Vitamin K for Vascular Calcification in Kidney Patients: Still Alive and Kicking, but Still a Lot to Learn
Abstract
:1. Introduction
2. Vitamin K Biomarkers
3. Clinical Aspects of Vitamin K Supplementation
3.1. What Is the Actual Recommended Daily Intake?
3.2. Vitamin K Status in Kidney Disease
3.3. Clinical Consequences of Vitamin K Deficiency
4. Studies Examining the Effect of Vitamin K Supplementation in Uremia
4.1. CKD Populations
4.2. Dialysis Patients
4.3. Kidney Transplant Recipients
4.4. Critical Assessment of Interventional Studies
5. Future Directions
5.1. Ongoing Trials
5.2. Novel Biomarkers
5.3. Suggestion for the Design of Future RCTs Examining the Effect of Vitamin K Supplementation on VC and CV Outcomes in Uremic Patients
6. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Van Der Zee, S.; Baber, U.; Elmariah, S.; Winston, J.; Fuster, V. Cardiovascular risk factors in patients with chronic kidney disease. Nat. Rev. Cardiol. 2009, 6, 580–589. [Google Scholar] [CrossRef]
- Kendrick, J.; Chonchol, M.B. Nontraditional risk factors for cardiovascular disease in patients with chronic kidney disease. Nat. Clin. Pract. Nephrol. 2008, 4, 672–681. [Google Scholar] [CrossRef]
- Shroff, R.; Long, D.A.; Shanahan, C. Mechanistic insights into vascular calcification in CKD. J. Am. Soc. Nephrol. 2013, 24, 179–189. [Google Scholar] [CrossRef]
- Chen, J.; Budoff, M.J.; Reilly, M.P.; Yang, W.; Rosas, S.E.; Rahman, M.; Zhang, X.; Roy, J.A.; Lustigova, E.; Nessel, L. Coronary artery calcification and risk of cardiovascular disease and death among patients with chronic kidney disease. JAMA Cardiol. 2017, 2, 635–643. [Google Scholar] [CrossRef]
- Zoccali, C.; Mallamaci, F.; Tripepi, G. Novel cardiovascular risk factors in end-stage renal disease. J. Am. Soc. Nephrol. 2004, 15, S77–S80. [Google Scholar] [CrossRef]
- Roumeliotis, S.; Neofytou, I.E.; Maassen, C.; Lux, P.; Kantartzi, K.; Papachristou, E.; Schurgers, L.J.; Liakopoulos, V. Association of Red Blood Cell Distribution Width and Neutrophil-to-Lymphocyte Ratio with Calcification and Cardiovascular Markers in Chronic Kidney Disease. Metabolites 2023, 13, 303. [Google Scholar] [CrossRef]
- Roumeliotis, S.; Roumeliotis, A.; Dounousi, E.; Eleftheriadis, T.; Liakopoulos, V. Vitamin K for the treatment of cardiovascular disease in End-Stage Renal Disease patients: Is there hope? Curr. Vasc. Pharmacol. 2021, 19, 77–90. [Google Scholar] [CrossRef]
- Dube, P.; DeRiso, A.; Patel, M.; Battepati, D.; Khatib-Shahidi, B.; Sharma, H.; Gupta, R.; Malhotra, D.; Dworkin, L.; Haller, S. Vascular calcification in chronic kidney disease: Diversity in the vessel wall. Biomedicines 2021, 9, 404. [Google Scholar] [CrossRef]
- Roumeliotis, S.; Dounousi, E.; Salmas, M.; Eleftheriadis, T.; Liakopoulos, V. Vascular calcification in chronic kidney disease: The role of vitamin K-dependent matrix Gla protein. Front. Med. 2020, 7, 154. [Google Scholar] [CrossRef]
- Mazhar, A.R.; Johnson, R.J.; Gillen, D.; Stivelman, J.C.; Ryan, M.J.; Davis, C.L.; Stehman-Breen, C.O. Risk factors and mortality associated with calciphylaxis in end-stage renal disease. Kidney Int. 2001, 60, 324–332. [Google Scholar] [CrossRef]
- Ureña-Torres, P.; D’Marco, L.; Raggi, P.; García–Moll, X.; Brandenburg, V.; Mazzaferro, S.; Lieber, A.; Guirado, L.; Bover, J. Valvular heart disease and calcification in CKD: More common than appreciated. Nephrol. Dial. Transplant. 2020, 35, 2046–2053. [Google Scholar] [CrossRef]
- Mizobuchi, M.; Towler, D.; Slatopolsky, E. Vascular calcification: The killer of patients with chronic kidney disease. J. Am. Soc. Nephrol. 2009, 20, 1453–1464. [Google Scholar] [CrossRef]
- Moe, S.M.; O’Neill, K.D.; Resterova, M.; Fineberg, N.; Persohn, S.; Meyer, C.A. Natural history of vascular calcification in dialysis and transplant patients. Nephrol. Dial. Transplant. 2004, 19, 2387–2393. [Google Scholar] [CrossRef]
- Bjørklund, G.; Svanberg, E.; Dadar, M.; Card, D.J.; Chirumbolo, S.; Harrington, D.J.; Aaseth, J. The role of matrix Gla protein (MGP) in vascular calcification. Curr. Med. Chem. 2020, 27, 1647–1660. [Google Scholar] [CrossRef]
- Price, P.A.; Fraser, J.D.; Metz-Virca, G. Molecular cloning of matrix Gla protein: Implications for substrate recognition by the vitamin K-dependent gamma-carboxylase. Proc. Natl. Acad. Sci. USA 1987, 84, 8335–8339. [Google Scholar] [CrossRef]
- Luo, G.; Ducy, P.; McKee, M.D.; Pinero, G.J.; Loyer, E.; Behringer, R.R.; Karsenty, G. Spontaneous calcification of arteries and cartilage in mice lacking matrix GLA protein. Nature 1997, 386, 78–81. [Google Scholar] [CrossRef]
- Shioi, A.; Morioka, T.; Shoji, T.; Emoto, M. The inhibitory roles of vitamin K in progression of vascular calcification. Nutrients 2020, 12, 583. [Google Scholar] [CrossRef]
- Cancela, L.; Hsieh, C.; Francke, U.; Price, P. Molecular structure, chromosome assignment, and promoter organization of the human matrix Gla protein gene. J. Biol. Chem. 1990, 265, 15040–15048. [Google Scholar] [CrossRef]
- Marreiros, C.; Viegas, C.; Simes, D. Targeting a silent disease: Vascular calcification in chronic kidney disease. Int. J. Mol. Sci. 2022, 23, 16114. [Google Scholar] [CrossRef]
- Singh, A.; Tandon, S.; Tandon, C. An update on vascular calcification and potential therapeutics. Mol. Biol. Rep. 2021, 48, 887–896. [Google Scholar] [CrossRef]
- Wen, L.; Chen, J.; Duan, L.; Li, S. Vitamin K-dependent proteins involved in bone and cardiovascular health. Mol. Med. Rep. 2018, 18, 3–15. [Google Scholar] [CrossRef]
