Association between Dietary Patterns and All-Cause Mortality in the Chinese Old: Analysis of the Chinese Longitudinal Healthy Longevity Survey Cohort
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Dietary Assessment
2.3. Outcome
2.4. Covariates
2.5. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Dietary Patterns
3.3. Associations between Dietary Patterns and All-Cause Mortality
4. Discussion
4.1. Association and Differences between Four Dietary Patterns and Gender-Specific All-Cause Mortality
4.2. Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- National Office for Aging. Communique on the Development of the National Cause for Aging 2022. Available online: https://www.gov.cn/lianbo/bumen/202312/content_6920261.htm (accessed on 14 December 2023).
- China Development Research Foundation. China Development Report 2020. Available online: https://www.cdrf.org.cn/llhyjcg/5787.htm (accessed on 9 October 2021).
- Wong, A.; Wouterse, B.; Slobbe, L.C.; Boshuizen, H.C.; Polder, J.J. Medical innovation and age-specific trends in health care utilization: Findings and implications. Soc. Sci. Med. 2012, 74, 263–272. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Li, F.; Harmer, P. Healthy China 2030: Moving from blueprint to action with a new focus on public health. Lancet Public Health 2019, 4, e447. [Google Scholar] [CrossRef] [PubMed]
- Patel, Y.R.; Robbins, J.M.; Gaziano, J.M.; Djoussé, L. Mediterranean, DASH, and Alternate Healthy Eating Index Dietary Patterns and Risk of Death in the Physicians’ Health Study. Nutrients 2021, 13, 1893. [Google Scholar] [CrossRef] [PubMed]
- Michaëlsson, K.; Baron, J.A.; Byberg, L.; Höijer, J.; Larsson, S.C.; Svennblad, B.; Melhus, H.; Wolk, A.; Warensjö Lemming, E. Combined associations of body mass index and adherence to a Mediterranean-like diet with all-cause and cardiovascular mortality: A cohort study. PLoS Med. 2020, 17, e1003331. [Google Scholar] [CrossRef]
- Limongi, F.; Noale, M.; Gesmundo, A.; Crepaldi, G.; Maggi, S. Adherence to the Mediterranean Diet and All-Cause Mortality Risk in an Elderly Italian Population: Data from the ILSA Study. J. Nutr. Health Aging 2017, 21, 505–513. [Google Scholar] [CrossRef]
- Hashemian, M.; Farvid, M.S.; Poustchi, H.; Murphy, G.; Etemadi, A.; Hekmatdoost, A.; Kamangar, F.; Sheikh, M.; Pourshams, A.; Sepanlou, S.G.; et al. The application of six dietary scores to a Middle Eastern population: A comparative analysis of mortality in a prospective study. Eur. J. Epidemiol. 2019, 34, 371–382. [Google Scholar] [CrossRef]
- Wei, J.M.; Li, S.; Claytor, L.; Partridge, J.; Goates, S. Prevalence and predictors of malnutrition in elderly Chinese adults: Results from the China Health and Retirement Longitudinal Study. Public Health Nutr. 2018, 21, 3129–3134. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.L.; Fang, H.Y.; Zhao, L.Y.; Mu, D.; Guo, Q.Y.; Ju, L.H.; He, L. Intakes of dietary energy and macronutrients among the elderly aged 65 and above in China in 2015. J. Hyg. Res. 2021, 1, 37–45. [Google Scholar] [CrossRef] [PubMed]
