Post Natal Microbial and Metabolite Transmission: The Path from Mother to Infant
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Selection of Subjects
2.2. Data and Specimen Collection
2.3. DNA Extraction
2.4. Amplification of the Bacterial V3-16S rRNA Gene Region
2.5. High-Throughput DNA Sequencing
2.6. Metabolite Analysis by ESI FT-ICR MS
2.7. Bioinformatic Analysis
3. Results
3.1. Characteristics of the Participants and Studied Samples
3.2. The Bacterial Composition among Samples Suggests Vertical Transmission
3.3. HM Drives Early Infant Gut Colonization with Drastic Changes in Bacterial Genera Occurring during the First 4 Months of Life
3.4. Sample m/z Profile Reveals a Two-Group Clustering Corresponding to HM and MS/IS
3.5. Metabolite Identification Shows a Complex Mixture of Molecules Conforming the Samples
3.6. Multiblock sPLSDA Model Reveals the Dynamics between Bacteria and Metabolites in the Entero–Mammary Pathway
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Martín, R.; Langa, S.; Reviriego, C.; Jiménez, E.; Marín, M.L.; Olivares, M.; Boza, J.; Jiménez, J.; Fernández, L.; Xaus, J.; et al. The Commensal Microflora of Human Milk: New Perspectives for Food Bacteriotherapy and Probiotics. Trends Food Sci. Technol. 2004, 15, 121–127. [Google Scholar] [CrossRef]
- Jost, T.; Lacroix, C.; Braegger, C.P.; Rochat, F.; Chassard, C. Vertical Mother-Neonate Transfer of Maternal Gut Bacteria via Breastfeeding. Environ. Microbiol. 2014, 16, 2891–2904. [Google Scholar] [CrossRef] [PubMed]
- Fernández, L.; Langa, S.; Martín, V.; Maldonado, A.; Jiménez, E.; Martín, R.; Rodríguez, J.M. The Human Milk Microbiota: Origin and Potential Roles in Health and Disease. Pharmacol. Res. 2013, 69, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Duranti, S.; Lugli, G.A.; Mancabelli, L.; Armanini, F.; Turroni, F.; James, K.; Ferretti, P.; Gorfer, V.; Ferrario, C.; Milani, C.; et al. Maternal Inheritance of Bifidobacterial Communities and Bifidophages in Infants through Vertical Transmission. Microbiome 2017, 5, 66. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, J.M.; Fernández, L.; Verhasselt, V. The Gut-Breast Axis: Programming Health for Life. Nutrients 2021, 13, 606. [Google Scholar] [CrossRef] [PubMed]
- van Best, N.; Hornef, M.W.; Savelkoul, P.H.M.; Penders, J. On the Origin of Species: Factors Shaping the Establishment of Infant’s Gut Microbiota. Birth Defects Res. C Embryo Today 2015, 105, 240–251. [Google Scholar] [CrossRef] [PubMed]
- Rautava, S. Early Microbial Contact, the Breast Milk Microbiome and Child Health. J. Dev. Orig. Health Dis. 2016, 7, 5–14. [Google Scholar] [CrossRef]
- Asnicar, F.; Manara, S.; Zolfo, M.; Truong, D.T.; Scholz, M.; Armanini, F.; Ferretti, P.; Gorfer, V.; Pedrotti, A.; Tett, A.; et al. Studying Vertical Microbiome Transmission from Mothers to Infants by Strain-Level Metagenomic Profiling. mSystems 2017, 2, e00164-16. [Google Scholar] [CrossRef] [PubMed]
- Murphy, K.; Curley, D.; O’Callaghan, T.F.; O’Shea, C.-A.; Dempsey, E.M.; O’Toole, P.W.; Ross, R.P.; Ryan, C.A.; Stanton, C. The Composition of Human Milk and Infant Faecal Microbiota Over the First Three Months of Life: A Pilot Study. Sci. Rep. 2017, 7, 40597. [Google Scholar] [CrossRef]
- Kordy, K.; Gaufin, T.; Mwangi, M.; Li, F.; Cerini, C.; Lee, D.J.; Adisetiyo, H.; Woodward, C.; Pannaraj, P.S.; Tobin, N.H.; et al. Contributions to Human Breast Milk Microbiome and Enteromammary Transfer of Bifidobacterium Breve. PLoS ONE 2020, 15, e0219633. [Google Scholar] [CrossRef]
- Juárez-Castelán, C.J.; Vélez-Ixta, J.M.; Corona-Cervantes, K.; Piña-Escobedo, A.; Cruz-Narváez, Y.; Hinojosa-Velasco, A.; Landero-Montes-de-Oca, M.E.; Davila-Gonzalez, E.; González-Del-Olmo, E.; Bastida-Gonzalez, F.; et al. The Entero-Mammary Pathway and Perinatal Transmission of Gut Microbiota and SARS-CoV-2. Int. J. Mol. Sci. 2022, 23, 10306. [Google Scholar] [CrossRef] [PubMed]
- Perez, P.F.; Doré, J.; Leclerc, M.; Levenez, F.; Benyacoub, J.; Serrant, P.; Segura-Roggero, I.; Schiffrin, E.J.; Donnet-Hughes, A. Bacterial Imprinting of the Neonatal Immune System: Lessons from Maternal Cells? Pediatrics 2007, 119, e724–e732. [Google Scholar] [CrossRef] [PubMed]
- Langa, S.; Maldonado-Barragán, A.; Delgado, S.; Martín, R.; Martín, V.; Jiménez, E.; Ruíz-Barba, J.L.; Mayo, B.; Connor, R.I.; Suárez, J.E.; et al. Characterization of Lactobacillus Salivarius CECT 5713, a Strain Isolated from Human Milk: From Genotype to Phenotype. Appl. Microbiol. Biotechnol. 2012, 94, 1279–1287. [Google Scholar] [CrossRef] [PubMed]
- Sharp, J.A.; Modepalli, V.; Enjapoori, A.K.; Bisana, S.; Abud, H.E.; Lefevre, C.; Nicholas, K.R. Bioactive Functions of Milk Proteins: A Comparative Genomics Approach. J. Mammary Gland. Biol. Neoplasia 2014, 19, 289–302. [Google Scholar] [CrossRef] [PubMed]
- Section on Breastfeeding; Eidelman, A.I.; Schanler, R.J.; Johnston, M.; Landers, S.; Noble, L.; Szucs, K.; Viehmann, L. Breastfeeding and the Use of Human Milk. Pediatrics 2012, 129, e827–e841. [Google Scholar] [CrossRef]
- Mosca, F.; Giannì, M.L. Human Milk: Composition and Health Benefits. Pediatr. Med. Chir. 2017, 39, 155. [Google Scholar] [CrossRef] [PubMed]
- Victora, C.G.; Bahl, R.; Barros, A.J.D.; França, G.V.A.; Horton, S.; Krasevec, J.; Murch, S.; Sankar, M.J.; Walker, N.; Rollins, N.C.; et al. Breastfeeding in the 21st Century: Epidemiology, Mechanisms, and Lifelong Effect. Lancet 2016, 387, 475–490. [Google Scholar] [CrossRef]
- Ballard, O.; Morrow, A.L. Human Milk Composition: Nutrients and Bioactive Factors. Pediatr. Clin. N. Am. 2013, 60, 49–74. [Google Scholar] [CrossRef]
- Breastfeeding. Available online: https://www.who.int/health-topics/breastfeeding (accessed on 20 March 2024).
- Jackson, B.A.; Gregg, B.E.; Tutor, S.D.; Bermick, J.R.; Stanley, K.P. Human Milk Retains Important Immunologic Properties After Defatting. JPEN J. Parenter. Enter. Nutr. 2020, 44, 904–911. [Google Scholar] [CrossRef]
- Chen, B.; Tang, G.; Guo, W.; Lei, J.; Yao, J.; Xu, X. Detection of the Core Bacteria in Colostrum and Their Association with the Rectal Microbiota and with Milk Composition in Two Dairy Cow Farms. Animals 2021, 11, 3363. [Google Scholar] [CrossRef]
- Notarbartolo, V.; Giuffrè, M.; Montante, C.; Corsello, G.; Carta, M. Composition of Human Breast Milk Microbiota and Its Role in Children’s Health. Pediatr. Gastroenterol. Hepatol. Nutr. 2022, 25, 194–210. [Google Scholar] [CrossRef] [PubMed]
- Isganaitis, E.; Venditti, S.; Matthews, T.J.; Lerin, C.; Demerath, E.W.; Fields, D.A. Maternal Obesity and the Human Milk Metabolome: Associations with Infant Body Composition and Postnatal Weight Gain. Am. J. Clin. Nutr. 2019, 110, 111–120. [Google Scholar] [CrossRef] [PubMed]
- Bittinger, K.; Zhao, C.; Li, Y.; Ford, E.; Friedman, E.S.; Ni, J.; Kulkarni, C.V.; Cai, J.; Tian, Y.; Liu, Q.; et al. Bacterial Colonization Reprograms the Neonatal Gut Metabolome. Nat. Microbiol. 2020, 5, 838–847. [Google Scholar] [CrossRef] [PubMed]
- Frau, A.; Lett, L.; Slater, R.; Young, G.R.; Stewart, C.J.; Berrington, J.; Hughes, D.M.; Embleton, N.; Probert, C. The Stool Volatile Metabolome of Pre-Term Babies. Molecules 2021, 26, 3341. [Google Scholar] [CrossRef] [PubMed]
- Hunt, K.M.; Foster, J.A.; Forney, L.J.; Schütte, U.M.E.; Beck, D.L.; Abdo, Z.; Fox, L.K.; Williams, J.E.; McGuire, M.K.; McGuire, M.A. Characterization of the Diversity and Temporal Stability of Bacterial Communities in Human Milk. PLoS ONE 2011, 6, e21313. [Google Scholar] [CrossRef] [PubMed]
- Priyadarshini, M.; Thomas, A.; Reisetter, A.C.; Scholtens, D.M.; Wolever, T.M.S.; Josefson, J.L.; Layden, B.T. Maternal Short-Chain Fatty Acids Are Associated with Metabolic Parameters in Mothers and Newborns. Transl. Res. 2014, 164, 153–157. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wang, L.; Chen, H.; Yang, Z.; Chen, S.; Wang, J.; Zhou, Y.; Xuan, R. The Diagnostic Potential of Gut Microbiota-Derived Short-Chain Fatty Acids in Preeclampsia. Front. Pediatr. 2022, 10, 878924. [Google Scholar] [CrossRef]
- Ziętek, M.; Celewicz, Z.; Szczuko, M. Short-Chain Fatty Acids, Maternal Microbiota and Metabolism in Pregnancy. Nutrients 2021, 13, 1244. [Google Scholar] [CrossRef]
- Khodayar-Pardo, P.; Mira-Pascual, L.; Collado, M.C.; Martínez-Costa, C. Impact of Lactation Stage, Gestational Age and Mode of Delivery on Breast Milk Microbiota. J. Perinatol. 2014, 34, 599–605. [Google Scholar] [CrossRef]
- Gomez-Gallego, C.; Garcia-Mantrana, I.; Salminen, S.; Collado, M.C. The Human Milk Microbiome and Factors Influencing Its Composition and Activity. Semin. Fetal Neonatal Med. 2016, 21, 400–405. [Google Scholar] [CrossRef]
- Lyons, K.E.; Shea, C.-A.O.; Grimaud, G.; Ryan, C.A.; Dempsey, E.; Kelly, A.L.; Ross, R.P.; Stanton, C. The Human Milk Microbiome Aligns with Lactation Stage and Not Birth Mode. Sci. Rep. 2022, 12, 5598. [Google Scholar] [CrossRef] [PubMed]
- Cabrera-Rubio, R.; Mira-Pascual, L.; Mira, A.; Collado, M.C. Impact of Mode of Delivery on the Milk Microbiota Composition of Healthy Women. J. Dev. Orig. Health Dis. 2016, 7, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Selma-Royo, M.; Calvo Lerma, J.; Cortés-Macías, E.; Collado, M.C. Human Milk Microbiome: From Actual Knowledge to Future Perspective. Semin. Perinatol. 2021, 45, 151450. [Google Scholar] [CrossRef]
- Tonon, K.M.; Morais, T.B.; Taddei, C.R.; Araújo-Filho, H.B.; Abrão, A.C.F.V.; Miranda, A.; de Morais, M.B. Gut Microbiota Comparison of Vaginally and Cesarean Born Infants Exclusively Breastfed by Mothers Secreting A1–2 Fucosylated Oligosaccharides in Breast Milk. PLoS ONE 2021, 16, e0246839. [Google Scholar] [CrossRef]
- Chávez-Carbajal, A.; Pizano-Zárate, M.L.; Hernández-Quiroz, F.; Ortiz-Luna, G.F.; Morales-Hernández, R.M.; De Sales-Millán, A.; Hernández-Trejo, M.; García-Vite, A.; Beltrán-Lagunes, L.; Hoyo-Vadillo, C.; et al. Characterization of the Gut Microbiota of Individuals at Different T2D Stages Reveals a Complex Relationship with the Host. Microorganisms 2020, 8, 94. [Google Scholar] [CrossRef]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, Interactive, Scalable and Extensible Microbiome Data Science Using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef]
- McDonald, D.; Jiang, Y.; Balaban, M.; Cantrell, K.; Zhu, Q.; Gonzalez, A.; Morton, J.T.; Nicolaou, G.; Parks, D.H.; Karst, S.M.; et al. Greengenes2 Unifies Microbial Data in a Single Reference Tree. Nat. Biotechnol. 2023, 42, 715–718. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023. [Google Scholar]
- Posit Team. RStudio: Integrated Development Environment for R; Posit Software, PBC: Boston, MA, USA, 2023. [Google Scholar]
- Bisanz, J.E. qiime2R: Importing QIIME2 Artifacts and Associated Data into R Sessions. 2018. Available online: https://github.com/jbisanz/qiime2R (accessed on 19 March 2024).
