Dominant Somatotype Development in Relation to Body Composition and Dietary Macronutrient Intake among High-Performance Athletes in Water, Cycling and Combat Sports
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Subjects
2.2. Measures
2.2.1. Body Composition Assessment
2.2.2. Somatotype Assessment
2.2.3. Nutritional Status Assessment
2.3. Statistical Data Analysis
3. Results
3.1. Characteristics of Athletes
3.2. Anthropometric Profiles and Nutritional Status
3.3. Magnitude of Somatotype Components
3.4. Somatotype in Association with Body Composition and Nutritional Status
4. Discussion
4.1. Dominant Somatotype Proportion in Athletes
4.2. Somatotype and Body Composition
4.3. Somatotype and Nutritional Status
4.4. Strengths, Limitations and Future Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
Term | Definition |
AOR | Adjusted odds ratio |
ANOVA | Analysis of variance |
BIA | Bioelectrical impedance analysis |
BF | Body fat |
BMi | Body mass index |
BMR | Basal metabolic rate |
BW | Body weight |
CI | Confidence interval |
CHO | Carbohydrates |
d | Cohen’s D effect size |
DEE | Daily energy expenditure |
3-DFRA | 3-day food record analysis |
DXA | Dual-energy X-ray absorptiometry |
Ei | Edema index |
EN-ISO | International Organization for Standardization adopted by the European Union |
EI | Energy intake |
ISSN | International Society of Sports Nutrition |
F | Female |
FAT | Fats |
FFMi | Free fat mass index |
H | Height |
H | Alternative hypothesis |
Kcal | Kilocalorie |
Kg | Kilograms |
kHz | Kilohertz |
LB | Lower bound |
LBM | Lean body mass |
LDA | Linear discriminant analysis |
LNOC | Lithuanian National Olympic Committee |
LSMC | Lithuanian Sports Medicine Centre |
LTeam | Lithuania’s olympic team |
n | Number of cases in a subsample |
N | Total number of cases |
p | p-value |
PRO | Protein |
m | Metres |
M | Male |
M | Sample mean |
MET | Metabolic equivalent |
MM | Muscle mass |
R2 | Multiple correlation squared/measure of strength of association |
RDI | Reference daily intake |
Rz | Resistance |
SD | Standard deviation |
SPSS | Statistical package for the social sciences |
TBMin | Total body mineral |
TBPro | Total body protein |
TBW | Total body water |
TEE | Training energy expenditure |
Tukey’s HSD | Ttukey’s honestly significant difference |
UB | Upper bound |
USA | The United States of America |
Appendix A
Model | Independent Variable | β | 95% CI (LB; UB) | p |
---|---|---|---|---|
Endomorphy component a | Height (m) | −0.03 | (−0.03; 0.02) | <0.001 |
Total body water (%) | −0.09 | (−0.16; −0.02) | 0.017 | |
Body fat mass (%) | 0.06 | (0.02; 0.09) | 0.004 | |
Trunk muscle mass (%) | −0.09 | (−0.11; −0.07) | <0.001 | |
Lower limb muscle mass (%) | 0.10 | (0.06; 0.14) | <0.001 | |
Upper limb muscle mass (%) | 0.20 | (0.09; 0.32) | 0.001 | |
Mesomorphy component b | Height (m) | −0.05 | (−0.06; −0.04) | <0.001 |
Total body water (%) | 0.003 | (−0.11; 0.11) | 0.961 | |
Body fat mass (%) | 0.13 | (0.07; 0.19) | <0.001 | |
Trunk muscle mass (%) | −0.14 | (−0.18; −0.10) | <0.001 | |
Lower limb muscle mass (%) | 0.12 | (0.05; 0.18) | <0.001 | |
Upper limb muscle mass (%) | 0.41 | (0.23; 0.59) | <0.001 | |
Ectomorphy component c | Height (m) | 0.04 | (0.04; 0.05) | <0.001 |
Total body water (%) | 0.32 | (0.17; 0.47) | <0.001 | |
Body fat mass (%) | 0.06 | (−0.03; 0.14) | 0.189 | |
Trunk muscle mass (%) | 0.21 | (0.16; 0.26) | <0.001 | |
Lower limb muscle mass (%) | −0.15 | (−0.23; −0.06) | 0.001 | |
Upper limb muscle mass (%) | −0.68 | (−0.93; −0.43) | <0.001 |
Model | Independent Variable | β (SE) | Wald | p | AOR 95% CI (LB; UB) | R2Nagelkerke |
---|---|---|---|---|---|---|
High-Level endomorphy (score: ≥5–7) a | Carbohydrates (≥5.2 g/kg/day) | 1.7 (0.9) | 5.6 | 0.048 | 5.4 (1.1; 8.3) | 0.31 |
Protein (≥1.7 g/kg/day) | −1.4 (0.8) | 5.1 | 0.050 | 0.3 (0.1; 0.9) | ||
Fat (≥2.1 g/kg/day) | 1.5 (0.8) | 5.4 | 0.043 | 4.6 (1.5; 7.1) | ||
The constant | −1.7 (0.9) | 5.5 | 0.042 | – | ||
High-Level mesomorphy (score: ≥5–7) b | Carbohydrates (≥5.2 g/kg/day) | −0.8 (0.4) | 5.3 | 0.038 | 0.5 (0.2; 0.9) | 0.22 |
Protein (≥1.7 g/kg/day) | 0.9 (0.4) | 5.0 | 0.027 | 2.5 (1.1; 5.5) | ||
Fat (≥2.1 g/kg/day) | −0.5 (0.4) | 1.3 | 0.253 | 0.6 (0.2; 1.3) | ||
The constant | 2.4 (0.7) | 10.7 | 0.001 | – | ||
Moderate-Level ectomorphy (score: ≥3) c | Carbohydrates (≥5.2 g/kg/day) | 0.4 (0.4) | 1.2 | 0.256 | 1.5 (0.7; 3.2) | 0.26 |
Protein (≥1.7 g/kg/day) | 0.7 (0.3) | 5.2 | 0.042 | 2.2 (1.2; 3.2) | ||
Fat (≥2.1 g/kg/day) | 0.6 (0.4) | 2.2 | 0.141 | 1.8 (0.8; 4.1) | ||