- Epstein, M. Matrix Gla-Protein (MGP) not only inhibits calcification in large arteries but also may be renoprotective: Connecting the dots. EBioMedicine 2016, 4, 16–17. [Google Scholar] [CrossRef]
- El Asmar, M.S.; Naoum, J.J.; Arbid, E.J. Vitamin K dependent proteins and the role of vitamin K2 in the modulation of vascular calcification: A review. Oman Med. J. 2014, 29, 172. [Google Scholar] [CrossRef]
- Roumeliotis, S.; Roumeliotis, A.; Stamou, A.; Leivaditis, K.; Kantartzi, K.; Panagoutsos, S.; Liakopoulos, V. The association of dp-ucMGP with cardiovascular morbidity and decreased renal function in diabetic chronic kidney disease. Int. J. Mol. Sci. 2020, 21, 6035. [Google Scholar] [CrossRef]
- Kurnatowska, I.; Grzelak, P.; Masajtis-Zagajewska, A.; Kaczmarska, M.; Stefańczyk, L.; Vermeer, C.; Maresz, K.; Nowicki, M. Plasma desphospho-uncarboxylated matrix Gla protein as a marker of kidney damage and cardiovascular risk in advanced stage of chronic kidney disease. Kidney Blood Press. Res. 2016, 41, 231–239. [Google Scholar] [CrossRef]
- Shea, M.K.; Booth, S.L. Concepts and controversies in evaluating vitamin K status in population-based studies. Nutrients 2016, 8, 8. [Google Scholar] [CrossRef]
- Booth, S.L.; Al Rajabi, A. Determinants of vitamin K status in humans. Vitam. Horm. 2008, 78, 1–22. [Google Scholar]
- Novotny, J.A.; Kurilich, A.C.; Britz, S.J.; Baer, D.J.; Clevidence, B.A. Vitamin K absorption and kinetics in human subjects after consumption of 13C-labelled phylloquinone from kale. Br. J. Nutr. 2010, 104, 858–862. [Google Scholar] [CrossRef]
- Palmer, C.R.; Blekkenhorst, L.C.; Lewis, J.R.; Ward, N.C.; Schultz, C.J.; Hodgson, J.M.; Croft, K.D.; Sim, M. Quantifying dietary vitamin K and its link to cardiovascular health: A narrative review. Food Funct. 2020, 11, 2826–2837. [Google Scholar] [CrossRef]
- Suttie, J. Vitamin K and human nutrition. J. Am. Diet. Assoc. 1992, 92, 585–590. [Google Scholar] [CrossRef]
- Dahlberg, S.; Schurgers, L.; Schött, U.; Kander, T. Vitamin K deficiency in critical ill patients; a prospective observational study. J. Crit. Care 2019, 49, 105–109. [Google Scholar] [CrossRef]
- Kaesler, N.; Schurgers, L.J.; Floege, J. Vitamin K and cardiovascular complications in chronic kidney disease patients. Kidney Int. 2021, 100, 1023–1036. [Google Scholar] [CrossRef]
- Schurgers, L.; Dissel, P.; Spronk, H.; Soute, B.; Dhore, C.; Cleutjens, J.; Vermeer, C. Role of vitamin K and vitamin K-dependent proteins in vascular calcification. Z. Für Kardiol. 2001, 90, 57–63. [Google Scholar] [CrossRef]
- Silaghi, C.N.; Ilyés, T.; Filip, V.P.; Farcaș, M.; van Ballegooijen, A.J.; Crăciun, A.M. Vitamin K dependent proteins in kidney disease. Int. J. Mol. Sci. 2019, 20, 1571. [Google Scholar] [CrossRef]
- Bacchetta, J.; Boutroy, S.; Guebre-Egziabher, F.; Juillard, L.; Drai, J.; Pelletier, S.; Richard, M.; Charrié, A.; Carlier, M.C.; Chapurlat, R. The relationship between adipokines, osteocalcin and bone quality in chronic kidney disease. Nephrol. Dial. Transplant. 2009, 24, 3120–3125. [Google Scholar] [CrossRef]
- Marchelek-Mysliwiec, M.; Wisniewska, M.; Nowosiad-Magda, M.; Safranow, K.; Kwiatkowska, E.; Banach, B.; Dołegowska, B.; Dołegowska, K.; Stepniewska, J.; Domanski, L. Association between plasma concentration of klotho protein, osteocalcin, leptin, adiponectin, and bone mineral density in patients with chronic kidney disease. Horm. Metab. Res. 2018, 50, 816–821. [Google Scholar] [CrossRef]
- Meuwese, C.L.; Olauson, H.; Qureshi, A.R.; Ripsweden, J.; Barany, P.; Vermeer, C.; Drummen, N.; Stenvinkel, P. Associations between thyroid hormones, calcification inhibitor levels and vascular calcification in end-stage renal disease. PLoS ONE 2015, 10, e0132353. [Google Scholar] [CrossRef]
- Jespersen, T.; Møllehave, L.T.; Thuesen, B.H.; Skaaby, T.; Rossing, P.; Toft, U.; Jørgensen, N.R.; Corfixen, B.; Jakobsen, J.; Frimodt-Møller, M. Uncarboxylated matrix Gla-protein: A biomarker of vitamin K status and cardiovascular risk. Clin. Biochem. 2020, 83, 49–56. [Google Scholar] [CrossRef]
- Card, D.J.; Gorska, R.; Harrington, D.J. Laboratory assessment of vitamin K status. J. Clin. Pathol. 2020, 73, 70–75. [Google Scholar] [CrossRef]
- Manghat, P.; Souleimanova, I.; Cheung, J.; Wierzbicki, A.; Harrington, D.; Shearer, M.; Chowiencki, P.; Fogelman, I.; Nerlander, M.; Goldsmith, D. Association of bone turnover markers and arterial stiffness in pre-dialysis chronic kidney disease (CKD). Bone 2011, 48, 1127–1132. [Google Scholar] [CrossRef]
- Theuwissen, E.; Magdeleyns, E.; Braam, L.; Teunissen, K.; Knapen, M.; Binnekamp, I.; van Summeren, M.; Vermeer, C. Vitamin K status in healthy volunteers. Food Funct. 2014, 5, 229–234. [Google Scholar] [CrossRef]
- Xu, Q.; Guo, H.; Cao, S.; Zhou, Q.; Chen, J.; Su, M.; Chen, S.; Jiang, S.; Shi, X.; Wen, Y. Associations of vitamin K status with mortality and cardiovascular events in peritoneal dialysis patients. Int. Urol. Nephrol. 2019, 51, 527–534. [Google Scholar] [CrossRef]
- Schurgers, L.J.; Barreto, D.V.; Barreto, F.C.; Liabeuf, S.; Renard, C.; Magdeleyns, E.J.; Vermeer, C.; Choukroun, G.; Massy, Z.A. The circulating inactive form of matrix gla protein is a surrogate marker for vascular calcification in chronic kidney disease: A preliminary report. Clin. J. Am. Soc. Nephrol. 2010, 5, 568–575. [Google Scholar] [CrossRef]
- Puzantian, H.; Akers, S.R.; Oldland, G.; Javaid, K.; Miller, R.; Ge, Y.; Ansari, B.; Lee, J.; Suri, A.; Hasmath, Z. Circulating dephospho-uncarboxylated matrix Gla-protein is associated with kidney dysfunction and arterial stiffness. Am. J. Hypertens. 2018, 31, 988–994. [Google Scholar] [CrossRef]