- McMurdie, P.J.; Holmes, S. Phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLoS ONE 2013, 8, e61217. [Google Scholar] [CrossRef] [PubMed]
- Oksanen, J.; Simpson, G.L.; Blanchet, F.G.; Kindt, R.; Legendre, P.; Minchin, P.R.; O’Hara, R.B.; Solymos, P.; Stevens, M.H.H.; Szoecs, E.; et al. Vegan: Community Ecology Package. 2022. Available online: http://CRAN.Rproject.org/package=vegan (accessed on 19 March 2024).
- Lahti, L.; Shetty, S. Microbiome R Package. 2012. Available online: https://github.com/microbiome/microbiome (accessed on 19 March 2024).
- Gu, Z. Complex Heatmap Visualization. iMeta 2022, 1, e43. [Google Scholar] [CrossRef]
- Love, M.I.; Huber, W.; Anders, S. Moderated Estimation of Fold Change and Dispersion for RNA-Seq Data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef]
- Knights, D.; Kuczynski, J.; Charlson, E.S.; Zaneveld, J.; Mozer, M.C.; Collman, R.G.; Bushman, F.D.; Knight, R.; Kelley, S.T. Bayesian Community-Wide Culture-Independent Microbial Source Tracking. Nat. Methods 2011, 8, 761–763. [Google Scholar] [CrossRef] [PubMed]
- Gatto, L.; Rainer, J.; Gibb, S. R for Mass Spectrometry: R for Mass Spectrometry Meta-Package. 2023. Available online: https://github.com/RforMassSpectrometry/RforMassSpectrometry (accessed on 19 March 2024).
- Huber, W.; von Heydebreck, A.; Sültmann, H.; Poustka, A.; Vingron, M. Variance Stabilization Applied to Microarray Data Calibration and to the Quantification of Differential Expression. Bioinformatics 2002, 18, S96–S104. [Google Scholar] [CrossRef] [PubMed]
- Bramer, L.M.; White, A.M.; Stratton, K.G.; Thompson, A.M.; Claborne, D.; Hofmockel, K.; McCue, L.A. ftmsRanalysis: An R Package for Exploratory Data Analysis and Interactive Visualization of FT-MS Data. PLoS Comput. Biol. 2020, 16, e1007654. [Google Scholar] [CrossRef]
- Hennig, C. Fpc: Flexible Procedures for Clustering, R Package Version, 2010. Available online: https://CRAN.R-project.org/package=fpc (accessed on 19 March 2024).
- Wickham, H.; Averick, M.; Bryan, J.; Chang, W.; McGowan, L.D.; François, R.; Grolemund, G.; Hayes, A.; Henry, L.; Hester, J.; et al. Welcome to the Tidyverse. J. Open Source Softw. 2019, 4, 1686. [Google Scholar] [CrossRef]
- Wickham, H. Ggplot2: Elegant Graphics for Data Analysis, 2nd ed.; Springer Publishing Company, Incorporated: Berlin/Heidelberg, Germany, 2016; ISBN 978-3-319-24275-0. [Google Scholar]
- Kassambara, A. Ggpubr: “ggplot2” Based Publication Ready Plots, R Package Version, 2023. Available online: https://CRAN.R-project.org/package=ggpubr (accessed on 19 March 2024).
- de Vries, A. R: Create Dendrograms and Tree Diagrams Using “Ggplot2”. Available online: https://search.r-project.org/CRAN/refmans/ggdendro/html/ggdendro-package.html (accessed on 19 March 2024).
- Rohart, F.; Gautier, B.; Singh, A.; Lê Cao, K.-A. mixOmics: An R Package for ’omics Feature Selection and Multiple Data Integration. PLoS Comput. Biol. 2017, 13, e1005752. [Google Scholar] [CrossRef] [PubMed]
- Rivas-Ubach, A.; Liu, Y.; Bianchi, T.S.; Tolić, N.; Jansson, C.; Paša-Tolić, L. Moving beyond the van Krevelen Diagram: A New Stoichiometric Approach for Compound Classification in Organisms. Anal. Chem. 2018, 90, 6152–6160. [Google Scholar] [CrossRef] [PubMed]
- Togo, A.; Dufour, J.-C.; Lagier, J.-C.; Dubourg, G.; Raoult, D.; Million, M. Repertoire of Human Breast and Milk Microbiota: A Systematic Review. Future Microbiol. 2019, 14, 623–641. [Google Scholar] [CrossRef]
- Chavoya-Guardado, M.A.; Vasquez-Garibay, E.M.; Ruiz-Quezada, S.L.; Ramírez-Cordero, M.I.; Larrosa-Haro, A.; Castro-Albarran, J. Firmicutes, Bacteroidetes and Actinobacteria in Human Milk and Maternal Adiposity. Nutrients 2022, 14, 2887. [Google Scholar] [CrossRef]
- Moubareck, C.A. Human Milk Microbiota and Oligosaccharides: A Glimpse into Benefits, Diversity, and Correlations. Nutrients 2021, 13, 1123. [Google Scholar] [CrossRef]
- Salli, K.; Anglenius, H.; Hirvonen, J.; Hibberd, A.A.; Ahonen, I.; Saarinen, M.T.; Tiihonen, K.; Maukonen, J.; Ouwehand, A.C. The Effect of 2′-Fucosyllactose on Simulated Infant Gut Microbiome and Metabolites; a Pilot Study in Comparison to GOS and Lactose. Sci. Rep. 2019, 9, 13232. [Google Scholar] [CrossRef]
- Kim, S.Y.; Yi, D.Y. Analysis of the Human Breast Milk Microbiome and Bacterial Extracellular Vesicles in Healthy Mothers. Exp. Mol. Med. 2020, 52, 1288–1297. [Google Scholar] [CrossRef] [PubMed]
- Fortmann, I.; Marißen, J.; Siller, B.; Spiegler, J.; Humberg, A.; Hanke, K.; Faust, K.; Pagel, J.; Eyvazzadeh, L.; Brenner, K.; et al. Lactobacillus Acidophilus/Bifidobacterium Infantis Probiotics Are Beneficial to Extremely Low Gestational Age Infants Fed Human Milk. Nutrients 2020, 12, 850. [Google Scholar] [CrossRef]
- Urbańska, M.; Szajewska, H. The Efficacy of Lactobacillus Reuteri DSM 17938 in Infants and Children: A Review of the Current Evidence. Eur. J. Pediatr. 2014, 173, 1327–1337. [Google Scholar] [CrossRef] [PubMed]
- McCartney, A.L.; Hoyles, L. The Role of Klebsiella Populations in Preterm Infants. Biochem. Soc. Trans. 2023, 51, 887–896. [Google Scholar] [CrossRef]
- Men, G.; Wang, L.; Lu, X.; Wen, G.; Lü, Q. Can Enterococcus Faecium Prevent NEC in Preterm Infants? A Systematic Review and Meta-Analysis. Medicine 2023, 102, e34787. [Google Scholar] [CrossRef]
- Hung, W.-L.; Wade, W.G.; Boden, R.; Kelly, D.P.; Wood, A.P. Facultative Methylotrophs from the Human Oral Cavity and Methylotrophy in Strains of Gordonia, Leifsonia, and Microbacterium. Arch. Microbiol. 2011, 193, 407–417. [Google Scholar] [CrossRef]
- Alekseyenko, A.V.; Perez-Perez, G.I.; De Souza, A.; Strober, B.; Gao, Z.; Bihan, M.; Li, K.; Methé, B.A.; Blaser, M.J. Community Differentiation of the Cutaneous Microbiota in Psoriasis. Microbiome 2013, 1, 31. [Google Scholar] [CrossRef] [PubMed]
- Tamana, S.K.; Tun, H.M.; Konya, T.; Chari, R.S.; Field, C.J.; Guttman, D.S.; Becker, A.B.; Moraes, T.J.; Turvey, S.E.; Subbarao, P.; et al. Bacteroides-Dominant Gut Microbiome of Late Infancy Is Associated with Enhanced Neurodevelopment. Gut Microbes 2021, 13, 1930875. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, M.J.; Macfarlane, G.T.; Furrie, E.; Fite, A.; Macfarlane, S. Characterisation of Intestinal Bacteria in Infant Stools Using Real-Time PCR and Northern Hybridisation Analyses. FEMS Microbiol. Ecol. 2005, 54, 77–85. [Google Scholar] [CrossRef]
- Martín, R.; Rios-Covian, D.; Huillet, E.; Auger, S.; Khazaal, S.; Bermúdez-Humarán, L.G.; Sokol, H.; Chatel, J.-M.; Langella, P. Faecalibacterium: A Bacterial Genus with Promising Human Health Applications. FEMS Microbiol. Rev. 2023, 47, fuad039. [Google Scholar] [CrossRef]
- Spreckels, J.E.; Fernández-Pato, A.; Kruk, M.; Kurilshikov, A.; Garmaeva, S.; Sinha, T.; Ghosh, H.; Harmsen, H.; Fu, J.; Gacesa, R.; et al. Analysis of Microbial Composition and Sharing in Low-Biomass Human Milk Samples: A Comparison of DNA Isolation and Sequencing Techniques. ISME Commun. 2023, 3, 116. [Google Scholar] [CrossRef] [PubMed]
- Qi, C.; Tu, H.; Zhou, J.; Tu, R.; Chang, H.; Chen, J.; Hu, H.; Yu, R.; Sun, J. Widespread Vertical Transmission of Secretory Immunoglobulin A Coated Trace Bacterial Variants from the Mother to Infant Gut through Breastfeeding. Food Funct. 2022, 13, 11543–11554. [Google Scholar] [CrossRef] [PubMed]
- Demmelmair, H.; Jiménez, E.; Collado, M.C.; Salminen, S.; McGuire, M.K. Maternal and Perinatal Factors Associated with the Human Milk Microbiome. Curr. Dev. Nutr. 2020, 4, nzaa027. [Google Scholar] [CrossRef]
- Dank, A.; Abee, T.; Smid, E.J. Expanded Metabolic Diversity of Propionibacterium freudenreichii Potentiates Novel Applications in Food Biotechnology. Curr. Opin. Food Sci. 2023, 52, 101048. [Google Scholar] [CrossRef]
- Bäckhed, F.; Roswall, J.; Peng, Y.; Feng, Q.; Jia, H.; Kovatcheva-Datchary, P.; Li, Y.; Xia, Y.; Xie, H.; Zhong, H.; et al. Dynamics and Stabilization of the Human Gut Microbiome during the First Year of Life. Cell Host Microbe 2015, 17, 690–703. [Google Scholar] [CrossRef] [PubMed]
- Corona-Cervantes, K.; García-González, I.; Villalobos-Flores, L.E.; Hernández-Quiroz, F.; Piña-Escobedo, A.; Hoyo-Vadillo, C.; Rangel-Calvillo, M.N.; García-Mena, J. Human Milk Microbiota Associated with Early Colonization of the Neonatal Gut in Mexican Newborns. PeerJ 2020, 8, e9205. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.H.; Vaidya, Y.H.; Patel, R.J.; Pandit, R.J.; Joshi, C.G.; Kunjadiya, A.P. Culture Independent Assessment of Human Milk Microbial Community in Lactational Mastitis. Sci. Rep. 2017, 7, 7804. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Guo, R.; Li, S.; Liang, F.; Tian, C.; Zhao, X.; Long, Y.; Liu, F.; Jiang, M.; Zhang, Y.; et al. Systematic Analysis of Gut Microbiota in Pregnant Women and Its Correlations with Individual Heterogeneity. npj Biofilms Microbiomes 2020, 6, 32. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Mao, B.; Gu, J.; Wu, J.; Cui, S.; Wang, G.; Zhao, J.; Zhang, H.; Chen, W. Blautia—A New Functional Genus with Potential Probiotic Properties? Gut Microbes 2021, 13, 1875796. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Li, Z.; Tye, K.D.; Luo, H.; Tang, X.; Liao, Y.; Wang, D.; Zhou, J.; Yang, P.; Li, Y.; et al. Probiotic Supplementation During Human Pregnancy Affects the Gut Microbiota and Immune Status. Front. Cell. Infect. Microbiol. 2019, 9, 254. [Google Scholar] [CrossRef]
- dos Anjos Borges, L.G.; Pastuschek, J.; Heimann, Y.; Dawczynski, K.; Bergner, M.; Haase, R.; Stubert, J.; Olbertz, D.; Plumeier, I.; Kahl, S.; et al. Vaginal and Neonatal Microbiota in Pregnant Women with Preterm Premature Rupture of Membranes and Consecutive Early Onset Neonatal Sepsis. BMC Med. 2023, 21, 92. [Google Scholar] [CrossRef] [PubMed]
- Singh, V.; Lee, G.; Son, H.; Koh, H.; Kim, E.S.; Unno, T.; Shin, J.-H. Butyrate Producers, “The Sentinel of Gut”: Their Intestinal Significance with and beyond Butyrate, and Prospective Use as Microbial Therapeutics. Front. Microbiol. 2023, 13, 1103836. [Google Scholar] [CrossRef]
- Vuillermin, P.J.; O’Hely, M.; Collier, F.; Allen, K.J.; Tang, M.L.K.; Harrison, L.C.; Carlin, J.B.; Saffery, R.; Ranganathan, S.; Sly, P.D.; et al. Maternal Carriage of Prevotella during Pregnancy Associates with Protection against Food Allergy in the Offspring. Nat. Commun. 2020, 11, 1452. [Google Scholar] [CrossRef] [PubMed]
- Kunasegaran, T.; Balasubramaniam, V.R.M.T.; Arasoo, V.J.T.; Palanisamy, U.D.; Ramadas, A. Diet Gut Microbiota Axis in Pregnancy: A Systematic Review of Recent Evidence. Curr. Nutr. Rep. 2023, 12, 203. [Google Scholar] [CrossRef] [PubMed]
- Ferrocino, I.; Ponzo, V.; Gambino, R.; Zarovska, A.; Leone, F.; Monzeglio, C.; Goitre, I.; Rosato, R.; Romano, A.; Grassi, G.; et al. Changes in the Gut Microbiota Composition during Pregnancy in Patients with Gestational Diabetes Mellitus (GDM). Sci. Rep. 2018, 8, 12216. [Google Scholar] [CrossRef]
- Ma, S.; You, Y.; Huang, L.; Long, S.; Zhang, J.; Guo, C.; Zhang, N.; Wu, X.; Xiao, Y.; Tan, H. Alterations in Gut Microbiota of Gestational Diabetes Patients during the First Trimester of Pregnancy. Front. Cell. Infect. Microbiol. 2020, 10, 58. [Google Scholar] [CrossRef]
- Shen, S.; Liao, Q.; Feng, Y.; Liu, J.; Pan, R.; Lee, S.M.-Y.; Lin, L. Myricanol Mitigates Lipid Accumulation in 3T3-L1 Adipocytes and High Fat Diet-Fed Zebrafish via Activating AMP-Activated Protein Kinase. Food Chem. 2019, 270, 305–314. [Google Scholar] [CrossRef]
- O’Sullivan, A.; Brady, E.; Lafferty, L.; O’Shea, F.; O’Regan, Z.; Meurs, N.; Baldini, M.; Gengatharan, J.; Metallo, C.M.; Wallace, M. Long Chain Monomethyl Branched-Chain Fatty Acid Levels in Human Milk Vary with Gestational Weight Gain. Prostaglandins Leukot. Essent. Fat. Acids 2024, 201, 102607. [Google Scholar] [CrossRef]
- Chester, M.A.; Hallgren, P.; Lundblad, A.; Messeter, L. Urinary Excretion of Oligosaccharides Induced by Galactose Given Orally or Intravenously. Eur. J. Biochem. 1979, 100, 385–392. [Google Scholar] [CrossRef]
- Selvamani, S.; Kapoor, N.; Ajmera, A.; El Enshasy, H.A.; Dailin, D.J.; Sukmawati, D.; Abomoelak, M.; Nurjayadi, M.; Abomoelak, B. Prebiotics in New-Born and Children’s Health. Microorganisms 2023, 11, 2453. [Google Scholar] [CrossRef]
- Ul Haq, M.R. Structure and Production of Casomorphins. In Opioid Food Peptides: Significant Exorphins from Food Sources; Ul Haq, M.R., Ed.; Springer: Singapore, 2020; pp. 21–38. ISBN 9789811561023. [Google Scholar]
- Liu, Y.; Liu, Y.; Liu, Q.; Zhao, J.; Qiao, W.; Liu, B.; Yang, B.; Chen, L. Comparison of Phospholipid Composition and Microstructure of Milk Fat Globules Contained in Human Milk and Infant Formulae. Food Chem. 2023, 415, 135762. [Google Scholar] [CrossRef] [PubMed]
- Sawale, P.D.; Shendurse, A.M.; Mohan, M.S.; Patil, G.R. Isomaltulose (Palatinose)—An Emerging Carbohydrate. Food Biosci. 2017, 18, 46–52. [Google Scholar] [CrossRef]
- Fleddermann, M.; Rauh-Pfeiffer, A.; Demmelmair, H.; Holdt, L.; Teupser, D.; Koletzko, B. Effects of a Follow-On Formula Containing Isomaltulose (PalatinoseTM) on Metabolic Response, Acceptance, Tolerance and Safety in Infants: A Randomized-Controlled Trial. PLoS ONE 2016, 11, e0151614. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Dai, J.; Li, G.; Dai, X. Gambogic Acid Protects LPS-Induced Apoptosis and Inflammation in a Cell Model of Neonatal Pneumonia through the Regulation of TrkA/Akt Signaling Pathway. BMC Pharmacol. Toxicol. 2021, 22, 28. [Google Scholar] [CrossRef] [PubMed]
- King, I.S.C.; Knight, D.W. The Conundrum of Odourless Kahweofuran, a Roasting “Flavour” of Coffee. Tetrahedron 2021, 81, 131871. [Google Scholar] [CrossRef]
- Calvey, E.M.; White, K.D.; Matusik, J.E.; Sha, D.; Block, E. Allium Chemistry: Identification of Organosulfur Compounds in Ramp (Allium tricoccum) Homogenatesfn1. Phytochemistry 1998, 49, 359–364. [Google Scholar] [CrossRef] [PubMed]
- Graf von Armansperg, B.; Koller, F.; Gericke, N.; Hellwig, M.; Jagtap, P.K.A.; Heermann, R.; Hennig, J.; Henle, T.; Lassak, J. Transcriptional Regulation of the Nε-Fructoselysine Metabolism in Escherichia Coli by Global and Substrate-Specific Cues. Mol. Microbiol. 2021, 115, 175–190. [Google Scholar] [CrossRef]
- FooDB. Available online: https://foodb.ca/ (accessed on 20 March 2024).