The constant | −3.6 (0.8) | 20.5 | <0.001 | – |
References
- Carter, J.E.L. The Heath-Carter Anthropometric Somatotype: Instruction Manual; San Diego State University: San Diego, CA, USA, 2022. [Google Scholar]
- Carter, J.E.L.; Heath, B.H. Somatotyping: Development and Applications; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Malkin, I.; Ermakov, S.; Kobyliansky, E.; Livshits, G. Strong association between polymorphisms in ANKH locus and skeletal size traits. Hum. Genet. 2006, 120, 42–51. [Google Scholar] [CrossRef]
- Wilber, R.L.; Pitsiladis, Y.P. Kenyan and Ethiopian distance runners: What makes them so good? Int. J. Sports Physiol. Perform. 2012, 7, 92–102. [Google Scholar] [CrossRef]
- Marta, C.C.; Marinho, D.A.; Barbosa, T.M.; Carneiro, A.L.; Izquierdo, M.; Marques, M.C. Effects of body fat and dominant somatotype on explosive strength and aerobic capacity trainability in prepubescent children. J. Strength Cond. Res. 2013, 27, 3233–3244. [Google Scholar] [CrossRef] [PubMed]
- Peeters, M.W.; Thomis, M.A.; Claessens, A.L.; Loos, R.J.; Maes, H.H.; Lysens, R.; Vanden Eynde, B.; Vlietinck, R.; Beunen, G. Heritability of somatotype components from early adolescence into young adulthood: A multivariate analysis on a longitudinal twin study. Ann. Hum. Biol. 2003, 30, 402–418. [Google Scholar] [CrossRef]
- Saranga, S.P.; Prista, A.; Nhantumbo, L.; Beunen, G.; Rocha, J.; Williams-Blangero, S.; Maia, J.A. Heritabilities of somatotype components in a population from rural Mozambique. Am. J. Hum. Biol. 2008, 20, 642–646. [Google Scholar] [CrossRef]
- Carvajal, W.; Betancourt, H.; León, S.; Deturnel, Y.; Martínez, M.; Echevarría, I.; Castillo, M.E.; Serviat, N. Kinanthropometric profile of Cuban Women Olympic volleyball champions. MEDICC Rev. 2012, 14, 16–22. [Google Scholar] [CrossRef]
- Catikkas, F.; Kurt, C.; Atalag, O. Kinanthropometric attributes of young male combat sports athletes. Coll. Antropol. 2013, 37, 1365–1368. [Google Scholar] [PubMed]
- Vucetić, V.; Matković, B.R.; Sentija, D. Morphological differences of elite Croatian track-and-field athletes. Coll. Antropol. 2008, 32, 863–868. [Google Scholar] [PubMed]
- Massidda, M.; Toselli, S.; Brasili, P.; Calò, C.M. Somatotype of elite Italian gymnasts. Coll. Antropol. 2013, 37, 853–857. [Google Scholar]
- De Garay, A.L.; Levine, L.; Carter, J.E.L. Genetic and Anthropological Studies of Olympic Athletes; Academic Press: New York, NY, USA, 1974. [Google Scholar]
- Kutseryb, T.; Vovkanych, L.; Hrynkiv, M.; Majevska, S.; Muzyka, F. Peculiarities of the somatotype of athletes with different directions of the training process. J. Phys. Educ. Sport 2017, 17, 431–435. [Google Scholar]
- Lewandowska, J.; Buśko, K.; Pastuszak, A.; Boguszewska, K. Somatotype variables related to muscle torque and power in judoists. J. Hum. Kinet. 2011, 30, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Seydalieva, L.D.; Khairullaeva, N.D. Comparative assessment of body indicators for highly qualified athletes specializing in cyclic sports. Ment. Enlight. Sci.-Methodol. J. 2024, 5, 228–232. [Google Scholar]
- Almeida, A.H.; Santos, S.A.; Castro, P.J.; Rizzo, J.A.; Batista, G.R. Somatotype analysis of physically active individuals. J. Sports Med. Phys. Fit. 2013, 53, 268–273. [Google Scholar]
- Stanković, D.; Pavlović, R.; Petković, E.; Raković, A.; Puletić, M. The somatotypes and body composition of elite track and field athletes and swimmers. Int. J. Sports Sci. 2018, 8, 67–77. [Google Scholar]
- Bolonchuk, W.W.; Siders, W.A.; Lykken, G.I.; Lukaski, H.C. Association of dominant somatotype of men with body structure, function during exercise, and nutritional assessment. Am. J. Hum. Biol. 2000, 12, 167–180. [Google Scholar] [CrossRef]
- Gutnik, B.; Zuoza, A.; Zuozienė, I.; Alekrinskis, A.; Nash, D.; Scherbina, S. Body physique and dominant somatotype in elite and low-profile athletes with different specializations. Medicina 2015, 51, 247–252. [Google Scholar] [CrossRef] [PubMed]
- Tanner, J.M.; Israelson, W.J.; Whitehouse, R.H. Physique and body composition as factors affecting success in different athletic events. J. Sports Med. Phys. Fit. 1960, 14, 397–411. [Google Scholar]
- Gordon, E.; Tobias, P.V.; Mendelsohn, D.; Seftel, H.; Howson, A. The relationship between somatotype and serum lipids in male and female young adults. Hum. Biol. 1987, 59, 459–465. [Google Scholar] [PubMed]
- Elliot, B. Eating for Your Metabolic Body Type. 2020. Available online: https://www.brettelliott.com/eating-for-your-metabolic-body-type/ (accessed on 10 April 2024).