- China Development Research Foundation. Nutrition and Health Report of the Elderly in China; China Development Press: Beijing, China, 2016. [Google Scholar]
- Zeng, Y. Towards Deeper Research and Better Policy for Healthy Aging--Using the Unique Data of Chinese Longitudinal Healthy Longevity Survey. China Econ. J. 2012, 5, 131–149. [Google Scholar] [CrossRef]
- Zeng, Y.; Feng, Q.; Hesketh, T.; Christensen, K.; Vaupel, J.W. Survival, disabilities in activities of daily living, and physical and cognitive functioning among the oldest-old in China: A cohort study. Lancet 2017, 389, 1619–1629. [Google Scholar] [CrossRef] [PubMed]
- Watson, S.; Woodside, J.V.; Winning, L.; Wright, D.M.; Srinivasan, M.; McKenna, G. Associations between self-reported periodontal disease and nutrient intakes and nutrient-based dietary patterns in the UK Biobank. J. Clin. Periodontol. 2022, 49, 428–438. [Google Scholar] [CrossRef]
- Bravi, F.; Edefonti, V.; Randi, G.; Ferraroni, M.; La Vecchia, C.; Decarli, A. Dietary patterns and upper aerodigestive tract cancers: An overview and review. Ann. Oncol. 2012, 23, 3024–3039. [Google Scholar] [CrossRef] [PubMed]
- Ojeda-Granados, C.; Barchitta, M.; La Rosa, M.C.; La Mastra, C.; Roman, S.; Panduro, A.; Agodi, A.; Maugeri, A. Evaluating Dietary Patterns in Women from Southern Italy and Western Mexico. Nutrients 2022, 14, 1603. [Google Scholar] [CrossRef] [PubMed]
- Murakami, K.; Shinozaki, N.; Fujiwara, A.; Yuan, X.; Hashimoto, A.; Fujihashi, H.; Wang, H.-C.; Livingstone, M.B.E.; Sasaki, S. A Systematic Review of Principal Component Analysis-Derived Dietary Patterns in Japanese Adults: Are Major Dietary Patterns Reproducible within a Country? Adv. Nutr. 2019, 10, 237–249. [Google Scholar] [CrossRef] [PubMed]
- Thorpe, M.G.; Milte, C.M.; Crawford, D.; McNaughton, S.A. A comparison of the dietary patterns derived by principal component analysis and cluster analysis in older Australians. Int. J. Behav. Nutr. Phys. Act. 2016, 13, 30. [Google Scholar] [CrossRef] [PubMed]
- Malik, V.S.; Hu, F.B. The role of sugar-sweetened beverages in the global epidemics of obesity and chronic diseases. Nat. Rev. Endocrinol. 2022, 18, 205–218. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Chen, Z.; Chen, B.; Li, J.; Yuan, X.; Li, J.; Wang, W.; Dai, T.; Chen, H.; Wang, Y.; et al. Dietary sugar consumption and health: Umbrella review. BMJ 2023, 381, e071609. [Google Scholar] [CrossRef]
- Dehghan, M.; Mente, A.; Rangarajan, S.; Sheridan, P.; Mohan, V.; Iqbal, R.; Gupta, R.; Lear, S.; Wentzel-Viljoen, E.; Avezum, A.; et al. Association of dairy intake with cardiovascular disease and mortality in 21 countries from five continents (PURE): A prospective cohort study. Lancet 2018, 392, 2288–2297. [Google Scholar] [CrossRef]