- Aoun, M.; Makki, M.; Azar, H.; Matta, H.; Chelala, D.N. High dephosphorylated-uncarboxylated MGP in hemodialysis patients: Risk factors and response to vitamin K 2, a pre-post intervention clinical trial. BMC Nephrol. 2017, 18, 191. [Google Scholar] [CrossRef]
- Delanaye, P.; Krzesinski, J.-M.; Warling, X.; Moonen, M.; Smelten, N.; Médart, L.; Pottel, H.; Cavalier, E. Dephosphorylated-uncarboxylated Matrix Gla protein concentration is predictive of vitamin K status and is correlated with vascular calcification in a cohort of hemodialysis patients. BMC Nephrol. 2014, 15, 145. [Google Scholar] [CrossRef]
- Schlieper, G.; Westenfeld, R.; Krüger, T.; Cranenburg, E.C.; Magdeleyns, E.J.; Brandenburg, V.M.; Djuric, Z.; Damjanovic, T.; Ketteler, M.; Vermeer, C. Circulating nonphosphorylated carboxylated matrix gla protein predicts survival in ESRD. J. Am. Soc. Nephrol. 2011, 22, 387–395. [Google Scholar] [CrossRef]
- Dai, L.; Li, L.; Erlandsson, H.; Jaminon, A.M.; Qureshi, A.R.; Ripsweden, J.; Brismar, T.B.; Witasp, A.; Heimbürger, O.; Jørgensen, H.S. Functional vitamin K insufficiency, vascular calcification and mortality in advanced chronic kidney disease: A cohort study. PLoS ONE 2021, 16, e0247623. [Google Scholar] [CrossRef]
- Keyzer, C.A.; Vermeer, C.; Joosten, M.M.; Knapen, M.H.; Drummen, N.E.; Navis, G.; Bakker, S.J.; De Borst, M.H. Vitamin K status and mortality after kidney transplantation: A cohort study. Am. J. Kidney Dis. 2015, 65, 474–483. [Google Scholar] [CrossRef]
- Weitz, I.C.; Liebman, H.A. Des-γ-carboxy (abnormal) prothrombin and hepatocellular carcinoma: A critical review. Hepatology 1993, 18, 990–997. [Google Scholar] [CrossRef]
- Furie, B.; Bouchard, B.A.; Furie, B.C. Vitamin K-dependent biosynthesis of γ-carboxyglutamic acid. Blood J. Am. Soc. Hematol. 1999, 93, 1798–1808. [Google Scholar] [CrossRef]
- Widdershoven, J.; Lambert, W.; Motohara, K.; Monnens, L.; De Leenheer, A.; Matsuda, I.; Endo, F. Plasma concentrations of vitamin K 1 and PIVKA-II in bottle-fed and breast-fed infants with and without vitamin K prophylaxis at birth. Eur. J. Pediatr. 1988, 148, 139–142. [Google Scholar] [CrossRef]
- Hathaway, W. Vitamin K deficiency. Southeast Asian J. Trop. Med. Public Health 1993, 24, 5–9. [Google Scholar]
- Dituri, F.; Buonocore, G.; Pietravalle, A.; Naddeo, F.; Cortesi, M.; Pasqualetti, P.; Tataranno, M.; Agostino, R. PIVKA-II plasma levels as markers of subclinical vitamin K deficiency in term infants. J. Matern.-Fetal Neonatal Med. 2012, 25, 1660–1663. [Google Scholar] [CrossRef]
- Seo, S.I.; Kim, H.S.; Kim, W.J.; Shin, W.G.; Kim, D.J.; Kim, K.H.; Jang, M.K.; Lee, J.H.; Kim, J.S.; Kim, H.Y. Diagnostic value of PIVKA-II and alpha-fetoprotein in hepatitis B virus-associated hepatocellular carcinoma. World J. Gastroenterol. 2015, 21, 3928. [Google Scholar] [CrossRef]
- Dong, R.; Wang, N.; Yang, Y.; Ma, L.; Du, Q.; Zhang, W.; Tran, A.H.; Jung, H.; Soh, A.; Zheng, Y. Review on Vitamin K Deficiency and its Biomarkers: Focus on the Novel Application of PIVKA-II in Clinical Practice. Clin. Lab. 2018, 64, 413–424. [Google Scholar] [CrossRef]
- Jayakumar, S.; Azizan, E.; Shah, S.A.; Bain, A.; Gafor, A.H.A. Vitamin K Status in Diabetic Patients with Chronic Kidney Disease Stage 3-5 and its Effects on Chronic Kidney Disease-Mineral Bone Disorder. Sains Malays. 2020, 49, 613–624. [Google Scholar]
- Elliott, M.J.; Booth, S.L.; Hopman, W.M.; Holden, R.M. Assessment of potential biomarkers of subclinical vitamin K deficiency in patients with end-stage kidney disease. Can. J. Kidney Health Dis. 2014, 1, 13. [Google Scholar] [CrossRef]
- Holden, R.M.; Morton, A.R.; Garland, J.S.; Pavlov, A.; Day, A.G.; Booth, S.L. Vitamins K and D status in stages 3–5 chronic kidney disease. Clin. J. Am. Soc. Nephrol. 2010, 5, 590–597. [Google Scholar] [CrossRef]
- Cranenburg, E.C.; Schurgers, L.J.; Uiterwijk, H.H.; Beulens, J.W.; Dalmeijer, G.W.; Westerhuis, R.; Magdeleyns, E.J.; Herfs, M.; Vermeer, C.; Laverman, G.D. Vitamin K intake and status are low in hemodialysis patients. Kidney Int. 2012, 82, 605–610. [Google Scholar] [CrossRef]
- Wyskida, K.; Żak-Gołąb, A.; Wajda, J.; Klein, D.; Witkowicz, J.; Ficek, R.; Rotkegel, S.; Spiechowicz, U.; Kocemba Dyczek, J.; Ciepał, J. Functional deficiency of vitamin K in hemodialysis patients in Upper Silesia in Poland. Int. Urol. Nephrol. 2016, 48, 765–771. [Google Scholar] [CrossRef]
- Stankowiak-Kulpa, H.; Krzyżanowska, P.; Kozioł, L.; Grzymisławski, M.; Wanic-Kossowska, M.; Moczko, J.; Walkowiak, J. Vitamin K status in peritoneally dialyzed patients with chronic kidney disease. Acta Biochim. Pol. 2011, 58, 617–620. [Google Scholar] [CrossRef]
- Park, M.; Yu, B.C.; Choi, S.J. # 6246 Pivka II Is a Biomarker for Predicting Coronary Calcification in Hemodialysis Patients with Diabetes. Nephrol. Dial. Transplant. 2023, 38, gfad063c_6246. [Google Scholar]
- Rapp, N.; Brandenburg, V.; Kaesler, N.; Bakker, S.; Stöhr, R.; Schuh, A. Hepatic and Vascular Vitamin K Status in Patients with High Cardiovascular Risk. Nutrients 2021, 13, 3490. [Google Scholar] [CrossRef]
- Cozzolino, M.; Mangano, M.; Galassi, A.; Ciceri, P.; Messa, P.; Nigwekar, S. Vitamin K in chronic kidney disease. Nutrients 2019, 11, 168. [Google Scholar] [CrossRef]
- Tsugawa, N.; Shiraki, M. Vitamin K nutrition and bone health. Nutrients 2020, 12, 1909. [Google Scholar] [CrossRef]
- Trumbo, P.; Yates, A.A.; Schlicker, S.; Poos, M. Dietary Reference Intakes. J. Am. Diet. Assoc. 2001, 101, 294. [Google Scholar] [CrossRef]