- Penggalih, M.; Solichah, K. Dietary intake and strength training management among weight sports athlete category: Role of protein intake level to body composition and muscle formation. Asian J. Clin. Nutr. 2019, 11, 24–31. [Google Scholar] [CrossRef]
- Villaroman, A.A. The role of macromolecules in the metabolism and health of different somatotypes. Glob. Sci. J. 2022, 10, 1220–1226. [Google Scholar]
- Raschka, C.; Graczyk, J. Correlations between somatotypes and nutritional intake in members of a fitness studio. Pap. Anthropol. 2013, 22, 145–152. [Google Scholar] [CrossRef]
- Bourgois, J.; Claessens, A.L.; Vrijens, J.; Philippaerts, R.; Van Renterghem, B.; Thomis, M.; Janssens, M.; Loos, R.; Lefevre, J. Anthropometric characteristics of elite male junior rowers. Br. J. Sports Med. 2000, 34, 213–217. [Google Scholar] [CrossRef] [PubMed]
- Slater, G.J.; Rice, A.J.; Mujika, I.; Hahn, A.G.; Sharpe, K.; Jenkins, D.G. Physique traits of lightweight rowers and their relationship to competitive success. Br. J. Sports Med. 2005, 39, 736–741. [Google Scholar] [CrossRef] [PubMed]
- Samodra, Y.T.J.; Gustian, U.; Seli, S.; Riyanti, D.; Suryadi, D.; Fauziah, E. Somatotype of the Tarung Derajat martial arts athletes in the fighter category. J. Sport Area 2023, 8, 14–23. [Google Scholar] [CrossRef] [PubMed]
- Bahamondes-Avila, C.; Cárcamo-Oyarzún, J.; Aedo-Muñoz, E.; Hernandez-Mosqueira, C.; Martínez-Salazar, C.; Rosas-Mancilla, M.; Delgado-Floody, P.; Caamaño-Navarrete, F.; Jerez-Mayorga, D. Body composition and somatotype of athletes in the Chilean sport talent development program. Arch. Med. Deport. 2023, 40, 113–118. [Google Scholar] [CrossRef]
- Kastrati, A.; Gashi, N.; Georgiev, G.; Gontarev, S. Somatotype characteristics of elite young athletes from the Republic of Kosovo. Sport Mont 2022, 20, 47–52. [Google Scholar] [CrossRef]
- Slankamenac, J.; Bjelica, D.; Jaksic, D.; Trivic, T.; Drapsin, M.; Vujkov, S.; Modric, T.; Milosevic, Z.; Drid, P. Somatotype profiles of Montenegrin karatekas: An observational study. Int. J. Environ. Res. Public Health 2021, 18, 12914. [Google Scholar] [CrossRef] [PubMed]
- Pena-Sanchez, C.; Mieles-Ramirez, M.; Patino-Palma, B. Characterization of the somatotype in taekwondo: Systematic review. Clin. Med. Res. 2022, 11, 13. [Google Scholar] [CrossRef]
- Shahidi, S.H.; Yalçın, M.; Holway, F.E. Anthropometric and somatotype characteristics of top elite Turkish national jumpers. Int. J. Kinanthropometry 2023, 3, 45–55. [Google Scholar] [CrossRef]
- Sullivan, K.M. Open Source Statistics for Public Health. Available online: http://www.openepi.com/SampleSize/SSCohort.htm (accessed on 5 September 2020).
- Holmes, C.J.; Racette, S.B. The utility of body composition assessment in nutrition and clinical practice: An overview of current methodology. Nutrients 2021, 13, 2493. [Google Scholar] [CrossRef]
- Yang, Y.J.; Kim, M.K.; Hwang, S.H.; Ahn, Y.; Shim, J.E.; Kim, D.H. Relative validities of 3-day food records and the food frequency questionnaire. Nutr. Res. Pract. 2010, 4, 142–148. [Google Scholar] [CrossRef] [PubMed]
- Deakin, V.; Kerr, D.; Boushey, C. Measuring nutritional status of athletes: Clinical and research perspectives. In Clinical Sports Nutrition, 5th ed.; Burke, L.M., Deakin, V., Eds.; McGraw-Hill: North Ryde, Australia, 2015; pp. 27–53. [Google Scholar]
- Dimitrijevic, M.; Paunovic, V.; Zivkovic, V.; Bolevich, S.; Jakovljevic, V. Body fat evaluation in male athletes from combat sports by comparing anthropometric, bioimpedance, and dual-energy X-ray absorptiometry measurements. Biomed. Res. Int. 2022, 2022, 3456958. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.W.; Kim, T.H.; Choi, H.M. The reproducibility and validity verification for body composition measuring devices using bioelectrical impedance analysis in Korean adults. J. Exerc. Rehabil. 2018, 14, 621–627. [Google Scholar] [CrossRef] [PubMed]
- Heyward, V.H.; Wagner, D.R. Applied Body Composition Assessment; Human Kinetics: Champaign, IL, USA, 2004. [Google Scholar]
- Heymsfield, S.; Lohman, T.; Wang, Z.; Going, S.B. Human Body Composition; Human Kinetics: Champaign, IL, USA, 2005; Volume 918. [Google Scholar]
- Bertuccioli, A.; Sisti, D.; Amatori, S.; Perroni, F.; Rocchi, M.B.L.; Benelli, P.; Trecroci, A.; Di Pierro, F.; Bongiovanni, T.; Cannataro, R. A new strategy for somatotype assessment using bioimpedance analysis: Stratification according to sex. J. Funct. Morphol. Kinesiol. 2022, 7, 86. [Google Scholar] [CrossRef] [PubMed]
- Peterson, C.M.; Thomas, D.M.; Blackburn, G.L.; Heymsfield, S.B. Universal equation for estimating ideal body weight and body weight at any BMI. Am. J. Clin. Nutr. 2016, 103, 1197–1203. [Google Scholar] [CrossRef] [PubMed]
- El Dimassi, S.; Gautier, J.; Zalc, V.; Boudaoud, S.; Istrate, D. Mathematical issues in body water volume estimation using bio impedance analysis in e-Health. In Colloque en TéléSANté et Dispositifs Biomédicaux; Université Paris 8; CNRS: Paris, France, 2023. [Google Scholar]
- VanItallie, T.B.; Yang, M.U.; Heymsfield, S.B.; Funk, R.C.; Boileau, R.A. Height-normalized indices of the body’s fat-free mass and fat mass: Potentially useful indicators of nutritional status. Am. J. Clin. Nutr. 1990, 52, 953–959. [Google Scholar] [CrossRef]
- Campa, F.; Silva, A.M.; Talluri, J.; Matias, C.N.; Badicu, G.; Toselli, S. Somatotype and bioimpedance vector analysis: A new target zone for male athletes. Sustainability 2020, 12, 4365. [Google Scholar] [CrossRef]
- Barzda, A.; Bartkevičiūtė, R.; Viseckienė, V.; Abaravičius, A.J.; Stukas, R. Atlas of Foodstuffs and Dishes, Vilnius, Republican Nutrition Center; Vilnius University Faculty of Medicine: Vilnius, Lithuania, 2007; pp. 7–42. Available online: http://www.smlpc.lt/media/file/Skyriu_info/Metodine_medziaga/Maisto%20prod%20atlasas%202007.pdf (accessed on 15 April 2020).
- Erhardt, J. Nutrition Baseline Software. University of Indonesia. Available online: http://www.nutrisurvey.de/ (accessed on 19 June 2019).
- Sučilienė, S.; Abaravičius, A. Food Product Composition; Ministry of Health of the Republic of Lithuania: Vilnius, Lithuania, 2002; pp. 10–315. [Google Scholar]
- Kerksick, C.M.; Wilborn, C.D.; Roberts, M.D.; Smith-Ryan, A.; Kleiner, S.M.; Jäger, R.; Collins, R.; Cooke, M.; Davis, J.N.; Galvan, E.; et al. ISSN exercise & sports nutrition review update: Research & recommendations. J. Int. Soc. Sports Nutr. 2018, 15, 8. [Google Scholar]
- Aragon, A.A.; Schoenfeld, B.; Wildman, R.; Kleiner, S.; Vandusseldorp, T.; Taylor, L.; Earnest, C.P.; Arciero, P.J.; Wilborn, C.; Kalman, D.S.; et al. International Society of Sports Nutrition position stand: Diets and body composition. J. Int. Soc. Sports Nutr. 2017, 14, 16. [Google Scholar] [CrossRef]
- Baranauskas, M.; Jablonskienė, V.; Abaravičius, J.A.; Samsonienė, L.; Stukas, R. Dietary acid-base balance in high-performance athletes. Int. J. Environ. Res. Public Health 2020, 17, 5332. [Google Scholar] [CrossRef]
- Kerksick, C.M.; Kulovitz, M. Requirements of energy, carbohydrates, proteins and fats for athletes. In Nutrition and Enhanced Sports Performance; Elsevier: Amsterdam, The Netherlands, 2013; pp. 355–366. [Google Scholar]
- Ainsworth, B.E.; Haskell, W.L.; Herrmann, S.D.; Meckes, N.; Bassett, D.R.; Tudor-Locke, C., Jr.; Greer, J.L.; Vezina, J.; Whitt-Glover, M.C.; Leon, A.S. Compendium of physical activities: A second update of codes and MET values. Med. Sci. Sports Exerc. 2011, 43, 1575–1581. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.Y. Analysis of variance (ANOVA) comparing means of more than two groups. Restor. Dent. Endod. 2014, 39, 74–77. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Routledge Academic: New York, NY, USA, 1988. [Google Scholar]
- Tharwat, A.; Gaber, T.; Ibrahim, A.; Hassanien, A.E. Linear discriminant analysis: A detailed tutorial. AI Commun. 2017, 30, 169–190. [Google Scholar] [CrossRef]
- Al-Khelaifi, F.; Diboun, I.; Donati, F.; Botrè, F.; Alsayrafi, M.; Georgakopoulos, C.; Suhre, K.; Yousri, N.A.; Elrayess, M.A. A pilot study comparing the metabolic profiles of elite-level athletes from different sporting disciplines. Sports Med. Open 2018, 4, 2. [Google Scholar] [CrossRef] [PubMed]
- Karastergiou, K.; Smith, S.R.; Greenberg, A.S.; Fried, S.K. Sex differences in human adipose tissues—The biology of pear shape. Biol. Sex Differ. 2012, 3, 13. [Google Scholar] [CrossRef] [PubMed]
- Noh, J.W.; Kim, J.H.; Kim, M.Y.; Lee, J.U.; Lee, L.K.; Park, B.S.; Yang, S.M.; Jeon, H.J.; Lee, W.D.; Kwak, T.Y.; et al. Somatotype analysis of elite boxing athletes compared with nonathletes for sports physiotherapy. J. Phys. Ther. Sci. 2014, 26, 1231–1235. [Google Scholar] [CrossRef] [PubMed]
- Bal, E.; Bulgan, Ç.; Bingül, B.M.; Tan, H. Determining the somatotype characteristics of Turkish male national boxers: Determining the somatotype characteristics. Int. J. Curric. Instr. 2021, 13, 400–410. [Google Scholar]
- Revan, S.; Arikan, Ş.; Şahin, M.; Balci, Ş.S. Comparison of the body composition and somatotype of Turkish and foreign country national team taekwondo athletes. Eur. J. Phys. Educ. Sport Sci. 2017, 3, 287–294. [Google Scholar]
- Yaşar, B.; Sağır, M. Assessment of anthropometric and body composition characteristics of elite Turkish wrestlers. Biomed. Hum. Kinet. 2021, 13, 221–230. [Google Scholar] [CrossRef]
- Castro-Zamora, A.A.; Borbon-Castro, N.A.; Cruz-Castruita, R.M.; La Cruz-Ortega, D.; Manuel, F.; Lopez-Garcia, R. Morphotype and caloric ingestion and its relationship with the physical performance of Mexican boxers. Ido Mov. Cult. J. Martial Arts Anthrop. 2024, 24, 54–63. [Google Scholar]
- Fritzsche, J.; Raschka, C. Body composition and the somatotype of German top taekwondo practitioners. Pap. Anthropol. 2008, 17, 58–71. [Google Scholar]