- Xia, X.; Liu, F.; Yang, X.; Li, J.; Chen, J.; Liu, X.; Cao, J.; Shen, C.; Yu, L.; Zhao, Y.; et al. Associations of egg consumption with incident cardiovascular disease and all-cause mortality. Sci. China Life Sci. 2020, 63, 1317–1327. [Google Scholar] [CrossRef] [PubMed]
- Dehghan, M.; Mente, A.; Rangarajan, S.; Mohan, V.; Lear, S.; Swaminathan, S.; Wielgosz, A.; Seron, P.; Avezum, A.; Lopez-Jaramillo, P.; et al. Association of egg intake with blood lipids, cardiovascular disease, and mortality in 177,000 people in 50 countries. Am. J. Clin. Nutr. 2020, 111, 795–803. [Google Scholar] [CrossRef] [PubMed]
- Han, M.A.; Zeraatkar, D.; Guyatt, G.H.; Vernooij, R.W.M.; El Dib, R.; Zhang, Y.; Algarni, A.; Leung, G.; Storman, D.; Valli, C.; et al. Reduction of Red and Processed Meat Intake and Cancer Mortality and Incidence: A Systematic Review and Meta-analysis of Cohort Studies. Ann. Intern. Med. 2019, 171, 711–720. [Google Scholar] [CrossRef] [PubMed]
- Różańska, D.; Kujawa, K.; Szuba, A.; Zatońska, K.; Regulska-Ilow, B. Dietary Patterns and the Prevalence of Noncommunicable Diseases in the PURE Poland Study Participants. Nutrients 2023, 15, 3524. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Xia, J.; Lian, Y.; Zhang, M.; Kang, Y.; Zhao, Z.; Wang, L.; Yin, P.; Wang, Z.; Ye, C.; et al. The burden of cardiovascular disease attributable to dietary risk factors in the provinces of China, 2002–2018: A nationwide population-based study. Lancet Reg. Health West. Pac. 2023, 37, 100784. [Google Scholar] [CrossRef] [PubMed]
- Micha, R.; Peñalvo, J.L.; Cudhea, F.; Imamura, F.; Rehm, C.D.; Mozaffarian, D. Association Between Dietary Factors and Mortality From Heart Disease, Stroke, and Type 2 Diabetes in the United States. JAMA 2017, 317, 912–924. [Google Scholar] [CrossRef]
- Zheng, Y.; Li, Y.; Satija, A.; Pan, A.; Sotos-Prieto, M.; Rimm, E.; Willett, W.C.; Hu, F.B. Association of changes in red meat consumption with total and cause specific mortality among US women and men: Two prospective cohort studies. BMJ 2019, 365, l2110. [Google Scholar] [CrossRef] [PubMed]
- McAfee, A.J.; McSorley, E.M.; Cuskelly, G.J.; Moss, B.W.; Wallace, J.M.; Bonham, M.P.; Fearon, A.M. Red meat consumption: An overview of the risks and benefits. Meat Sci. 2010, 84, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Jayachandran, M.; Bai, W.; Xu, B. A critical review on the health benefits of fish consumption and its bioactive constituents. Food Chem. 2022, 369, 130874. [Google Scholar] [CrossRef] [PubMed]
- Thomsen, S.T.; Assunção, R.; Afonso, C.; Boué, G.; Cardoso, C.; Cubadda, F.; Garre, A.; Kruisselbrink, J.W.; Mantovani, A.; Pitter, J.G.; et al. Human health risk-benefit assessment of fish and other seafood: A scoping review. Crit. Rev. Food Sci. Nutr. 2022, 62, 7479–7502. [Google Scholar] [CrossRef] [PubMed]
- Petermann-Rocha, F.; Parra-Soto, S.; Gray, S.; Anderson, J.; Welsh, P.; Gill, J.; Sattar, N.; Ho, F.K.; Celis-Morales, C.; Pell, J.P. Vegetarians, fish, poultry, and meat-eaters: Who has higher risk of cardiovascular disease incidence and mortality? A prospective study from UK Biobank. Eur. Heart J. 2021, 42, 1136–1143. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhuang, P.; He, W.; Chen, J.N.; Wang, W.Q.; Freedman, N.D.; Abnet, C.C.; Wang, J.B.; Jiao, J.J. Association of fish and long-chain omega-3 fatty acids intakes with total and cause-specific mortality: Prospective analysis of 421,309 individuals. J. Intern. Med. 2018, 284, 399–417. [Google Scholar] [CrossRef] [PubMed]
- Mente, A.; Dehghan, M.; Rangarajan, S.; O’Donnell, M.; Hu, W.; Dagenais, G.; Wielgosz, A.; A Lear, S.; Wei, L.; Diaz, R.; et al. Diet, cardiovascular disease, and mortality in 80 countries. Eur. Heart J. 2023, 44, 2560–2579. [Google Scholar] [CrossRef]
- Bellavia, A.; Larsson, S.C.; Wolk, A. Fish consumption and all-cause mortality in a cohort of Swedish men and women. J. Intern. Med. 2017, 281, 86–95. [Google Scholar] [CrossRef] [PubMed]
- Engeset, D.; Braaten, T.; Teucher, B.; Kühn, T.; Bueno-de-Mesquita, H.B.; Leenders, M.; Agudo, A.; Bergmann, M.M.; Valanou, E.; Naska, A.; et al. Fish consumption and mortality in the European Prospective Investigation into Cancer and Nutrition cohort. Eur. J. Epidemiol. 2015, 30, 57–70. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Shen, J.; Xuan, J.; Zhu, A.; Ji, J.S.; Liu, X.; Cao, Y.; Zong, G.; Zeng, Y.; Wang, X.; et al. Plant-based dietary patterns in relation to mortality among older adults in China. Nat. Aging 2022, 2, 224–230. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Yang, A.; Yeung, S.; Woo, J.; Lo, K. Joint Associations of Food Groups with All-Cause and Cause-Specific Mortality in the Mr. OS and Ms. OS Study: A Prospective Cohort. Nutrients 2022, 14, 3915. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Ouyang, Y.; Liu, J.; Zhu, M.; Zhao, G.; Bao, W.; Hu, F.B. Fruit and vegetable consumption and mortality from all causes, cardiovascular disease, and cancer: Systematic review and dose-response meta-analysis of prospective cohort studies. BMJ 2014, 349, g4490. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Kim, H.; Giovannucci, E.L. Plant-based diet quality and the risk of total and disease-specific mortality: A population-based prospective study. Clin. Nutr. 2021, 40, 5718–5725. [Google Scholar] [CrossRef]
- Inoue-Choi, M.; Ramirez, Y.; Cornelis, M.C.; Berrington de González, A.; Freedman, N.D.; Loftfield, E. Tea Consumption and All-Cause and Cause-Specific Mortality in the UK Biobank: A Prospective Cohort Study. Ann. Intern. Med. 2022, 175, 1201–1211. [Google Scholar] [CrossRef]