- Holden, R.M.; Ki, V.; Morton, A.R.; Clase, C. Fat-Soluble Vitamins in Advanced CKD/ESKD: A Review. Semin. Dial. 2012, 25, 334–343. [Google Scholar] [CrossRef]
- Cranenburg, E.C.M. Circulating Matrix Gla-Protein: A Biomarker for Vascular Disease. Ph.D. Thesis, Maastricht University, Maastricht, The Netherlands, 2011. [Google Scholar]
- Mladěnka, P.; Macáková, K.; Kujovská Krčmová, L.; Javorská, L.; Mrštná, K.; Carazo, A.; Protti, M.; Remião, F.; Nováková, L.; Researchers, O.; et al. Vitamin K–sources, physiological role, kinetics, deficiency, detection, therapeutic use, and toxicity. Nutr. Rev. 2022, 80, 677–698. [Google Scholar] [CrossRef]
- EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA); Turck, D.; Bresson, J.L.; Burlingame, B.; Dean, T.; Fairweather-Tait, S.; Heinonen, M.; Hirsch-Ernst, K.I.; Mangelsdorf, I.; McArdle, H.J.; et al. Dietary reference values for vitamin K. EFSA J. 2017, 15, e04780. [Google Scholar] [CrossRef]
- Marles, R.J.; Roe, A.L.; Oketch-Rabah, H.A. US Pharmacopeial Convention safety evaluation of menaquinone-7, a form of vitamin K. Nutr. Rev. 2017, 75, 553–578. [Google Scholar] [CrossRef]
- Roumeliotis, S.; Roumeliotis, A.; Eleftheriadis, T.; Liakopoulos, V. Letter to the Editor regarding “Six months vitamin K treatment does not affect systemic arterial calcification or bone mineral density in diabetes mellitus 2”. Eur. J. Nutr. 2021, 60, 1701–1702. [Google Scholar] [CrossRef]
- Krueger, T.; Westenfeld, R.; Ketteler, M.; Schurgers, L.J.; Floege, J. Vitamin K deficiency in CKD patients: A modifiable risk factor for vascular calcification? Kidney Int. 2009, 76, 18–22. [Google Scholar] [CrossRef]
- Turner, M.E.; Adams, M.A.; Holden, R.M. The vitamin K metabolome in chronic kidney disease. Nutrients 2018, 10, 1076. [Google Scholar] [CrossRef]
- Villa, J.K.D.; Diaz, M.A.N.; Pizziolo, V.R.; Martino, H.S.D. Effect of vitamin K in bone metabolism and vascular calcification: A review of mechanisms of action and evidences. Crit. Rev. Food Sci. Nutr. 2017, 57, 3959–3970. [Google Scholar] [CrossRef]
- Roumeliotis, S.; Duni, A.; Vaios, V.; Kitsos, A.; Liakopoulos, V.; Dounousi, E. Vitamin K supplementation for prevention of vascular calcification in chronic kidney disease patients: Are we there yet? Nutrients 2022, 14, 925. [Google Scholar] [CrossRef]
- Neradova, A.; Schumacher, S.; Hubeek, I.; Lux, P.; Schurgers, L.; Vervloet, M. Phosphate binders affect vitamin K concentration by undesired binding, an in vitro study. BMC Nephrol. 2017, 18, 149. [Google Scholar] [CrossRef]
- Roumeliotis, S.; Roumeliotis, A.; Dounousi, E.; Eleftheriadis, T.; Liakopoulos, V. Biomarkers of vascular calcification in serum. Adv. Clin. Chem. 2020, 98, 91–147. [Google Scholar]
- Shearer, M.J.; Bechtold, H.; Andrassy, K.; Koderisch, J.; McCarthy, P.; Trenk, D.; Jähnchen, E.; Ritz, E. Mechanism of cephalosporin-induced hypoprothrombinemia: Relation to cephalosporin side chain, vitamin K metabolism, and vitamin K status. J. Clin. Pharmacol. 1988, 28, 88–95. [Google Scholar] [CrossRef]
- Harshman, S.G.; Shea, M.K.; Fu, X.; Smith, D.; Grusak, M.A.; Lamon-Fava, S.; Greenberg, A.S.; Kuliopulos, A.; Booth, S.L. Atorvastatin Decreases Menaquinone-4 Formation in C57Bl6 Male Mice. FASEB J. 2017, 31, 646.611. [Google Scholar] [CrossRef]
- Holmes, M.V.; Hunt, B.J.; Shearer, M.J. The role of dietary vitamin K in the management of oral vitamin K antagonists. Blood Rev. 2012, 26, 1–14. [Google Scholar] [CrossRef]
- Chen, X.; Jin, D.-Y.; Stafford, D.W.; Tie, J.-K. Evaluation of oral anticoagulants with vitamin K epoxide reductase in its native milieu. Blood J. Am. Soc. Hematol. 2018, 132, 1974–1984. [Google Scholar] [CrossRef]
- Brandenburg, V.M.; Kramann, R.; Rothe, H.; Kaesler, N.; Korbiel, J.; Specht, P.; Schmitz, S.; Krüger, T.; Floege, J.; Ketteler, M. Calcific uraemic arteriolopathy (calciphylaxis): Data from a large nationwide registry. Nephrol. Dial. Transplant. 2017, 32, 126–132. [Google Scholar] [CrossRef]
- Schurgers, L.J.; Spronk, H.M.; Soute, B.A.; Schiffers, P.M.; DeMey, J.G.; Vermeer, C. Regression of warfarin-induced medial elastocalcinosis by high intake of vitamin K in rats. Blood 2007, 109, 2823–2831. [Google Scholar] [CrossRef]
- Kosciuszek, N.D.; Kalta, D.; Singh, M.; Savinova, O.V. Vitamin K antagonists and cardiovascular calcification: A systematic review and meta-analysis. Front. Cardiovasc. Med. 2022, 9, 938567. [Google Scholar] [CrossRef]
- Scheiber, D.; Veulemans, V.; Horn, P.; Chatrou, M.L.; Potthoff, S.A.; Kelm, M.; Schurgers, L.J.; Westenfeld, R. High-dose menaquinone-7 supplementation reduces cardiovascular calcification in a murine model of extraosseous calcification. Nutrients 2015, 7, 6991–7011. [Google Scholar] [CrossRef]
- Van Gorp, R.H.; Schurgers, L.J. New insights into the pros and cons of the clinical use of vitamin K antagonists (VKAs) versus direct oral anticoagulants (DOACs). Nutrients 2015, 7, 9538–9557. [Google Scholar] [CrossRef]
- McCabe, K.M.; Booth, S.L.; Fu, X.; Shobeiri, N.; Pang, J.J.; Adams, M.A.; Holden, R.M. Dietary vitamin K and therapeutic warfarin alter the susceptibility to vascular calcification in experimental chronic kidney disease. Kidney Int. 2013, 83, 835–844. [Google Scholar] [CrossRef]
- McCabe, K.M.; Booth, S.L.; Fu, X.; Ward, E.; Adams, M.A.; Holden, R.M. Vitamin K metabolism in a rat model of chronic kidney disease. Am. J. Nephrol. 2017, 45, 4–13. [Google Scholar] [CrossRef]
- Schurgers, L.; Spronk, H.; Skepper, J.; Hackeng, T.; Shanahan, C.; Vermeer, C.; Weissberg, P.; Proudfoot, D. Post-translational modifications regulate matrix Gla protein function: Importance for inhibition of vascular smooth muscle cell calcification. J. Thromb. Haemost. 2007, 5, 2503–2511. [Google Scholar] [CrossRef]
- Roumeliotis, S.; Roumeliotis, A.; Panagoutsos, S.; Giannakopoulou, E.; Papanas, N.; Manolopoulos, V.G.; Passadakis, P.; Tavridou, A. Matrix Gla protein T-138C polymorphism is associated with carotid intima media thickness and predicts mortality in patients with diabetic nephropathy. J. Diabetes Its Complicat. 2017, 31, 1527–1532. [Google Scholar] [CrossRef]
- Liu, Y.-P.; Gu, Y.-M.; Thijs, L.; Knapen, M.H.; Salvi, E.; Citterio, L.; Petit, T.; Carpini, S.D.; Zhang, Z.; Jacobs, L. Inactive matrix Gla protein is causally related to adverse health outcomes: A Mendelian randomization study in a Flemish population. Hypertension 2015, 65, 463–470. [Google Scholar] [CrossRef]
- Yoshikawa, K.; Abe, H.; Tominaga, T.; Nakamura, M.; Kishi, S.; Matsuura, M.; Nagai, K.; Tsuchida, K.; Minakuchi, J.; Doi, T. Polymorphism in the human matrix Gla protein gene is associated with the progression of vascular calcification in maintenance hemodialysis patients. Clin. Exp. Nephrol. 2013, 17, 882–889. [Google Scholar] [CrossRef]
- Brancaccio, D.; Biondi, M.L.; Gallieni, M.; Turri, O.; Galassi, A.; Cecchini, F.; Russo, D.; Andreucci, V.; Cozzolino, M. Matrix GLA protein gene polymorphisms: Clinical correlates and cardiovascular mortality in chronic kidney disease patients. Am. J. Nephrol. 2005, 25, 548–552. [Google Scholar] [CrossRef]
- Geleijnse, J.M.; Vermeer, C.; Grobbee, D.E.; Schurgers, L.J.; Knapen, M.H.; Van Der Meer, I.M.; Hofman, A.; Witteman, J.C. Dietary intake of menaquinone is associated with a reduced risk of coronary heart disease: The Rotterdam Study. J. Nutr. 2004, 134, 3100–3105. [Google Scholar] [CrossRef]
- Riphagen, I.J.; Keyzer, C.A.; Drummen, N.E.; De Borst, M.H.; Beulens, J.W.; Gansevoort, R.T.; Geleijnse, J.M.; Muskiet, F.A.; Navis, G.; Visser, S.T. Prevalence and effects of functional vitamin K insufficiency: The PREVEND study. Nutrients 2017, 9, 1334. [Google Scholar] [CrossRef]
- Cheung, C.-L.; Sahni, S.; Cheung, B.M.; Sing, C.-W.; Wong, I.C. Vitamin K intake and mortality in people with chronic kidney disease from NHANES III. Clin. Nutr. 2015, 34, 235–240. [Google Scholar] [CrossRef]
- de Oliveira, R.B.; Stinghen, A.E.M.; Massy, Z.A. Vitamin K role in mineral and bone disorder of chronic kidney disease. Clin. Chim. Acta 2020, 502, 66–72. [Google Scholar] [CrossRef]
- Roumeliotis, S.; Dounousi, E.; Eleftheriadis, T.; Liakopoulos, V. Association of the inactive circulating matrix Gla protein with vitamin K intake, calcification, mortality, and cardiovascular disease: A review. Int. J. Mol. Sci. 2019, 20, 628. [Google Scholar] [CrossRef]
- Bellone, F.; Cinquegrani, M.; Nicotera, R.; Carullo, N.; Casarella, A.; Presta, P.; Andreucci, M.; Squadrito, G.; Mandraffino, G.; Prunestì, M. Role of vitamin K in chronic kidney disease: A focus on bone and cardiovascular health. Int. J. Mol. Sci. 2022, 23, 5282. [Google Scholar] [CrossRef]
- Wasilewski, G.B.; Vervloet, M.G.; Schurgers, L.J. The bone—Vasculature axis: Calcium supplementation and the role of vitamin K. Front. Cardiovasc. Med. 2019, 6, 6. [Google Scholar] [CrossRef]
- Fusaro, M.; Tondolo, F.; Gasperoni, L.; Tripepi, G.; Plebani, M.; Zaninotto, M.; Nickolas, T.L.; Ketteler, M.; Aghi, A.; Politi, C. The role of vitamin K in CKD-MBD. Curr. Osteoporos. Rep. 2022, 20, 65–77. [Google Scholar] [CrossRef]
- Evenepoel, P.; Claes, K.; Meijers, B.; Laurent, M.; Bammens, B.; Naesens, M.; Sprangers, B.; Pottel, H.; Cavalier, E.; Kuypers, D. Poor vitamin K status is associated with low bone mineral density and increased fracture risk in end-stage renal disease. J. Bone Miner. Res. 2019, 34, 262–269. [Google Scholar] [CrossRef]
- Fusaro, M.; Noale, M.; Viola, V.; Galli, F.; Tripepi, G.; Vajente, N.; Plebani, M.; Zaninotto, M.; Guglielmi, G.; Miotto, D. Vitamin K, vertebral fractures, vascular calcifications, and mortality: VItamin K Italian (VIKI) dialysis study. J. Bone Miner. Res. 2012, 27, 2271–2278. [Google Scholar] [CrossRef]
- Kohlmeier, M.; Saupe, J.; Shearer, M.J.; Schaefer, K.; Asmus, G. Bone health of adult hemodialysis patients is related to vitamin K status. Kidney Int. 1997, 51, 1218–1221. [Google Scholar] [CrossRef]
- Kotit, S. INVICTUS: Vitamin K antagonists remain the standard of care for rheumatic heart disease-associated atrial fibrillation. Glob. Cardiol. Sci. Pract. 2023, 2023, e202306. [Google Scholar] [CrossRef]
- Boer, C.G.; Szilagyi, I.; Nguyen, N.L.; Neogi, T.; Meulenbelt, I.; Ikram, M.A.; Uitterlinden, A.G.; Bierma-Zeinstra, S.; Stricker, B.H.; van Meurs, J.B. Vitamin K antagonist anticoagulant usage is associated with increased incidence and progression of osteoarthritis. Ann. Rheum. Dis. 2021, 80, 598–604. [Google Scholar] [CrossRef]
- Roumeliotis, S.; Varouktsi, G.; Tsinari, A.; Veljkovic, A.; Lazarevic, G.; Perisic, Z.; Hadzi-Djokic, J.; Kocic, G.; Liakopoulos, V. Insights into the metabolism and clinical significance of vitamin K in uremia: More than a supplement? Acta Medica Median. 2022, 61, 72–79. [Google Scholar] [CrossRef]
- Jadhav, N.; Ajgaonkar, S.; Saha, P.; Gurav, P.; Pandey, A.; Basudkar, V.; Gada, Y.; Panda, S.; Jadhav, S.; Mehta, D. Molecular pathways and roles for vitamin K2-7 as a health-beneficial nutraceutical: Challenges and opportunities. Front. Pharmacol. 2022, 13, 896920. [Google Scholar] [CrossRef]
- Roumeliotis, S.; Liakopoulos, V.; Schurgers, L.J. Vitamin K supplementation in chronic kidney disease patients: Where is the evidence? Curr. Vasc. Pharmacol. 2022, 20, 121–126. [Google Scholar] [CrossRef]
- Schurgers, L.J.; Vermeer, C. Differential lipoprotein transport pathways of K-vitamins in healthy subjects. Biochim. Et Biophys. Acta (BBA)-Gen. Subj. 2002, 1570, 27–32. [Google Scholar] [CrossRef]
- Will, B.H.; Suttie, J. Comparative metabolism of phylloquinone and menaquinone-9 in rat liver. J. Nutr. 1992, 122, 953–958. [Google Scholar] [CrossRef]
- Schurgers, L.J.; Teunissen, K.J.; Hamulyák, K.; Knapen, M.H.; Vik, H.; Vermeer, C. Vitamin K–containing dietary supplements: Comparison of synthetic vitamin K1 and natto-derived menaquinone-7. Blood 2007, 109, 3279–3283. [Google Scholar] [CrossRef]
- Andrian, T.; Stefan, A.; Nistor, I.; Covic, A. Vitamin K supplementation impact in dialysis patients: A systematic review and meta-analysis of randomized trials. Clin. Kidney J. 2023, 16, 2738–2749. [Google Scholar] [CrossRef]
- Geng, C.; Huang, L.; Pu, L.; Feng, Y. Effects of vitamin K supplementation on vascular calcification in chronic kidney disease: A systematic review and meta-analysis of randomized controlled trials. Front. Nutr. 2023, 9, 1001826. [Google Scholar] [CrossRef]
- Kurnatowska, I.; Grzelak, P.; Masajtis-Zagajewska, A.; Kaczmarska, M.; Stefańczyk, L.; Vermeer, C.; Maresz, K.; Nowicki, M. Effect of vitamin K2 on progression of atherosclerosis and vascular calcification in nondialyzed patients with chronic kidney disease stages 3-5. Pol. Arch. Med. Wewnętrznej 2015, 125, 631–640. [Google Scholar] [CrossRef]
- Witham, M.D.; Lees, J.S.; White, M.; Band, M.; Bell, S.; Chantler, D.J.; Ford, I.; Fulton, R.L.; Kennedy, G.; Littleford, R.C. Vitamin K supplementation to improve vascular stiffness in CKD: The K4Kidneys randomized controlled trial. J. Am. Soc. Nephrol. 2020, 31, 2434–2445. [Google Scholar] [CrossRef]
- Oikonomaki, T.; Papasotiriou, M.; Ntrinias, T.; Kalogeropoulou, C.; Zabakis, P.; Kalavrizioti, D.; Papadakis, I.; Goumenos, D.S.; Papachristou, E. The effect of vitamin K2 supplementation on vascular calcification in haemodialysis patients: A 1-year follow-up randomized trial. Int. Urol. Nephrol. 2019, 51, 2037–2044. [Google Scholar] [CrossRef]
- De Vriese, A.S.; Caluwé, R.; Pyfferoen, L.; De Bacquer, D.; De Boeck, K.; Delanote, J.; De Surgeloose, D.; Van Hoenacker, P.; Van Vlem, B.; Verbeke, F. Multicenter randomized controlled trial of vitamin K antagonist replacement by rivaroxaban with or without vitamin K2 in hemodialysis patients with atrial fibrillation: The Valkyrie Study. J. Am. Soc. Nephrol. 2020, 31, 186–196. [Google Scholar] [CrossRef]
- Levy-Schousboe, K.; Frimodt-Møller, M.; Hansen, D.; Peters, C.D.; Kjærgaard, K.D.; Jensen, J.D.; Strandhave, C.; Elming, H.; Larsen, C.T.; Sandstrøm, H. Vitamin K supplementation and arterial calcification in dialysis: Results of the double-blind, randomized, placebo-controlled RenaKvit trial. Clin. Kidney J. 2021, 14, 2114–2123. [Google Scholar] [CrossRef]
- Haroon, S.; Davenport, A.; Ling, L.-H.; Tai, B.-C.; Schurgers, L.; Chen, Z.; Shroff, R.; Fischer, D.-C.; Khatri, P.; Low, S. Randomized controlled clinical trial of the effect of treatment with vitamin K2 on vascular calcification in hemodialysis patients (Trevasc-HDK). Kidney Int. Rep. 2023, 8, 1741–1751. [Google Scholar] [CrossRef]
- Naiyarakseree, N.; Phannajit, J.; Naiyarakseree, W.; Mahatanan, N.; Asavapujanamanee, P.; Lekhyananda, S.; Vanichakarn, S.; Avihingsanon, Y.; Praditpornsilpa, K.; Eiam-Ong, S. Effect of Menaquinone-7 supplementation on arterial stiffness in chronic hemodialysis patients: A multicenter randomized controlled trial. Nutrients 2023, 15, 2422. [Google Scholar] [CrossRef]
- Saritas, T.; Reinartz, S.; Krüger, T.; Ketteler, M.; Liangos, O.; Labriola, L.; Stenvinkel, P.; Kopp, C.; Westenfeld, R.; Evenepoel, P. Vitamin K1 and progression of cardiovascular calcifications in hemodialysis patients: The VitaVasK randomized controlled trial. Clin. Kidney J. 2022, 15, 2300–2311. [Google Scholar] [CrossRef]
- Holden, R.M.; Booth, S.L.; Zimmerman, D.; Moist, L.; Norman, P.A.; Day, A.G.; Menard, A.; Fu, X.; Shea, M.K.; Babiolakis, C.S. Inhibit progression of coronary artery calcification with vitamin K in hemodialysis patients (the iPACK-HD study): A randomized, placebo-controlled multi-center, pilot trial. Nephrol. Dial. Transplant. 2023, 38, 746–756. [Google Scholar] [CrossRef]
- Mansour, A.G.; Hariri, E.; Daaboul, Y.; Korjian, S.; El Alam, A.; Protogerou, A.D.; Kilany, H.; Karam, A.; Stephan, A.; Bahous, S.A. Vitamin K2 supplementation and arterial stiffness among renal transplant recipients—A single-arm, single-center clinical trial. J. Am. Soc. Hypertens. 2017, 11, 589–597. [Google Scholar] [CrossRef]
- Lees, J.S.; Rankin, A.J.; Gillis, K.A.; Zhu, L.Y.; Mangion, K.; Rutherford, E.; Roditi, G.H.; Witham, M.D.; Chantler, D.; Panarelli, M. The ViKTORIES trial: A randomized, double-blind, placebo-controlled trial of vitamin K supplementation to improve vascular health in kidney transplant recipients. Am. J. Transplant. 2021, 21, 3356–3368. [Google Scholar] [CrossRef]
- Sun, Z.; Zhu, K.; Liang, G.; Yan, F.; Chao, S.; Jia, L.; Niu, Y. Effect of vitamin K on improving post-kidney transplant outcomes: A meta-analysis. Exp. Ther. Med. 2024, 27, 30. [Google Scholar] [CrossRef]
- Kaesler, N.; Magdeleyns, E.; Herfs, M.; Schettgen, T.; Brandenburg, V.; Fliser, D.; Vermeer, C.; Floege, J.; Schlieper, G.; Krüger, T. Impaired vitamin K recycling in uremia is rescued by vitamin K supplementation. Kidney Int. 2014, 86, 286–293. [Google Scholar] [CrossRef]
- De Vriese, A.S.; Caluwé, R.; Van Der Meersch, H.; De Boeck, K.; De Bacquer, D. Safety and efficacy of vitamin K antagonists versus rivaroxaban in hemodialysis patients with atrial fibrillation: A multicenter randomized controlled trial. J. Am. Soc. Nephrol. 2021, 32, 1474–1483. [Google Scholar] [CrossRef]
- Kremer, D.; Groothof, D.; Keyzer, C.A.; Eelderink, C.; Knobbe, T.J.; Post, A.; van Londen, M.; Eisenga, M.F.; Investigators, T.; Schurgers, L.J. Kidney function-dependence of vitamin K-status parameters: Results from the transplantlines biobank and cohort studies. Nutrients 2021, 13, 3069. [Google Scholar] [CrossRef]
- Columb, M.; Atkinson, M. Statistical analysis: Sample size and power estimations. Bja Educ. 2016, 16, 159–161. [Google Scholar] [CrossRef]
- Vossen, L.M.; Kroon, A.A.; Schurgers, L.J.; de Leeuw, P.W. Pharmacological and nutritional modulation of vascular calcification. Nutrients 2019, 12, 100. [Google Scholar] [CrossRef]
- O’neill, W.C.; Lomashvili, K.A. Recent progress in the treatment of vascular calcification. Kidney Int. 2010, 78, 1232–1239. [Google Scholar] [CrossRef]
- Lees, J.S.; Chapman, F.A.; Witham, M.D.; Jardine, A.G.; Mark, P.B. Vitamin K status, supplementation and vascular disease: A systematic review and meta-analysis. Heart 2019, 105, 938–945. [Google Scholar] [CrossRef]
- Levy, D.S.; Grewal, R.; Le, T.H. Vitamin K deficiency: An emerging player in the pathogenesis of vascular calcification and an iatrogenic consequence of therapies in advanced renal disease. Am. J. Physiol.-Ren. Physiol. 2020, 319, F618–F623. [Google Scholar] [CrossRef]
- Caluwé, R.; Vandecasteele, S.; Van Vlem, B.; Vermeer, C.; De Vriese, A.S. Vitamin K2 supplementation in haemodialysis patients: A randomized dose-finding study. Nephrol. Dial. Transplant. 2014, 29, 1385–1390. [Google Scholar] [CrossRef]
- Westenfeld, R.; Krueger, T.; Schlieper, G.; Cranenburg, E.C.; Magdeleyns, E.J.; Heidenreich, S.; Holzmann, S.; Vermeer, C.; Jahnen-Dechent, W.; Ketteler, M. Effect of vitamin K2 supplementation on functional vitamin K deficiency in hemodialysis patients: A randomized trial. Am. J. Kidney Dis. 2012, 59, 186–195. [Google Scholar] [CrossRef]
- Simes, D.C.; Viegas, C.S.; Araújo, N.; Marreiros, C. Vitamin K as a diet supplement with impact in human health: Current evidence in age-related diseases. Nutrients 2020, 12, 138. [Google Scholar] [CrossRef]
- Hwang, S.-b.; Choi, M.-j.; Lee, H.-j.; Han, J.-j. Safety evaluation of vitamin K2 (menaquinone-7) via toxicological tests. Sci. Rep. 2024, 14, 5440. [Google Scholar] [CrossRef]
- Lin, Y.-L.; Hsu, B.-G. Vitamin K and vascular calcification in chronic kidney disease: An update of current evidence. Tzu Chi Med. J. 2023, 35, 44–50. [Google Scholar]
- Wibowo, M.H.; Muzasti, R.A.; Nasution, S. MGP T-138C polymorphism (TT genotype) is associated with vascular calcification incidence in Indonesian regular hemodialysis patients. Indones. Biomed. J. 2020, 12, 320–324. [Google Scholar] [CrossRef]
- Roumeliotis, S.; Roumeliotis, A.; Georgianos, P.I.; Thodis, E.; Schurgers, L.J.; Maresz, K.; Eleftheriadis, T.; Dounousi, E.; Tripepi, G.; Mallamaci, F. VItamin K In PEritonial DIAlysis (VIKIPEDIA): Rationale and study protocol for a randomized controlled trial. PLoS ONE 2022, 17, e0273102. [Google Scholar] [CrossRef]
- Oyama, S.; Okamoto, N.; Koide, S.; Hayashi, H.; Nakai, S.; Takahashi, K.; Inaguma, D.; Hasegawa, M.; Toyama, H.; Sugiyama, S. Vitamin K2 supplementation and the progression of abdominal aortic calcification in dialysis patients. Fujita Med. J. 2021, 7, 136–138. [Google Scholar]
- Pasch, A.; Farese, S.; Gräber, S.; Wald, J.; Richtering, W.; Floege, J.; Jahnen-Dechent, W. Nanoparticle-based test measures overall propensity for calcification in serum. J. Am. Soc. Nephrol. 2012, 23, 1744–1752. [Google Scholar] [CrossRef]
- Zeper, L.W.; Smith, E.R.; Ter Braake, A.D.; Tinnemans, P.T.; de Baaij, J.H.; Hoenderop, J.G. Calciprotein Particle Synthesis Strategy Determines In Vitro Calcification Potential. Calcif. Tissue Int. 2023, 112, 103–117. [Google Scholar] [CrossRef]
- Pluquet, M.; Kamel, S.; Choukroun, G.; Liabeuf, S.; Laville, S.M. Serum calcification propensity represents a good biomarker of vascular calcification: A systematic review. Toxins 2022, 14, 637. [Google Scholar] [CrossRef]
- Jaminon, A.M.; Akbulut, A.C.; Rapp, N.; Reutelingsperger, C.P.; Schurgers, L.J. The BioHybrid Assay: A Novel Method for Determining Calcification Propensity. In Kidney Research: Experimental Protocols; Springer: Cham, Switzerland, 2023; pp. 317–331. [Google Scholar]
- Jaminon, A.M.; Akbulut, A.C.; Rapp, N.; Kramann, R.; Biessen, E.A.; Temmerman, L.; Mees, B.; Brandenburg, V.; Dzhanaev, R.; Jahnen-Dechent, W. Development of the BioHybrid assay: Combining primary human vascular smooth muscle cells and blood to measure vascular calcification propensity. Cells 2021, 10, 2097. [Google Scholar] [CrossRef]
Name of the Study | Year | N | Vitamin K | Dose | Duration | Groups | Result | Limitations | Strengths |
---|---|---|---|---|---|---|---|---|---|
Non-dialysis CKD Patients | |||||||||
Kurnatowska et al. [117] | 2015 | 42 | MK-7 | 90 μg/day | 9 months | Vitamin K + D/Vitamin D | Reduced progress of CIMT/CACS towards benefit | -small sample -short follow-up -low dose | -one of the first RCTs with vitamin K in CKD -one of the first RCTs to examine the synergy between vitamins K + D -extended analysis excluding 4 patients with markedly increased calcification scores |
