Timut Pepper Extract Slows Age-Dependent Decline of Mobility and Collagen Loss and Promotes Longevity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Extract Preparation
2.2. Agar Media and Compound Solutions Preparation for Healthspan Assays
2.3. Assessment of Compatibility with Agar, Escherichia coli Growth, and C. elegans Population Growth
2.4. Assessment of Speed and Distance Moved
- Day −4: Adult temperature-sensitive C. elegans of the strain SS104 (SS104 glp-4(bn2)) from unstarved cultures were set up to lay eggs overnight at 15 °C on 9 cm Petri dishes.
- Day −2: Gravid C. elegans were removed. Then, 3.5 cm dishes with formulations were poured as specified above and left to solidify. E. coli OP50 were then added to the center of the Petri dishes (50 µL of culture in LB broth) and allowed to dry (room temperature (RT), 20 °C).
- Day −1: Petri dishes were shifted to 24 °C and C. elegans were shifted to 24 °C to induce sterility.
- Day 0: 12 L4 (fourth larval stage) C. elegans were picked for each experimental plate. Plates were loaded onto the WormgazerTM. Run was started.
- Day 1: First day of adulthood.
- Day 7: Run was terminated, and Petri dishes were removed and inspected manually for any deviations.
2.5. Imaging Data Collection for Movement Assays
2.6. Lifespan Analysis
2.7. Collagen Expression Assay
3. Results
3.1. Timut Pepper Extract Extends C. elegans’ Lifespan
3.2. Timut Pepper Extract Increases the Proportion of Worms That Are Active
3.3. Timut Pepper Extract Enhances the Speed and Distance Moved of Worms, Including as They Age
3.4. Timut Pepper Extract Induces col-144 Expression
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ruckstuhl, M.M.; Bischof, E.; Blatch, D.; Buhayer, A.; Goldhahn, J.; Battegay, E.; Tichelli, A.; Ewald, C.Y. Translational longevity medicine: A Swiss perspective in an ageing country. Swiss Med. Wkly. 2023, 153, 40088. [Google Scholar] [CrossRef] [PubMed]
- Alam, F.; Us Saqib, Q.N. Evaluation of Zanthoxylum armatum Roxb for in vitro biological activities. J. Tradit. Complement. Med. 2017, 7, 515–518. [Google Scholar] [CrossRef]
- Garmany, A.; Yamada, S.; Terzic, A. Longevity leap: Mind the healthspan gap. NPJ Regen. Med. 2021, 6, 57. [Google Scholar] [CrossRef] [PubMed]
- Davinelli, S.; Willcox, D.C.; Scapagnini, G. Extending healthy ageing: Nutrient sensitive pathway and centenarian population. Immun. Ageing 2012, 9, 9. [Google Scholar] [CrossRef]
- Sharma, A.; Chabloz, S.; Lapides, R.A.; Roider, E.; Ewald, C.Y. Potential Synergistic Supplementation of NAD+ Promoting Compounds as a Strategy for Increasing Healthspan. Nutrients 2023, 15, 445. [Google Scholar] [CrossRef]
- Ewald, C.Y. Drug Screening Implicates Chondroitin Sulfate as a Potential Longevity Pill. Front. Aging 2021, 2, 741843. [Google Scholar] [CrossRef] [PubMed]
- Willcox, D.C.; Willcox, B.J.; Todoriki, H.; Suzuki, M. The Okinawan diet: Health implications of a low-calorie, nutrient-dense, antioxidant-rich dietary pattern low in glycemic load. J. Am. Coll. Nutr. 2009, 28 (Suppl. 4), 500S–516S. [Google Scholar] [CrossRef]
- Koo, J.Y.; Jang, Y.; Cho, H.; Lee, C.H.; Jang, K.H.; Chang, Y.H.; Shin, J.; Oh, U. Hydroxy-alpha-sanshool activates TRPV1 and TRPA1 in sensory neurons. Eur. J. Neurosci. 2007, 26, 1139–1147. [Google Scholar] [CrossRef]
- Mukhtar, H.M.; Kalsi, V. A review on medicinal properties of Zanthoxylum armatum DC. Res. J. Pharm. Technol. 2018, 11, 2131–2138. [Google Scholar] [CrossRef]
- Phuyal, N.; Jha, P.K.; Prasad Raturi, P.; Rajbhandary, S. Zanthoxylum armatum DC.: Current knowledge, gaps and opportunities in Nepal. J. Ethnopharmacol. 2019, 229, 326–341. [Google Scholar] [CrossRef]
- Zhang, D.; Sun, X.; Battino, M.; Wei, X.; Shi, J.; Zhao, L.; Liu, S.; Xiao, J.; Shi, B.; Zou, X. A comparative overview on chili pepper (capsicum genus) and sichuan pepper (zanthoxylum genus): From pungent spices to pharma-foods. Trends Food Sci. Technol. 2021, 117, 148–162. [Google Scholar] [CrossRef]
- Hong, L.; Jing, W.; Qing, W.; Anxiang, S.; Mei, X.; Qin, L.; Qiuhui, H. Inhibitory effect of Zanthoxylum bungeanum essential oil (ZBEO) on Escherichia coli and intestinal dysfunction. Food Funct. 2017, 8, 1569–1576. [Google Scholar] [CrossRef]
- Zhang, Z.; Shen, P.; Liu, J.; Gu, C.; Lu, X.; Li, Y.; Cao, Y.; Liu, B.; Fu, Y.; Zhang, N. In Vivo Study of the Efficacy of the Essential Oil of Zanthoxylum bungeanum Pericarp in Dextran Sulfate Sodium-Induced Murine Experimental Colitis. J. Agric. Food Chem. 2017, 65, 3311–3319. [Google Scholar] [CrossRef]
- Shi, S.; Liang, D.; Chen, Y.; Xie, Y.; Wang, Y.; Wang, L.; Wang, Z.; Qiao, Z. Gx-50 reduces beta-amyloid-induced TNF-alpha, IL-1beta, NO, and PGE2 expression and inhibits NF-kappaB signaling in a mouse model of Alzheimer's disease. Eur. J. Immunol. 2016, 46, 665–676. [Google Scholar] [CrossRef] [PubMed]
- Tang, M.; Wang, Z.; Zhou, Y.; Xu, W.; Li, S.; Wang, L.; Wei, D.; Qiao, Z. A novel drug candidate for Alzheimer's disease treatment: Gx-50 derived from Zanthoxylum bungeanum. J. Alzheimers Dis. 2013, 34, 203–213. [Google Scholar] [CrossRef] [PubMed]
- Tang, M.; Shi, S.; Guo, Y.; Xu, W.; Wang, L.; Chen, Y.; Wang, Z.; Qiao, Z. GSK-3/CREB pathway involved in the gx-50's effect on Alzheimer's disease. Neuropharmacology 2014, 81, 256–266. [Google Scholar] [CrossRef] [PubMed]
- Deng, S.; Rong, H.; Tu, H.; Zheng, B.; Mu, X.; Zhu, L.; Zhou, X.; Peng, W.; Wu, M.; Zhang, E.; et al. Molecular basis of neurophysiological and antioxidant roles of Szechuan pepper. Biomed. Pharmacother. 2019, 112, 108696. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Gao, X.; Zhen, K.S.; Yin, Z.Y.; Zheng, X.X. Extract of Zanthoxylum bungeanum maxim seed oil reduces hyperlipidemia in hamsters fed high-fat diet via activation of peroxisome proliferator-activated receptor γ. Trop. J. Pharm. Res. 2014, 13, 1837–1843. [Google Scholar] [CrossRef]
- Singh, T.P.; Singh, O.M. Phytochemical and Pharmacological Profile of Zanthoxylum Armatum DC.-an Overview; NISCAIR-CSIR: Delhi, India, 2011. [Google Scholar]
- Paul, A.; Kumar, A.; Singh, G.; Choudhary, A. Medicinal, pharmaceutical and pharmacological properties of Zanthoxylum armatum: A Review. J. Pharmacogn. Phytochem. 2018, 7, 892–900. [Google Scholar]
- Venkatachalam, S.; Hassrajani, S.; Rane, S.; Mamdapur, V. cis-10-Octadecenoic acid, component of Zanthoxylum alatum seed oil. Indian J. Chem. 1996, 35, 514–517. [Google Scholar]
- Bose, S.K.; Dewanjee, S.; Sahu, R.; Dey, S.P. Effect of bergapten from Heracleum nepalense root on production of proinflammatory cytokines. Nat. Prod. Res. 2011, 25, 1444–1449. [Google Scholar] [CrossRef]
- Peana, A.T.; D'Aquila, P.S.; Panin, F.; Serra, G.; Pippia, P.; Moretti, M.D. Anti-inflammatory activity of linalool and linalyl acetate constituents of essential oils. Phytomedicine 2002, 9, 721–726. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.; Rahman, M.; Islam, M. Antibacterial, antifungal and cytotoxic activities of 3, 5-diacetyltambulin isolated from Amorphophallus campanulatus Blume ex. Decne. Daru J. Pharm. Sci. 2008, 16, 239–244. [Google Scholar]
- Consortium, C.e.S. Genome sequence of the nematode C. elegans: A platform for investigating biology. Science 1998, 282, 2012–2018. [Google Scholar] [CrossRef]
- Lai, C.H.; Chou, C.Y.; Ch'ang, L.Y.; Liu, C.S.; Lin, W. Identification of novel human genes evolutionarily conserved in Caenorhabditis elegans by comparative proteomics. Genome Res. 2000, 10, 703–713. [Google Scholar] [CrossRef]
- Maynard, C.; Cummins, I.; Green, J.; Weinkove, D. A bacterial route for folic acid supplementation. BMC Biol. 2018, 16, 67. [Google Scholar] [CrossRef]
- Virk, B.; Correia, G.; Dixon, D.P.; Feyst, I.; Jia, J.; Oberleitner, N.; Briggs, Z.; Hodge, E.; Edwards, R.; Ward, J.; et al. Excessive folate synthesis limits lifespan in the C. elegans: E. coli aging model. BMC Biol. 2012, 10, 67. [Google Scholar] [CrossRef]
- Liu, S.; Saul, N.; Pan, B.; Menzel, R.; Steinberg, C.E. The non-target organism Caenorhabditis elegans withstands the impact of sulfamethoxazole. Chemosphere 2013, 93, 2373–2380. [Google Scholar] [CrossRef]
- Zavagno, G.; Raimundo, A.; Kirby, A.; Saunter, C.; Weinkove, D. Rapid measurement of ageing by automated monitoring of movement of C. elegans populations. Geroscience 2024, 46, 2281–2293. [Google Scholar] [CrossRef]
- Statzer, C.; Reichert, P.; Dual, J.; Ewald, C.Y. Longevity interventions temporally scale healthspan in Caenorhabditis elegans. iScience 2022, 25, 103983. [Google Scholar] [CrossRef]
- Statzer, C.; Jongsma, E.; Liu, S.X.; Dakhovnik, A.; Wandrey, F.; Mozharovskyi, P.; Zulli, F.; Ewald, C.Y. Youthful and age-related matreotypes predict drugs promoting longevity. Aging Cell 2021, 20, e13441. [Google Scholar] [CrossRef]
- Newell Stamper, B.L.; Cypser, J.R.; Kechris, K.; Kitzenberg, D.A.; Tedesco, P.M.; Johnson, T.E. Movement decline across lifespan of Caenorhabditis elegans mutants in the insulin/insulin-like signaling pathway. Aging Cell 2018, 17, e12704. [Google Scholar] [CrossRef]
- Ewald, C.Y. The Matrisome during Aging and Longevity: A Systems-Level Approach toward Defining Matreotypes Promoting Healthy Aging. Gerontology 2020, 66, 266–274. [Google Scholar] [CrossRef]
- Teuscher, A.C.; Statzer, C.; Goyala, A.; Domenig, S.A.; Schoen, I.; Hess, M.; Hofer, A.M.; Fossati, A.; Vogel, V.; Goksel, O.; et al. Longevity interventions modulate mechanotransduction and extracellular matrix homeostasis in C. elegans. Nat. Commun. 2024, 15, 276. [Google Scholar] [CrossRef]
- Hahm, J.H.; Kim, S.; DiLoreto, R.; Shi, C.; Lee, S.J.; Murphy, C.T.; Nam, H.G.C. elegans maximum velocity correlates with healthspan and is maintained in worms with an insulin receptor mutation. Nat. Commun. 2015, 6, 8919. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, B.; Lei, H.; Feng, Z.; Liu, J.; Hsu, A.L.; Xu, X.Z. Functional aging in the nervous system contributes to age-dependent motor activity decline in C. elegans. Cell Metab. 2013, 18, 392–402. [Google Scholar] [CrossRef]
- Buckingham, S.D.; Sattelle, D.B. Fast, automated measurement of nematode swimming (thrashing) without morphometry. BMC Neurosci. 2009, 10, 84. [Google Scholar] [CrossRef]
- Queiros, L.; Marques, C.; Pereira, J.L.; Goncalves, F.J.M.; Aschner, M.; Pereira, P. Overview of Chemotaxis Behavior Assays in Caenorhabditis elegans. Curr. Protoc. 2021, 1, e120. [Google Scholar] [CrossRef]
- Fortier, M.; Castellano, C.A.; Croteau, E.; Langlois, F.; Bocti, C.; St-Pierre, V.; Vandenberghe, C.; Bernier, M.; Roy, M.; Descoteaux, M.; et al. A ketogenic drink improves brain energy and some measures of cognition in mild cognitive impairment. Alzheimers Dement. 2019, 15, 625–634. [Google Scholar] [CrossRef]
- Chen, X.; Yauk, Y.-K.; Nieuwenhuizen, N.J.; Matich, A.J.; Wang, M.Y.; Perez, R.L.; Atkinson, R.G.; Beuning, L.L. Characterisation of an (S)-linalool synthase from kiwifruit (Actinidia arguta) that catalyses the first committed step in the production of floral lilac compounds. Funct. Plant Biol. 2010, 37, 232–243. [Google Scholar] [CrossRef]
- Milanos, S.; Elsharif, S.A.; Janzen, D.; Buettner, A.; Villmann, C. Metabolic Products of Linalool and Modulation of GABA(A) Receptors. Front. Chem. 2017, 5, 46. [Google Scholar] [CrossRef]
- Belsito, D.; Bickers, D.; Bruze, M.; Calow, P.; Greim, H.; Hanifin, J.M.; Rogers, A.E.; Saurat, J.H.; Sipes, I.G.; Tagami, H. A safety assessment of non-cyclic alcohols with unsaturated branched chain when used as fragrance ingredients: The RIFM expert panel. Food Chem. Toxicol. 2010, 48 (Suppl. 3), S1–S42. [Google Scholar] [CrossRef]
- Rayff da Silva, P.; Diniz NunesPazos, N.; Karla Silva do Nascimento Gonzaga, T.; Cabral de Andrade, J.; Brito Monteiro, A.; Caroline Ribeiro Portela, A.; Fernandes Oliveira Pires, H.; Dos Santos Maia, M.; Vilar da Fonseca, D.; T Scotti, M.; et al. Anxiolytic and Antidepressant-like Effects of Monoterpene Tetrahydrolinalool and In silico Approach of new Potential Targets. Curr. Top. Med. Chem. 2022, 22, 1530–1552. [Google Scholar] [CrossRef]
- Sabogal-Guaqueta, A.M.; Osorio, E.; Cardona-Gomez, G.P. Linalool reverses neuropathological and behavioral impairments in old triple transgenic Alzheimer's mice. Neuropharmacology 2016, 102, 111–120. [Google Scholar] [CrossRef]
- Xu, P.; Wang, K.; Lu, C.; Dong, L.; Gao, L.; Yan, M.; Aibai, S.; Yang, Y.; Liu, X. The Protective Effect of Lavender Essential Oil and Its Main Component Linalool against the Cognitive Deficits Induced by D-Galactose and Aluminum Trichloride in Mice. Evid. Based Complement. Alternat Med. 2017, 2017, 7426538. [Google Scholar] [CrossRef]
- Weston-Green, K.; Clunas, H.; Jimenez Naranjo, C. A Review of the Potential Use of Pinene and Linalool as Terpene-Based Medicines for Brain Health: Discovering Novel Therapeutics in the Flavours and Fragrances of Cannabis. Front. Psychiatry 2021, 12, 583211. [Google Scholar] [CrossRef]
- Prasanth, D.S.; Shadakshara, M.K.; Ahmad, S.F.; Seemaladinne, R.; Rudrapal, M.; Pasala, P.K. Citronellal as a Promising Candidate for Alzheimer’s Disease Treatment: A Comprehensive Study on In Silico and In Vivo Anti-Acetylcholine Esterase Activity. Metabolites 2023, 13, 1133. [Google Scholar] [CrossRef]
- Yamada, Y. Neurological activities of linalool and other fragrant compounds. In Advances in Chemistry Research; Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2017. [Google Scholar]
- Devkota, K.P.; Wilson, J.; Henrich, C.J.; McMahon, J.B.; Reilly, K.M.; Beutler, J.A. Isobutylhydroxyamides from the pericarp of Nepalese Zanthoxylum armatum inhibit NF1-defective tumor cell line growth. J. Nat. Prod. 2013, 76, 59–63. [Google Scholar] [CrossRef]
- Ho, K.W.; Ward, N.J.; Calkins, D.J. TRPV1: A stress response protein in the central nervous system. Am. J. Neurodegener. Dis. 2012, 1, 1–14. [Google Scholar]
- Bautista, D.M.; Sigal, Y.M.; Milstein, A.D.; Garrison, J.L.; Zorn, J.A.; Tsuruda, P.R.; Nicoll, R.A.; Julius, D. Pungent agents from Szechuan peppers excite sensory neurons by inhibiting two-pore potassium channels. Nat. Neurosci. 2008, 11, 772–779. [Google Scholar] [CrossRef]
- Kennedy, D.; