Hydrogen Bond); ARG63, LYS221 (Pi-Alkyl); LYS221 (Amide-Pi Stacked) |
Bacteria | MIC Values of Trp-Lys (μg/mL) | MIC Values of Ser-Thr-Ile-Arg (μg/mL) | MIC Values of Ala-Gly-Gly-Val-Pro-Arg (μg/mL) |
---|---|---|---|
E. coli | ~ | 1024 | 512 |
S. aureus | 256 | 512 | 512 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Z.; Pan, F.; Wang, O.; Zhao, L.; Zhao, L. Antibacterial Effect of Sesame Protein-Derived Peptides against Escherichia coli and Staphylococcus aureus: In Silico and In Vitro Analysis. Nutrients 2024, 16, 175. https://doi.org/10.3390/nu16010175
Zhu Z, Pan F, Wang O, Zhao L, Zhao L. Antibacterial Effect of Sesame Protein-Derived Peptides against Escherichia coli and Staphylococcus aureus: In Silico and In Vitro Analysis. Nutrients. 2024; 16(1):175. https://doi.org/10.3390/nu16010175
Chicago/Turabian StyleZhu, Zehui, Fei Pan, Ou Wang, Liang Zhao, and Lei Zhao. 2024. "Antibacterial Effect of Sesame Protein-Derived Peptides against Escherichia coli and Staphylococcus aureus: In Silico and In Vitro Analysis" Nutrients 16, no. 1: 175. https://doi.org/10.3390/nu16010175
APA StyleZhu, Z., Pan, F., Wang, O., Zhao, L., & Zhao, L. (2024). Antibacterial Effect of Sesame Protein-Derived Peptides against Escherichia coli and Staphylococcus aureus: In Silico and In Vitro Analysis. Nutrients, 16(1), 175. https://doi.org/10.3390/nu16010175