K4Kidneys [118] | 2020 | 159 | MK-7 | 400 μg/day | 12 months | Vitamin K/Placebo | No effect on PWV or VC | -mean age of enrolled patients was lower than that of typical CKD 3b-4 patients -the study population did not exhibit severe vitamin K depletion | -large sample -the first large RCT in CKD -the RCT with the highest MK-7 dosage |
Dialysis Patients | |||||||||
Oikonomaki et al. [119] | 2019 | 52 | MK-7 | 200 μg/day | 12 months | Single Group | No effect on Agatston scores in aortic calcification | -low dose of vitamin K -ucMGP was only 45% reduced -50% dropout rate -short follow-up period -small sample | -the first RCT in HD |
Valkyrie [120] | 2020 | 132 | MK-7 | 200 μg × 3/week | 18 months | Warfarin/Rivaroxaban/Rivaroxaban + MK-7 | No effect on vascular stiffness or cardiac valve calcification | -dp-ucMGP levels of the MK-7 group remained high -low dose -short follow-up -mean age of patients: 79.6 years -many lost to follow-up | -large sample -when follow-up was extended by an additional 18 months, rivaroxaban and rivaroxaban plus vitamin K, showed lower risk rates for CV events compared to the warfarin |
RenaKvit [121] | 2021 | 52 | MK-7 | 360 μg/day | 24 months | Vitamin K/Placebo | No effect on carotid-femoral PWV or VC | -small size -low dose -mixed HD + PD -90% of the active group received non-calcium phosphate binders -only 40% decrease in dp-ucMGP -high dropout (only 21 patients completed the study) | -long follow-up |
Trevasc-HDK [122] | 2023 | 138 | MK-7 | 360 μg × 3/week | 18 months | Vitamin K/Placebo | No effect on CAC score or carotid-femoral PWV or cardiac valve calcification | -low dose -dpucMGP remained high in the active group -high dropout rate -underpowered study (170 patients were needed) -only Asian population | -large sample -many CV endpoints |
Naiyarakseree et al. [123] | 2023 | 96 | MK-7 | 360 μg/day | 6 months | Vitamin K/Placebo | No effect on carotid-femoral PWV | -small sample -short follow-up -low dose -only Asian population | -subgroup analysis in diabetics showed significant effect of vitamin K on PWV |
VitaVasK [124] | 2022 | 40 | K1 | 5 mg × 3/week | 18 months | Vitamin K/Placebo | TAC score 56% reduced and CAC score 68% lower | -small sample | -gold standard endpoints |
iPACK-HD [125] | 2023 | 86 | K1 | 10 mg × 3/week | 12 months | Vitamin K/Placebo | No effect on CAC score | -feasibility study -not designed to detect outcomes -age discrepancy between groups in favor of the placebo group -the K group patients had substantial and potentially irreversible VC at baseline | -showed that K1 supplementation was safe and well tolerated in HD patients |
Kidney Transplant Recipients | |||||||||
KING [126] | 2017 | 60 | MK-7 | 360 μg/day | 2 months | Single Group | 14.2% reduction in PWV | -short follow-up -endpoint was a surrogate marker of vascular stiffness and not a clinical hard outcome | -showed that vitamin K ad effect in the vitamin K deficient patients |
ViKTORIES [127] | 2021 | 90 | Menadiol Diphosphate | 5 mg × 3/week | 12 months | Vitamin K/Placebo | No effect on VC or vascular stiffness | -the dose and duration of follow-up for menadiol was not known -short follow-up -small sample -high dropout rate -the majority of patients had severe arteriosclerosis at baseline -dp-ucMGP < 900 pmol/L was not accurately quantified -the active group had significantly increased albuminuria and higher prevalence of diabetes and CVD at baseline | -the first to test menadiol diphosphate supplementation in KRTs, |
Meta-analysis Studies | |||||||||
Andrian et al. [115] | 2023 | 830 | K1/K2 | variable | 6 weeks to 24 months | Both adult and pediatric HD patients | Non-significant trend in reducing calcification scores | -high variability in vitamin K dosing, population, and endpoints −50% of studies do not include mortality or VC | -large sample/many studies |
Sun et al. [128] | 2023 | 1101 | not specified | variable | - | KTR | Reduced all-cause mortality, improvement in GFR | -Meta-analysis and not RCT -not specified form/dose of vitamin K | -low publication bias -adequate sensitivity analysis -Quantified the effect of kidney function on vitamin K status |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neofytou, I.E.; Stamou, A.; Demopoulos, A.; Roumeliotis, S.; Zebekakis, P.; Liakopoulos, V.; Stamellou, E.; Dounousi, E. Vitamin K for Vascular Calcification in Kidney Patients: Still Alive and Kicking, but Still a Lot to Learn. Nutrients 2024, 16, 1798. https://doi.org/10.3390/nu16121798
Neofytou IE, Stamou A, Demopoulos A, Roumeliotis S, Zebekakis P, Liakopoulos V, Stamellou E, Dounousi E. Vitamin K for Vascular Calcification in Kidney Patients: Still Alive and Kicking, but Still a Lot to Learn. Nutrients. 2024; 16(12):1798. https://doi.org/10.3390/nu16121798
Chicago/Turabian StyleNeofytou, Ioannis Eleftherios, Aikaterini Stamou, Antonia Demopoulos, Stefanos Roumeliotis, Pantelis Zebekakis, Vassilios Liakopoulos, Eleni Stamellou, and Evangelia Dounousi. 2024. "Vitamin K for Vascular Calcification in Kidney Patients: Still Alive and Kicking, but Still a Lot to Learn" Nutrients 16, no. 12: 1798. https://doi.org/10.3390/nu16121798
APA StyleNeofytou, I. E., Stamou, A., Demopoulos, A., Roumeliotis, S., Zebekakis, P., Liakopoulos, V., Stamellou, E., & Dounousi, E. (2024). Vitamin K for Vascular Calcification in Kidney Patients: Still Alive and Kicking, but Still a Lot to Learn. Nutrients, 16(12), 1798. https://doi.org/10.3390/nu16121798