- Ichihara, A.; Kawagishi, H.; Sasagawa, T.; Sakamura, S. Enzymatic Synthesis of Lappaol B. Agric. Biol. Chem. 1981, 45, 2163–2164. [Google Scholar] [CrossRef]
- Kaga, A.; Ishimoto, M. Genetic Localization of a Bruchid Resistance Gene and Its Relationship to Insecticidal Cyclopeptide Alkaloids, the Vignatic Acids, in Mungbean (Vigna radiata L. Wilczek). Mol. Gen. Genet. 1998, 258, 378–384. [Google Scholar] [CrossRef]
- Cuevas, F.J.; Pereira-Caro, G.; Muñoz-Redondo, J.M.; Ruiz-Moreno, M.J.; Montenegro, J.C.; Moreno-Rojas, J.M. A Holistic Approach to Authenticate Organic Sweet Oranges (Citrus sinensis L. Cv Osbeck) Using Different Techniques and Data Fusion. Food Control 2019, 104, 63–73. [Google Scholar] [CrossRef]
- Mihailova, A.; Kelly, S.D.; Chevallier, O.P.; Elliott, C.T.; Maestroni, B.M.; Cannavan, A. High-Resolution Mass Spectrometry-Based Metabolomics for the Discrimination between Organic and Conventional Crops: A Review. Trends Food Sci. Technol. 2021, 110, 142–154. [Google Scholar] [CrossRef]
- Michael, J.P. Quinoline, Quinazoline and Acridone Alkaloids. Nat. Prod. Rep. 2008, 25, 166–187. [Google Scholar] [CrossRef] [PubMed]
- Ludwig, I.A.; Mena, P.; Calani, L.; Borges, G.; Pereira-Caro, G.; Bresciani, L.; Del Rio, D.; Lean, M.E.J.; Crozier, A. New Insights into the Bioavailability of Red Raspberry Anthocyanins and Ellagitannins. Free Radic. Biol. Med. 2015, 89, 758–769. [Google Scholar] [CrossRef] [PubMed]
- Eisenberg, I.; Avidan, N.; Potikha, T.; Hochner, H.; Chen, M.; Olender, T.; Barash, M.; Shemesh, M.; Sadeh, M.; Grabov-Nardini, G.; et al. The UDP-N-Acetylglucosamine 2-Epimerase/N-Acetylmannosamine Kinase Gene Is Mutated in Recessive Hereditary Inclusion Body Myopathy. Nat. Genet. 2001, 29, 83–87. [Google Scholar] [CrossRef] [PubMed]
- Victor, A.M.; Kelly, A.P. PROCOLLAGEN-LYSINE, 2-OXOGLUTARATE 5-DIOXYGENASE; PLOD1. Available online: https://omim.org/entry/153454#title (accessed on 20 March 2024).
- Human Metabolome Database. Available online: https://hmdb.ca/ (accessed on 20 March 2024).