- Shariat, A.; Shaw, B.S.; Kargarfard, M.; Shaw, I.; Lam, E.T.C. Kinanthropometric attributes of elite male judo, karate and taekwondo athletes. Rev. Bras. Med. Esporte 2017, 23, 260–263. [Google Scholar] [CrossRef]
- Can, E.; Kutlay, E.; Quintana, M.S.; Bridge, C.A. Anthropometric characteristics of elite male taekwondo athletes according to weight category and performance level. Sci. J. Sport Perform. 2023, 2, 16–27. [Google Scholar] [CrossRef]
- Babic, M.; Marinovic, M.; Cular, D.; Babic, M.; Marinovic, M.; Cular, D. Anthropometric variability of European taekwondo champions. Int. J. Morphol. 2023, 41, 612–617. [Google Scholar] [CrossRef]
- Quintero, A.M.; Orssatto, L.B.D.R.; Pulgarín, R.D.; Follmer, B. Physical performance, body composition and somatotype in Colombian judo athletes. Ido Mov. Cult. 2019, 19, 56–63. [Google Scholar]
- Buśko, K.; Pastuszak, A.; Kalka, E. Body composition and somatotype of judo athletes and untrained male students as a reference group for comparison in sport. Biomed. Hum. Kinet. 2017, 9, 7–13. [Google Scholar] [CrossRef]
- Kuźmicki, S.; Kruszewski, A.; Kruszewski, M. The effects of body mass reduction on the anaerobic power and selected somatic characteristics of Greco-Roman wrestlers. Biomed. Hum. Kinet. 2023, 15, 35–42. [Google Scholar] [CrossRef]
- Roklicer, R.; Atanasov, D.; Sadri, F.; Jahic, D.; Bojanic, D.; Ljubojevic, M.; Trivic, T.; Drid, P. Somatotype of male and female judokas according to weight categories. Biomed. Hum. Kinet. 2020, 12, 34–40. [Google Scholar] [CrossRef]
- Hamzaoui, H.; Messalti, L.; Zerf, M. Weight categories and their relations with somatotypes of National-Level male cadet judokas. Theory Pract. Phys. Cult. Sports 2022, 1, 5–10. [Google Scholar] [CrossRef]
- Monterrosa Qiuntero, A.; De La Rosa, A.; Arc Chagnaud, C.; Gomez Qiuntero, J.M.; Pereira Moro, A.R. Morphology, lower limbs performance and baropodometric characteristics of elite Brazilian Jiu-jitsu athletes. Ido Mov. Cult. J. Martial Arts Anthrop. 2023, 23, 58–69. [Google Scholar]
- Tsukru, V.; Khesoh, V.; Dkhar, J.W.; Limbu, D.K.; Mary, K.K. Body physique and nutritional status of Naga wrestlers: A case study of the Chakhesang tribe of Nagaland, India. Int. J. Sports Health Phys. Educ. 2021, 8, 374–379. [Google Scholar] [CrossRef]
- Ismoiljonovich, B.F. Morphological state of wrestlers with evaluation of sports specialization. Eur. J. Res. Reflect. Educ. Sci. 2019, 7, 1–5. [Google Scholar]
- Hagner-Derengowska, M.; Hagner, W.; Zubrzycki, I.Z.; Krakowiak, H.; Słomko, W.; Dzierżanowski, M.; Rakowski, A.; Wiącek-Zubrzycka, M. Body structure and composition of canoeists and kayakers: Analysis of junior and teenage Polish national canoeing team. Biol. Sports 2014, 31, 323–326. [Google Scholar] [CrossRef]
- Hraste, M. Anthropometric, morphological and somatotype characteristics of water polo players: A meta-analysis. Int. J. Morphol. 2023, 41, 686–689. [Google Scholar] [CrossRef]
- Alacid, F.; Marfell-Jones, M.; Muyor, J.M.; López-Minarro, P.A.; Martínez, I. Kinanthropometric comparison between young elite kayakers and canoeists. Coll. Antropol. 2015, 39, 119–126. [Google Scholar]
- Van Someren, K.A.; Palmer, G.S. Prediction of 200 m. sprint kayaking performance. Can. J. Appl. Physiol. 2003, 28, 505–1517. [Google Scholar] [CrossRef]
- Arslanoğlu, E.; Kürşat, A.C.A.R.; Ahmet, M.O.R.; Baynaz, K.; İpekoğlu, G.; Arslanoğlu, C. Body composition and somatotype profiles of rowers. Turk. J. Sport Exerc. 2020, 22, 431–437. [Google Scholar]
- Penichet-Tomas, A.; Pueo, B.; Selles-Perez, S.; Jimenez-Olmedo, J.M. Analysis of anthropometric and body composition profile in male and female traditional rowers. Int. J. Environ. Res. Public Health 2021, 18, 7826. [Google Scholar] [CrossRef]
- Kaloupsis, S.; Bogdanis, G.C.; Dimakopoulou, E.; Maridaki, M. Anthropometric characteristics and somatotype of young Greek rowers. Biol. Sport 2008, 25, 57. [Google Scholar]