- Zhang, C.; Qin, Y.-Y.; Wei, X.; Yu, F.-F.; Zhou, Y.-H.; He, J. Tea consumption and risk of cardiovascular outcomes and total mortality: A systematic review and meta-analysis of prospective observational studies. Eur. J. Epidemiol. 2015, 30, 103–113. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Liu, S.; Zhou, H.; Hanson, T.; Yang, L.; Chen, Z.; Zhou, M. Association of green tea consumption with mortality from all-cause, cardiovascular disease and cancer in a Chinese cohort of 165,000 adult men. Eur. J. Epidemiol. 2016, 31, 853–865. [Google Scholar] [CrossRef]
- Shi, X.; Lv, Y.; Mao, C.; Yuan, J.; Yin, Z.; Gao, X.; Zhang, Z. Garlic Consumption and All-Cause Mortality among Chinese Oldest-Old Individuals: A Population-Based Cohort Study. Nutrients 2019, 11, 1504. [Google Scholar] [CrossRef]
- Imaizumi, V.M.; Laurindo, L.F.; Manzan, B.; Guiguer, E.L.; Oshiiwa, M.; Otoboni, A.M.M.B.; Araujo, A.C.; Tofano, R.J.; Barbalho, S.M. Garlic: A systematic review of the effects on cardiovascular diseases. Crit. Rev. Food Sci. Nutr. 2023, 63, 6797–6819. [Google Scholar] [CrossRef] [PubMed]
- Varade, S.; Nadella, M.; Hirake, A.; Mungase, S.B.; Ali, A.; Adela, R. Effect of garlic on the components of metabolic syndrome: A systematic review and meta-analysis of randomized controlled trials. J. Ethnopharmacol. 2024, 318, 116960. [Google Scholar] [CrossRef] [PubMed]
- Abe, S.; Zhang, S.; Tomata, Y.; Tsuduki, T.; Sugawara, Y.; Tsuji, I. Japanese diet and survival time: The Ohsaki Cohort 1994 study. Clin. Nutr. 2020, 39, 298–303. [Google Scholar] [CrossRef]
- Matsuyama, S.; Sawada, N.; Tomata, Y.; Zhang, S.; Goto, A.; Yamaji, T.; Iwasaki, M.; Inoue, M.; Tsuji, I.; Tsugane, S. Association between adherence to the Japanese diet and all-cause and cause-specific mortality: The Japan Public Health Center-based Prospective Study. Eur. J. Nutr. 2021, 60, 1327–1336. [Google Scholar] [CrossRef] [PubMed]
- Markowiak, P.; Śliżewska, K. Effects of Probiotics, Prebiotics, and Synbiotics on Human Health. Nutrients 2017, 9, 1021. [Google Scholar] [CrossRef] [PubMed]
Level | Total (N = 11,958) | Status | p * | ||
---|---|---|---|---|---|
Alive (N = 2343) | Dead (N = 9615) | ||||
Residence (%) | Urban | 4059 (33.9) | 774 (19.1) | 3285 (80.9) | 0.311 |
Rural | 7899 (66.1) | 1569 (19.9) | 6330 (80.1) | ||
Gender (%) | Male | 5046 (42.2) | 1079 (21.4) | 3967 (78.6) | <0.001 |
Female | 6912 (57.8) | 1264 (18.3) | 5648 (81.7) | ||
Age (%) | 65~85 | 4224 (35.3) | 2020 (47.8) | 2204 (52.2) | <0.001 |
85~100 | 5170 (43.2) | 287 (5.6) | 4883 (94.4) | ||
≥100 | 2564 (21.4) | 36 (1.4) | 2528 (98.6) | ||
Education level (%) | Uneducated | 7850 (65.6) | 1145 (14.6) | 6705 (85.4) | <0.001 |
Educated | 4080 (34.1) | 882 (28.1) | 2261 (71.9) | ||
Missing | 28 (0.3) | 3 (10.7) | 25 (89.3) | ||
Marital status (%) | Currently married | 3386 (28.3) | 1354 (40.0) | 2032 (60.0) | <0.001 |
Others | 8572 (71.7) | 989 (11.5) | 7583 (88.5) | ||