- Monk, B.J.; Brady, M.F.; Aghajanian, C.; Lankes, H.A.; Rizack, T.; Leach, J.; Fowler, J.M.; Higgins, R.; Hanjani, P.; Morgan, M.; et al. A Phase 2, Randomized, Double-Blind, Placebo- Controlled Study of Chemo-Immunotherapy Combination Using Motolimod with Pegylated Liposomal Doxorubicin in Recurrent or Persistent Ovarian Cancer: A Gynecologic Oncology Group Partners Study. Ann. Oncol. 2017, 28, 996–1004. [Google Scholar] [CrossRef]
- Thorsell, A.; Isin, E.M.; Jurva, U. Use of Electrochemical Oxidation and Model Peptides To Study Nucleophilic Biological Targets of Reactive Metabolites: The Case of Rimonabant. Chem. Res. Toxicol. 2014, 27, 1808–1820. [Google Scholar] [CrossRef] [PubMed]
- Corsini, A.; Grignaffini, P.; Beitz, J.; Mest, H.; Bellosta, S.; Fumagalli, R.; Paoletti, R. Effect of Trapidil Derivative AR 12456 on Intracellular Cholesterol Homeostasis in Human Hepatoma Cell Line Hep G2. Cytotechnology 1993, 11, S15–S17. [Google Scholar] [CrossRef]
- Maneenil, G.; Thatrimontrichai, A.; Janjindamai, W.; Dissaneevate, S. Effect of Bosentan Therapy in Persistent Pulmonary Hypertension of the Newborn. Pediatr. Neonatol. 2018, 59, 58–64. [Google Scholar] [CrossRef] [PubMed]
- Barupal, D.K.; Fiehn, O. Generating the Blood Exposome Database Using a Comprehensive Text Mining and Database Fusion Approach. Environ. Health Perspect. 2019, 127, 097008. [Google Scholar] [CrossRef]
- Murakami, T.; Kohno, K.; Matsuda, H.; Yoshikawa, M. Medicinal Foodstuffs. XXII.1) Structures of Oleanane-Type Triterpene Oligoglycosides, Pisumsaponins I and II, and Kaurane-Type Diterpene Oligoglycosides, Pisumosides A and B, from Green Peas, the Immature Seeds of Pisum sativum L. Chem. Pharm. Bull. 2001, 49, 73–77. [Google Scholar] [CrossRef]
- Ranjbar Sistani, N.; Kaul, H.-P.; Desalegn, G.; Wienkoop, S. Rhizobium Impacts on Seed Productivity, Quality, and Protection of Pisum sativum upon Disease Stress Caused by Didymella Pinodes: Phenotypic, Proteomic, and Metabolomic Traits. Front. Plant Sci. 2017, 8, 294249. [Google Scholar] [CrossRef] [PubMed]
- Quinn, R.A.; Melnik, A.V.; Vrbanac, A.; Fu, T.; Patras, K.A.; Christy, M.P.; Bodai, Z.; Belda-Ferre, P.; Tripathi, A.; Chung, L.K.; et al. Global Chemical Effects of the Microbiome Include New Bile-Acid Conjugations. Nature 2020, 579, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Sanada, S.; Suzuki, T.; Nagata, A.; Hashidume, T.; Yoshikawa, Y.; Miyoshi, N. Intestinal Microbial Metabolite Stercobilin Involvement in the Chronic Inflammation of Ob/Ob Mice. Sci. Rep. 2020, 10, 6479. [Google Scholar] [CrossRef] [PubMed]
Variable | 0 Months | 4 Months | p-Value | |
---|---|---|---|---|
Number of participating mothers (n = 21) | 20 | 11 | --- | |
Age (years) | 31.90 (±7.49) | 34.91 (±6.86) | 0.291 | |
Age range (years) | 16 to 43 | 21 to 43 | --- | |
Average parities | 2.50 (±1.15) | 2.82 (±1.25) | --- | |
COVID vaccine | Yes | 18 (90.0%) | 11 (100.0%) | --- |
No | 2 (10.0%) | 0 (0.00%) | --- | |
COVID test | Positive | 1 (5.00%) | 1 (9.09%) | --- |
Current gestation * | --- | |||
Yes | 2 (10.0%) | 1 (9.09%) | ||
Clindamycin | No | 18 (90.0%) | 10 (90.91%) | --- |
Gestational age (weeks) | 38.60 (±1.11) | 38.75 (±0.90) | 0.792 | |
Weeks range | 35.5 to 40.3 | 37.2 to 40.3 | --- | |
Type parities | Vaginal | 1 (5.0%) | 0 (0.00%) | --- |
Non elective C-section | 19 (95.0%) | 10 (100.00%) | --- | |
Skin-to-skin contact | Yes | 13 (65.00%) | 7 (63.63%) | 0.951 |
Average time (min) | 29.77 (±17.93) | 32.86 (±17.29) | 0.887 | |
No | 7 (35.00%) | 4 (36.36%) | --- | |
Anthropometry * | Height (m) | 1.58 (±0.06) | 1.57 (±0.07) | 0.792 |
Previous weight (kg) | 67.02 (±14.61) | 67.00 (±15.72) | 0.887 | |
Average BMI | 26.76 (±5.01) | 26.88 (±5.01) | 1.000 | |
Under weight (BMI < 18.49) | 1 (5.00%) | 0 (0.00%) | --- | |
Normal weight (BMI 18.5–24.99) | 4 (20.00%) | 4 (36.36%) | --- | |
Overweight (BMI 25.0–29.9) | 10 (50.00%) | 4 (36.36%) | --- | |
Obesity (BMI > 30.0) | 5 (25.00%) | 3 (27.27%) | --- | |
Final weight (kg) | 76.24 (±13.11) | 76.44 (±12.54) | 0.984 | |
Blood test * | Glucose (mg/dL) | 69.90 (±13.11) | 81.87 (±13.80) | 0.032 |
Cholesterol (mg/dL) | 200.0 (±48.38) | 199.18 (±52.04) | 0.951 | |
Triglycerides (mg/dL) | 211.30 (±79.57) | 126.27 (±46.74) | 0.001 | |
HDL (mg/dL) | 51.10 (±14.18) | 50.26 (±15.07) | 0.670 | |
LDL (mg/dL) | 106.64 (±41.71) | 120.47 (±47.07) γ | 0.562 | |
Albumin (g/dL) | 3.04 (±0.54) | 4.53 (±0.23) γ | 0.000 | |
Phosphatase (U/L) | 117.69 (±70.06) | 86.96 (±34.27) β | 0.150 | |
Fe (µg/dL) | 64.29 (±33.61) ζ | 59.54 (±27.99) α | 0.857 | |
HbA1c (%) | 5.18 (±0.53) | 4.91 (±0.40) | 0.169 | |