- Abbas, T.; ul Haq, M.Z.; Naveed, Q. Somatotyping and physical fitness of Pakistani national rower. Glob. Reg. Rev. 2017, 2, 364–374. [Google Scholar] [CrossRef]
- Grgantov, S.Z.; Milić, M.; Sivrić, H. Somatotype differences in young Croatian rowers and soccer players. Kinesiology 2013, 2, 1–3. [Google Scholar]
- Mazza, J.C.; Cosolito, P.; Alarcón, N.; Galasso, C.; Bermudez, C.; Gribaudo, G.; Ferretti, J.L. Somatotype profile of South American swimmers. In Biomechanics and Medicine in Swimming; Taylor & Francis: Abingdon, UK, 2013; Volume 1, pp. 322–329. [Google Scholar]
- Loo, L.H.; Wilson, N.C.; Chai, W.J. Anthropometric profiles of Malaysian elite swimmers. In Proceedings of the 3rd International Conference on Movement, Health and Exercise, Malacca, Malaysia, 28–30 September 2016; Springer: Singapore, 2016; pp. 101–105. [Google Scholar]
- Redón Jordán, B.; Hernández Camacho, J.; Sospedra, I.; Ferriz Valero, A.; Soriano, J.M.; Martínez Sanz, J.M.; Jiménez Alfageme, R. Anthropometric profile in young swimmers. Cult. Cienc. Deporte 2022, 17, 79–88. [Google Scholar]
- Withers, R.T.; Craig, N.P.; Norton, K.I. Somatotypes of South Australian male athletes. Hum. Biol. 1986, 58, 337–356. [Google Scholar]
- Seydalieva, L.D.; Avezova, G.S. Comparative assessment of body indicators for highly qualified athletes specializing in cyclic sports. Tex. J. Med. Sci. 2024, 29, 39–42. [Google Scholar] [CrossRef]
- Siriški, D.; Novotný, J. Adaptive displays of body constitution in gravity cyclists. J. Hum. Sport Exerc. 2015, 10, S212–S217. [Google Scholar] [CrossRef]
- Martínez-Cervantes, T.J.; Martínez-Martínez, L.D.J.; Martínez-Martínez, T.J.; Hernández-Suárez, R.M.G.; Gámez, C.E.B.; Garza, J.Á.; Salas-Fraire, O. Relationship between left ventricular hypertrophy and somatotype of high performance athletes using structural equations modeling. Arch. Med. Deporte 2018, 35, 29–34. [Google Scholar]
- Häkkinen, K. Force production characteristics of leg extensor, trunk flexor and extensor muscles in male and female basketball players. J. Sports Med. Phys. Fit. 1991, 31, 325–331. [Google Scholar]
- McKean, M.R.; Burkett, B. The relationship between joint range of motion, muscular strength, and race time for subelite flat water kayakers. J. Sci. Med. Sport 2010, 13, 537–542. [Google Scholar] [CrossRef]
- Schoenfeld, B.J.; Ratamess, N.A.; Peterson, M.D.; Contreras, B.; Tiryaki-Sonmez, G.; Alvar, B.A. Effects of different volumeequated resistance training loading strategies on muscular adaptations in well-trained men. J. Strength Cond. Res. 2014, 28, 2909–2918. [Google Scholar] [CrossRef]
- Raschka, C.; Aichele, S.K. Correlations between somatotypes and nutritional intake in sports students. Pap. Anthropol. 2014, 23, 96–104. [Google Scholar] [CrossRef]
- Bukhari, S.S.; Phillips, B.E.; Wilkinson, D.J.; Limb, M.C.; Rankin, D.; Mitchell, W.K.; Kobayashi, H.; Greenhaff, P.L.; Smith, K.; Atherton, P.J. Intake of low-dose leucine-rich essential amino acids stimulates muscle anabolism equivalently to bolus whey protein in older women at rest and after exercise. Am. J. Physiol. Endocrinol. Metab. 2015, 308, E1056–E1065. [Google Scholar] [CrossRef]
- Greenhaff, P.L.; Karagounis, L.G.; Peirce, N.; Simpson, E.J.; Hazell, M.; Layfield, R.; Wackerhage, H.; Smith, K.; Atherton, P.; Selby, A.; et al. Disassociation between the effects of amino acids and insulin on signaling, ubiquitin ligases, and protein turnover in human muscle. Am. J. Physiol. Endocrinol. Metab. 2008, 295, E595–E604. [Google Scholar] [CrossRef]
- Schreiber, M.L. Anaerobic capacity as a function of somatotype and participation in varsity athletics. Res. Q. Am. Assoc. Health Phys. Educ. Recreat. 1973, 44, 197–205. [Google Scholar] [CrossRef]
- Ramirez-Velez, R.; Argothyd, R.; Meneses-Echavez, J.F.; Sanchez-Puccini, M.B.; Lopez-Alban, C.A.; Cohen, D.D. Anthropometric characteristics and physical performance of Colombian elite male wrestlers. Asian J. Sports Med. 2014, 5, e23810. [Google Scholar] [CrossRef]
- Krawczyk, B.; Sklad, M.; Jackiewicz, A. Heath-Carter somatotypes of athletes representing various sports. Biol. Sport 1997, 14, 305–310. [Google Scholar]
- Liao, Y.-S.; Li, H.-C.; Lu, H.-K.; Lai, C.-L.; Wang, Y.-S.; Hsieh, K.-C. Comparison of bioelectrical impedance analysis and dual energy x-ray absorptiometry for total and segmental bone mineral content with a three-compartment model. Int. J. Environ. Res. Public Health 2020, 17, 2595. [Google Scholar] [CrossRef]
- Ortega, R.M.; Pérez-Rodrigo, C.; López-Sobaler, A.M. Dietary assessment methods: Dietary records. Nutr. Hosp. 2015, 31, 38–45. [Google Scholar]
Equation | Reference |
---|---|
Endomorphy valueMales = 10.44 − 0.0297 × H (m) − 0.0683 × TBW (%) + 0.150 × BMi (kg/m2) | [42,43] |
Endomorphy valueFemales = 4.313 − 0.0572 × TBW (%) + 0.145 × BMi (kg/m2) | [42,43] |
Mesomorphy valueMales = 11.81 − 0.0524 × H (m) − 0.00725 × Rz (Ω) + 0.230 × BMi (kg/m2) | [42,43,44] |
Mesomorphy valueFemales = 8.91 − 0.0589 × H (m) − 0.00395 × Rz (Ω)+ 0.317 × BMi (kg/m2) | [42,43,44] |
Ectomorphy valueMales = −60.25 + 0.188 × H (m) + 0.0146 × Rz (Ω) − 0.350 × TBW (kg) + 0.345 × TBW (%) + 0.4174 × BMi (kg/m2) + 0.105 × Ei | [42,43,44] |
Ectomorphy valueFemales = −2.119 + 0.119 × TBW (%) + 0.0778 × MM (%) + 0.244 × BMi (kg/m2) − 0.709 × FFMi (kg/m2) | [42,43,45] |
BMi = BW/H (m)2 | [43] |
FFMi = LBM (kg)/H (m)2 | [45] |
Variables | n | % | |
---|---|---|---|
Sports branches | Water sports | ||
Boat racing | 24 | 12.7 | |
Canoe paddling (500–2000 m) | 12 | 6.3 | |
Swimming (50–400 m) | 43 | 22.8 | |
Cycling sports | |||
Track cycling | 11 | 5.8 | |
Road cycling | 40 | 21.2 | |
Combat sports | |||
Boxing | 14 | 7.4 | |
Taekwondo | 4 | 2.1 | |
Graeco-Roman wrestling | 29 | 15.3 | |
Judo | 12 | 6.3 | |
Types of exercise | The mix of aerobic and anaerobic exercise | 95 | 50.3 |
Aerobic exercise | 94 | 49.7 | |
Sex | Male athletes | 140 | 74.1 |
Female athletes | 49 | 25.9 | |
The duration of exercise | 90–180 min per day | 144 | 76.2 |
181–300 min per day | 45 | 23.8 | |
Years of participating in sport | <8 years | 110 | 58.3 |
9–20 years | 79 | 41.7 |
Variables | Water Sports | Cycling Sports | Combat Sports | η2p a | η2p b | |||
---|---|---|---|---|---|---|---|---|
Males (n = 57) | Females (n = 22) | Males (n = 31) | Females (n = 20) | Males (n = 52) | Females (n = 7) | |||
Height (m) | 1.8 ± 0.1 | 1.7 ± 0.1 | 1.8 ± 0.1 | 1.7 ± 0.04 | 1.7 ± 0.1 | 1.6 ± 0.1 | 0.34 | 0.08 |
Body weight (kg) | 81.6 ± 11.5 | 60.2 ± 9.6 | 71.1 ± 7.9 | 60.4 ± 6.8 | 69.9 ± 17.1 | 57.2 ± 4.3 | 0.15 | 0.02 |
Total body water (kg) | 47.8 ± 5.7 | 34.2 ± 4.1 | 42.7 ± 3.8 | 33.6 ± 3.2 | 42.2 ± 8.4 | 31.7 ± 2.0 | 0.15 | 0.06 |
Total body water (%) | 58.9 ± 2.9 | 56.5 ± 3.2 | 60.3 ± 2.8 | 55.4 ± 2.6 | 61.0 ± 3.9 | 55.4 ± 2.8 | 0.07 | 0.04 |
Lean body mass (kg) | 66.6 ± 7.4 | 46.9 ± 5.7 | 59.2 ± 5.3 | 46.3 ± 4.4 | 58.5 ± 11.7 | 43.9 ± 2.7 | 0.16 | 0.04 |
Lean body mass (%) | 81.9 ± 3.9 | 78.1 ± 4.7 | 83.7 ± 3.8 | 76.9 ± 3.7 | 84.7 ± 5.5 | 77.0 ± 3.8 | 0.07 | 0.02 |
Muscle mass (kg) | 61.9 ± 6.8 | 43.4 ± 5.2 | 55.1 ± 4.9 | 42.8 ± 4.0 | 54.4 ± 10.8 | 40.7 ± 2.6 | 0.16 | 0.04 |
Muscle mass (%) | 76.2 ± 4.0 | 72.6 ± 4.3 | 77.8 ± 3.8 | 71.1 ± 3.6 | 78.9 ± 5.4 | 71.2 ± 3.8 | 0.06 | 0.03 |
Trunk muscle mass (kg) | 31.7 ± 3.7 | 22.1 ± 2.5 | 27.5 ± 2.4 | 21.8 ± 1.7 | 27.1 ± 4.9 | 20.6 ± 1.2 | 0.18 | 0.06 |
Trunk muscle mass (%) | 38.2 ± 2.5 | 37.2 ± 4.4 | 38.9 ± 2.0 | 36.2 ± 2.3 | 39.4 ± 3.1 | 36.0 ± 0.2 | 0.04 | 0.03 |
Lower limb muscle mass (kg) | 22.5 ± 2.8 | 16.2 ± 2.1 | 20.3± 1.8 | 15.8 ± 1.9 | 20.0 ± 4.3 | 14.7 ± 1.0 | 0.12 | 0.05 |
Lower limb muscle mass (%) | 27.7 ± 1.6 | 27.1 ± 2.7 | 28.6 ± 1.4 | 26.3 ± 1.9 | 28.9 ± 1.8 | 25.8 ± 1.4 | 0.09 | 0.06 |
Upper limb muscle mass (kg) | 8.3 ± 1.1 | 5.7 ± 0.7 | 7.4 ± 0.7 | 5.6 ± 0.5 | 7.4 ± 1.6 | 5.4 ± 0.3 | 0.13 | 0.04 |
Upper limb muscle mass (%) | 10.2 ± 0.7 | 9.6 ± 1.0 | 10.4 ± 0.5 | 9.2 ± 0.6 | 10.6 ± 0.7 | 9.4 ± 0.5 | 0.07 | 0.04 |
Total body protein (kg) | 13.9 ± 1.5 | 9.6 ± 1.1 | 12.4 ± 1.1 | 9.5 ± 0.9 | 12.3 ± 2.3 | 9.0 ± 0.7 | 0.16 | 0.05 |
Total body protein (%) | 17.2 ± 1.1 | 16.1 ± 1.2 | 17.6 ± 1.0 | 15.8 ± 0.9 | 17.9 ± 1.5 | 15.8 ± 0.1 | 0.07 | 0.03 |
Total body mineral (kg) | 4.7 ± 0.7 | 3.5 ± 1.5 | 4.2 ± 0.4 | 3.5 ± 0.4 | 4.1 ± 0.9 | 3.3 ± 0.2 | 0.15 | 0.02 |
Total body mineral (%) | 5.8 ± 0.1 | 5.8 ± 0.1 | 5.8 ± 0.1 | 5.8 ± 0.1 | 5.8 ± 0.1 | 5.8 ± 0.1 | 0.02 | 0.001 |
Body fat mass (kg) | 15.1 ± 4.9 | 13.4 ± 4.4 | 11.8 ± 3.5 | 14.1 ± 3.4 | 11.4 ± 6.5 | 13.3 ± 3.0 | 0.09 | 0.01 |
Body fat mass (%) | 18.0 ± 4.1 | 21.7 ± 4.3 | 16.3 ± 3.8 | 23.1 ± 3.7 | 15.2 ± 5.4 | 23.2 ± 3.7 | 0.07 | 0.03 |
FFMi (kg/m2) | 18.4 ± 1.5 | 17.2 ± 0.9 | 18.2 ± 0.7 | 16.8 ± 0.7 | 19.5 ± 1.9 | 17.2 ± 0.9 | 0.13 | 0.05 |
Variables | Water Sports (n = 79) | Cycling Sports (n = 51) | Combat Sports (n = 59) | Total (n = 189) | RDI | d 95% CI (LB; UB) a |
---|---|---|---|---|---|---|
Energy intake (kcal/day) | 3492 ± 996 | 3126 ± 1120 | 3054 ± 830 | 3257 ± 999 | 3687 ± 857 | −0.4 (−0.6; −0.3) |
Energy intake (kcal/kg/day) | 47 ± 14 | 48 ± 18 | 47 ± 15 | 47 ± 16 | 52 ± 8 | −0.3 (−0.5; −0.2) |
Carbohydrates (g/kg/day) | 5.1 ± 1.9 | 6.1 ± 2.8 | 5.5 ± 2.0 | 5.5 ± 2.3 | 5–8 | −0.4 (−0.6; −0.3) |
Carbohydrates (% of EI) | 43.2 ± 9.1 | 50.8 ± 7.6 | 47.0 ± 7.7 | 46.5 ± 8.8 | 45–55 | −0.4 (−0.5; −0.3) |
Protein (g/kg/day) | 1.7 ± 0.6 | 1.7 ± 0.6 | 1.6 ± 0.6 | 1.7 ± 0.6 | 1.2–2.2 | −0.1 (−0.2; 0.1) |
Protein (% of EI) | 14.9 ± 3.4 | 14.4 ± 3.1 | 13.8 ± 2.0 | 14.4 ± 3.0 | 15–20 | −1.0 (−1.2; −0.9) |
Fat (g/kg/day) | 2.2 ± 0.8 | 1.8 ± 0.7 | 2.0 ± 0.8 | 2.0 ± 0.8 | 0.8–1.5 | 1.0 (0.8; 1.2) |
Fat (% of EI) | 41.9 ± 8.6 | 34.8 ± 7.4 | 39.2 ± 7.1 | 39.2 ± 7.1 | 25–35 | 1.3 (1.1; 1.5) |
Variables | Somatotype Component | Somatotype Categories | ||
---|---|---|---|---|
Endomorphy | Mesomorphy | Ectomorphy | ||
Water sports (n = 79) | 4.3 ± 0.5 | 4.9 ± 0.7 *** | 3.4 ± 0.8 *** | Endomorphic mesomorph |
Boat racing | 4.4 ± 0.4 | 4.9 ± 0.6 | 3.3 ± 0.7 | Endomorphic mesomorph |
Canoe paddling (500–2000 m) | 4.7 ± 0.4 *** | 5.4 ± 0.7 *** | 2.5 ± 0.6 *** | Endomorphic mesomorph |
Swimming (50–400 m) | 4.1 ± 0.4 *** | 4.7 ± 0.6 | 3.6 ± 0.7 *** | Endomorphic mesomorph |
Cycling sports (n = 51) | 4.3 ± 0.4 | 4.8 ± 0.6 *** | 3.4 ± 0.6 *** | Endomorphic mesomorph |
Track cycling | 4.4 ± 0.4 | 4.6 ± 0.5 *** | 3.1 ± 0.5 | Endomorphic mesomorph |
Road cycling | 4.2 ± 0.4 *** | 4.9 ± 0.6 | 3.5 ± 0.5 | Endomorphic mesomorph |
Combat sports (n = 59) | 4.5 ± 0.6 | 5.5 ± 0.7 *** | 2.9 ± 1.0 *** | Endomorphic mesomorph |
Boxing | 4.2 ± 0.6 | 5.3 ± 0.5 | 3.5 ± 0.9 *** | Endomorphic mesomorph |
Taekwondo | 4.7 ± 0.6 | 5.7 ± 0.7 | 2.7 ± 0.9 *** | Endomorphic mesomorph |
Graeco-Roman wrestling | 4.6 ± 0.5 *** | 5.7 ± 0.6 *** | 2.7 ± 1.1 *** | Endomorphic mesomorph |
Judo | 4.4 ± 0.7 | 5.3 ± 1.1 | 3.0 ± 0.9 | Endomorphic mesomorph |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baranauskas, M.; Kupčiūnaitė, I.; Lieponienė, J.; Stukas, R. Dominant Somatotype Development in Relation to Body Composition and Dietary Macronutrient Intake among High-Performance Athletes in Water, Cycling and Combat Sports. Nutrients 2024, 16, 1493. https://doi.org/10.3390/nu16101493
Baranauskas M, Kupčiūnaitė I, Lieponienė J, Stukas R. Dominant Somatotype Development in Relation to Body Composition and Dietary Macronutrient Intake among High-Performance Athletes in Water, Cycling and Combat Sports. Nutrients. 2024; 16(10):1493. https://doi.org/10.3390/nu16101493
Chicago/Turabian StyleBaranauskas, Marius, Ingrida Kupčiūnaitė, Jurgita Lieponienė, and Rimantas Stukas. 2024. "Dominant Somatotype Development in Relation to Body Composition and Dietary Macronutrient Intake among High-Performance Athletes in Water, Cycling and Combat Sports" Nutrients 16, no. 10: 1493. https://doi.org/10.3390/nu16101493