Smoking status (%) | Never smoked | 7968 (66.6) | 1515 (19.0) | 6453 (81.0) | <0.001 |
Former smoker | 1910 (16.0) | 316 (16.5) | 1594 (83.5) | ||
Current smoker | 2080 (17.4) | 512 (24.6) | 1568 (75.4) | ||
Alcohol consumption (%) | Never drank | 8181 (68.4) | 1550 (18.9) | 6631 (81.1) | <0.001 |
Former drinker | 1678 (14.0) | 291 (17.3) | 1387 (82.7) | ||
Current drinker | 2099 (17.6) | 502 (23.9) | 1597 (76.1) | ||
Exercise status (%) | Never | 7475 (62.5) | 1320 (17.7) | 6155 (82.3) | <0.001 |
Former | 1527 (12.8) | 196 (12.8) | 1331 (87.2) | ||
Current | 2956 (24.7) | 827 (28.0) | 2129 (72.0) | ||
Sleep duration (%) | ≤6 h | 3033 (25.3) | 704 (23.2) | 2329 (76.8) | <0.001 |
6~8 h | 4144 (34.7) | 1028 (24.8) | 3116 (75.2) | ||
>8 h | 4721 (39.5) | 609 (12.9) | 4112 (87.1) | ||
Missing | 60 (0.5) | 2 (3.3) | 58 (96.7) | ||
MMSE (%) | Severe cognitive impairment | 129 (1.1) | 2 (1.6) | 127 (98.4) | <0.001 |
Moderate cognitive impairment | 1058 (8.8) | 87 (8.2) | 971 (91.8) | ||
Mild cognitive impairment | 2066 (17.3) | 445 (21.5) | 1621 (78.5) | ||
Normal | 4504 (37.7) | 1611 (35.8) | 2893 (64.2) | ||
Missing | 4201 (35.1) | 198 (4.7) | 4003 (95.3) | ||
BMI (%) | <18.5 | 4038 (33.8) | 513 (12.7) | 3525 (87.3) | <0.001 |
18.5–23.9 | 6103 (51.0) | 1321 (21.6) | 4782 (78.4) | ||
24–27.9 | 1169 (9.8) | 393 (33.6) | 776 (66.4) | ||
≥28 | 293 (2.5) | 103 (35.2) | 190 (64.8) | ||
Missing | 355 (3.0) | 13 (3.7) | 342 (96.3) | ||
Disease (%) | No | 9211 (77.0) | 1735 (18.8) | 7476 (81.2) | <0.001 |
Yes | 2747 (23.0) | 608 (22.1) | 2139 (77.9) |
Milk–Egg–Sugar Pattern | Carnivorous Pattern | Healthy Pattern | Northeastern Pattern | |
---|---|---|---|---|
Dairy | 0.699 | |||
Eggs | 0.629 | |||
Sugar | 0.615 | |||
Soybeans | 0.440 | |||
Mushrooms or Algae | 0.435 | |||
Meat | 0.784 | |||
Seafood | 0.776 | |||
Amount of Staple Foods | 0.578 | |||
Fresh Fruits | 0.536 | |||
Nuts | 0.526 | |||
Fresh Vegetables | 0.505 | |||
Mushrooms or Algae | 0.448 | |||
Salty Vegetables | 0.772 | |||
Garlic | 0.618 | |||
Tea | 0.503 | |||
Explained variance (%) | 13.566 | 11.585 | 10.579 | 10.522 |
Q1 | Q2 | p | Q3 | p | Q4 * | p | p-Trend | Global | |
---|---|---|---|---|---|---|---|---|---|
Males | |||||||||
(N = 5046) | |||||||||
Milk–Egg–Sugar Pattern | |||||||||
Alive (N (%)) | 264 (20.3) | 282 (21.9) | 265 (24.6) | 268 (24.8) | 1079 (21.4) | ||||
Dead (N (%)) | 1038 (79.7) | 1005 (25.3) | 932 (23.5) | 992 (25.0) | 3967 (78.6) | ||||
Model 1 a (HR (95% CI)) | reference | 0.90 (0.83–0.98) | 0.020 | 0.89 (0.82–0.97) | 0.011 | 0.90 (0.83–0.98) | 0.019 | 0.023 | 0.97 (0.94–0.99) |
Model 2 b (HR (95% CI)) | reference | 0.91 (0.83–0.99) | 0.029 | 0.91 (0.83–0.99) | 0.038 | 0.94 (0.86–1.03) | 0.157 | 0.181 | 0.98 (0.95–1.01) |
Model 3 c (HR (95% CI)) | reference | 0.91 (0.84–0.99) | 0.045 | 0.93 (0.85–1.01) | 0.091 | 0.96 (0.88–1.06) | 0.448 | 0.414 | 0.99 (0.96–1.02) |
Carnivorous Pattern | |||||||||
Alive (N (%)) | 234 (19.2) | 251 (20.0) | 274 (21.7) | 320 (24.5) | 1079 (21.4) | ||||
Dead (N (%)) | 987 (80.8) | 1007 (80.0) | 988 (78.3) | 985 (75.5) | 3967 (78.6) | ||||
Model 1 a (HR (95% CI)) | reference | 0.96 (0.88–1.05) | 0.333 | 0.91 (0.83–0.99) | 0.028 | 0.80 (0.73–0.87) | <0.001 | <0.001 | 0.93 (0.90–0.96) |
Model 2 b (HR (95% CI)) | reference | 0.99 (0.9–1.08) | 0.739 | 0.91 (0.84–0.99) | 0.050 | 0.83 (0.76–0.91) | <0.001 | <0.001 | 0.94 (0.91–0.97) |
Model 3 c (HR (95% CI)) | reference | 0.98 (0.9–1.07) | 0.697 | 0.92 (0.84–1.01) | 0.086 | 0.84 (0.77–0.93) | <0.001 | <0.001 | 0.94 (0.92–0.97) |
Healthy Pattern | |||||||||
Alive (N (%)) | 99 (10.3) | 189 (16.0) | 310 (23.2) | 481 (30.7) | 1079 (21.4) | ||||
Dead (N (%)) | 863 (89.7) | 993 (84.0) | 1027 (76.8) | 1084 (69.3) | 3967 (78.6) | ||||
Model 1 a (HR (95% CI)) | reference | 0.84 (0.77–0.92) | <0.001 | 0.73 (0.67–0.80) | <0.001 | 0.63 (0.57–0.68) | <0.001 | <0.001 | 0.86 (0.83–0.88) |
Model 2 b (HR (95% CI)) | reference | 0.85 (0.78–0.94) | <0.001 | 0.75 (0.68–0.82) | <0.001 | 0.65 (0.59–0.71) | <0.001 | <0.001 | 0.87 (0.84–0.89) |
Model 3 c (HR (95% CI)) | reference | 0.85 (0.77–0.93) | <0.001 | 0.74 (0.68–0.82) | <0.001 | 0.65 (0.59–0.72) | <0.001 | <0.001 | 0.87 (0.84–0.89) |
Northeastern Pattern | |||||||||
Alive (N (%)) | 132 (13.1) | 241 (19.8) | 297 (22.2) | 409 (27.6) | 1079 (21.4) | ||||
Dead (N (%)) | 874 (86.9) | 977 (80.2) | 1042 (77.8) | 1074 (72.4) | 3967 (78.6) | ||||
Model 1 a (HR (95% CI)) | reference | 0.82 (0.75–0.90) | <0.001 | 0.80 (0.73–0.87) | <0.001 | 0.77 (0.71–0.85) | <0.001 | <0.001 | 0.93 (0.90–0.95) |
Model 2 b (HR (95% CI)) | reference | 0.83 (0.75–0.90) | <0.001 | 0.81 (0.74–0.89) | <0.001 | 0.80 (0.73–0.88) | <0.001 | <0.001 | 0.94 (0.91–0.96) |
Model 3 c (HR (95% CI)) | reference | 0.84 (0.76–0.92) | 0.001 | 0.81 (0.74–0.89) | <0.001 | 0.82 (0.75–0.90) | 0.006 | <0.001 | 0.94 (0.92–0.97) |
Females | |||||||||
(N = 6912) | |||||||||
Milk–Egg–Sugar Pattern | |||||||||
Alive (N (%)) | 343 (20.3) | 313 (18.4) | 310 (17.3) | 298 (17.2) | 1264 (18.3) | ||||
Dead (N (%)) | 1345 (79.7) | 1387 (81.6) | 1484 (82.7) | 1432 (82.8) | 5648 (81.7) | ||||
Model 1 a (HR (95% CI)) | reference | 1.04 (0.96–1.12) | 0.350 | 1.04 (0.97–1.12) | 0.288 | 1.05 (0.98–1.14) | 0.165 | 0.072 | 1.02 (0.99–1.05) |
Model 2 b (HR (95% CI)) | reference | 1.05 (0.98–1.14) | 0.177 | 1.06 (0.98–1.14) | 0.150 | 1.08 (1.00–1.16) | 0.055 | 0.065 | 1.02 (0.99–1.05) |
Model 3 c (HR (95% CI)) | reference | 1.05 (0.98–1.14) | 0.186 | 1.06 (0.99–1.15) | 0.112 | 1.09 (1.01–1.18) | 0.026 | 0.029 | 1.03 (1.01–1.05) |
Carnivorous Pattern | |||||||||
Alive (N (%)) | 305 (17.2) | 307 (17.7) | 324 (18.8) | 328 (19.5) | 1264 (18.3) | ||||
Dead (N (%)) | 1464 (82.8) | 1424 (82.3) | 1403 (81.2) | 1357 (80.5) | 5648 (81.7) | ||||
Model 1 a (HR (95% CI)) | reference | 0.97 (0.9–1.05) | 0.440 | 0.95 (0.88–1.02) | 0.173 | 0.96 (0.89–1.03) | 0.232 | 0.183 | 0.98 (0.96–1.01) |
Model 2 b (HR (95% CI)) | reference | 0.99 (0.92–1.06) | 0.743 | 0.98 (0.91–1.05) | 0.543 | 0.98 (0.91–1.05) | 0.535 | 0.495 | 0.99 (0.97–1.02) |
Model 3 c (HR (95% CI)) | reference | 0.99 (0.92–1.06) | 0.743 | 0.98 (0.91–1.06) | 0.600 | 0.99 (0.91–1.06) | 0.727 | 0.688 | 1.00 (0.97–1.02) |
Healthy Pattern | |||||||||
Alive (N (%)) | 229 (11.3) | 294 (16.3) | 328 (19.9) | 413 (29.0) | 1264 (18.3) | ||||
Dead (N (%)) | 1798 (88.7) | 1514 (83.7) | 1324 (80.1) | 1012 (71.0) | 5648 (81.7) | ||||
Model 1 a (HR (95% CI)) | reference | 0.92 (0.86–0.99) | 0.019 | 0.91 (0.85–0.98) | 0.011 | 0.79 (0.73–0.86) | <0.001 | <0.001 | 0.93 (0.91–0.96) |
Model 2 b (HR (95% CI)) | reference | 0.93 (0.86–0.99) | 0.029 | 0.92 (0.86–0.99) | 0.033 | 0.83 (0.77–0.90) | <0.001 | <0.001 | 0.95 (0.92–0.97) |
Model 3 c (HR (95% CI)) | reference | 0.92 (0.85–0.98) | 0.013 | 0.92 (0.85–0.98) | 0.017 | 0.83 (0.76–0.90) | <0.001 | <0.001 | 0.95 (0.92–0.97) |
Northeastern Pattern | |||||||||
Alive (N (%)) | 247 (12.4) | 271 (15.3) | 360 (21.8) | 386 (25.6) | 1264 (18.3) | ||||
Dead (N (%)) | 1737 (87.6) | 1500 (84.7) | 1290 (78.2) | 1121 (74.4) | 5648 (81.7) | ||||
Model 1 a (HR (95% CI)) | reference | 0.97 (0.90–1.04) | 0.358 | 0.88 (0.82–0.95) | 0.001 | 0.87 (0.80–0.93) | <0.001 | <0.001 | 0.95 (0.93–0.97) |
Model 2 b (HR (95% CI)) | reference | 0.97 (0.90–1.04) | 0.327 | 0.88 (0.82–0.95) | 0.001 | 0.88 (0.82–0.95) | 0.001 | <0.001 | 0.95 (0.93–0.98) |
Model 3 c (HR (95% CI)) | reference | 0.97 (0.9–1.04) | 0.385 | 0.89 (0.83–0.96) | 0.002 | 0.89 (0.82–0.96) | 0.003 | <0.001 | 0.96 (0.93–0.98) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Gao, Y.; Chen, Y.; Wang, Z.; Xu, H.; Hu, F.; Cai, Y. Association between Dietary Patterns and All-Cause Mortality in the Chinese Old: Analysis of the Chinese Longitudinal Healthy Longevity Survey Cohort. Nutrients 2024, 16, 1605. https://doi.org/10.3390/nu16111605
Chen Y, Gao Y, Chen Y, Wang Z, Xu H, Hu F, Cai Y. Association between Dietary Patterns and All-Cause Mortality in the Chinese Old: Analysis of the Chinese Longitudinal Healthy Longevity Survey Cohort. Nutrients. 2024; 16(11):1605. https://doi.org/10.3390/nu16111605
Chicago/Turabian StyleChen, Yufei, Ying Gao, Yexin Chen, Zuxin Wang, Huifang Xu, Fan Hu, and Yong Cai. 2024. "Association between Dietary Patterns and All-Cause Mortality in the Chinese Old: Analysis of the Chinese Longitudinal Healthy Longevity Survey Cohort" Nutrients 16, no. 11: 1605. https://doi.org/10.3390/nu16111605
APA StyleChen, Y., Gao, Y., Chen, Y., Wang, Z., Xu, H., Hu, F., & Cai, Y. (2024). Association between Dietary Patterns and All-Cause Mortality in the Chinese Old: Analysis of the Chinese Longitudinal Healthy Longevity Survey Cohort. Nutrients, 16(11), 1605. https://doi.org/10.3390/nu16111605