CRP (mg/L) | 36.99 (±21.74) δ | 2.91 (±2.55) α | 0.000 | |
Electrolytes * | Na (mmol/L) | 135.06 (±3.97) η | 143.54 (±8.64) | 0.000 |
K (mmol/L) | 4.17 (±0.30) | 19.07 (±47.87) | 0.001 | |
Cl (mmol/L) | 111.32 (±3.39) | 111.15 (±5.41) | 0.200 | |
iCa (mmol/L) | 1.18 (±0.06) | 1.21 (±0.08) | 0.455 | |
iMg (mmol/L) | 0.50 (±0.07) η | 0.56 (±0.08) | 0.145 | |
Hormone | Insulin (µU/mL) | 8.43 (±5.69) η | 13.46 (±7.72) β | 0.047 |
Osteocalcin (ng/L) | 302.56 (±182.55) ε | 396.95 (±304.11) α | 0.672 |
Variable | 0 Months | 4 Months | p-Value | |
---|---|---|---|---|
Number of participating infants (n = 25) | 24 | 9 | --- | |
Gestational age (weeks) | 38.47 (±1.16) | 38.51 (±0.76) | 0.953 | |
Type parities | Vaginal | 1 (4.16%) | 0 | --- |
Non elective C-section | 23 (95.83%) | 10 (100.00%) | --- | |
Gender | Male | 10 (41.66%) | 6 (66.66%) | --- |
Female | 14 (58.33%) | 3 (33.33%) | --- | |
Skin-to-skin contact | Yes | 15 (62.50%) | 6 (66.66%) | --- |
Average time (min) | 28.20 (±18.76) η | 32.50 (±19.94) δ | 0.742 | |
No | 9 (37.50%) | 3 (33.33%) | --- | |
Type of feeding | BM | 24 (100.00%) μ | 9 (100.00%) | --- |
Anthropometry | Weight (kg) | 2.96 (±0.93) λ | 7.54 (±0.56) ε | 0.000 |
Height (cm) | 49.83 (±3.20) κ | 68.40 (±3.73) ε | 0.000 | |
Fat (%) | 8.19 (±7.26) ζ | 91.81 (±7.26) γ | 0.219 | |
Fat-free mass (%) | 13.52 (±9.60) ζ | 86.48 (±9.60) γ | 0.219 | |
Circumferences | Head circumference | 35.29 (±4.32) κ | 42.90 (±1.13) ε | 0.000 |
Abdominal circumference | 29.88 (±3.32) ι | 42.11 (±1.59) ε | 0.000 | |
Upper arm circumference | 9.59 (±2.54) ι | 13.88 (±1.46) ε | 0.000 | |
Femur circumference | 12.36 (±1.81) θ | 23.80 (±1.81) ε | 0.000 | |
Skinfolds | Triceps skinfold | 0.61 (±0.88) ι | 8.0 (±1.77) ε | 0.000 |
Subscapular skinfold | 0.55 (±0.64) ι | 7.75 (±4.03) ε | 0.000 | |
Blood test | Glucose (mg/dL) | 57.55 (±12.19) ξ | 74.67 (±5.64) β | 0.012 |
Cholesterol (mg/dL) | 61.70 (±17.46) ξ | 137.67 (±6.11) β | 0.001 | |
Triglycerides (mg/dL) | 33.87 (±29.89) ξ | 148.67 (±52.79) β | 0.003 | |
HDL (mg/dL) | 27.81 (±6.53) ξ | 39.96 (±10.98) β | 0.078 | |
LDL (mg/dL) | 27.04 (±10.63) ξ | 67.97 (±4.66) β | 0.001 | |
Albumin (g/dL) | 3.57 (±0.32) ξ | 4.55 (±0.18) β | 0.001 | |
Phosphatase (U/L) | 143.71 (±59.45) ξ | 215.37 (±84.04) β | 0.134 | |
Fe (µg/dL) | 154.20 (±34.50) ξ | 62.10 (±7.21) β | 0.001 | |
CRP (mg/L) | 0.62 (±0.99) κ | 0.10 (±0.05) | 0.125 | |
Po3 (mg/dL) | 6 (±1.17) ξ | 6.3 (±1.71) β | 0.395 | |
BUN (mg/dL) | 11.35 (±3.01) ξ | 7.57 (±2.95) β | 0.064 | |
Urea (mg/dL) | 24.30 (±6.45) ξ | nd | --- | |
Electrolytes | Na (mmol/L) | 130.63 (±5.31) ν | 143.23 (±7.05) β | 0.006 |
K (mmol/L) | 10.19 (±4.19) ν | 4.85 (±0.46) β | 0.003 | |
Cl (mmol/L) | 111.03 (±3.30) ν | 112.53 (±5.58) β | 0.844 | |
iCa (mmol/L) | 1.11 (±0.36) ν | 1.28 (±0.08) β | 0.497 | |
iMg (mmol/L) | 0.58 (±0.29) λ | 0.61 (±0.10) β | 0.166 | |
Hormone | Insulin (µU/mL) | 4.68 (±2.71) μ | nd | --- |
Osteocalcin (ng/L) | 402.97 (±239.98) θ | 238.80 (±130.01) ξ | 0.211 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vélez-Ixta, J.M.; Juárez-Castelán, C.J.; Ramírez-Sánchez, D.; Lázaro-Pérez, N.d.S.; Castro-Arellano, J.J.; Romero-Maldonado, S.; Rico-Arzate, E.; Hoyo-Vadillo, C.; Salgado-Mancilla, M.; Gómez-Cruz, C.Y.; et al. Post Natal Microbial and Metabolite Transmission: The Path from Mother to Infant. Nutrients 2024, 16, 1990. https://doi.org/10.3390/nu16131990
Vélez-Ixta JM, Juárez-Castelán CJ, Ramírez-Sánchez D, Lázaro-Pérez NdS, Castro-Arellano JJ, Romero-Maldonado S, Rico-Arzate E, Hoyo-Vadillo C, Salgado-Mancilla M, Gómez-Cruz CY, et al. Post Natal Microbial and Metabolite Transmission: The Path from Mother to Infant. Nutrients. 2024; 16(13):1990. https://doi.org/10.3390/nu16131990
Chicago/Turabian StyleVélez-Ixta, Juan Manuel, Carmen Josefina Juárez-Castelán, Daniela Ramírez-Sánchez, Noemí del Socorro Lázaro-Pérez, José Javier Castro-Arellano, Silvia Romero-Maldonado, Enrique Rico-Arzate, Carlos Hoyo-Vadillo, Marisol Salgado-Mancilla, Carlos Yamel Gómez-Cruz, and et al. 2024. "Post Natal Microbial and Metabolite Transmission: The Path from Mother to Infant" Nutrients 16, no. 13: 1990. https://doi.org/10.3390/nu16131990
APA StyleVélez-Ixta, J. M., Juárez-Castelán, C. J., Ramírez-Sánchez, D., Lázaro-Pérez, N. d. S., Castro-Arellano, J. J., Romero-Maldonado, S., Rico-Arzate, E., Hoyo-Vadillo, C., Salgado-Mancilla, M., Gómez-Cruz, C. Y., Krishnakumar, A., Piña-Escobedo, A., Benitez-Guerrero, T., Pizano-Zárate, M. L., Cruz-Narváez, Y., & García-Mena, J. (2024). Post Natal Microbial and Metabolite Transmission: The Path from Mother to Infant. Nutrients, 16(13), 1990. https://doi.org/10.3390/nu16131990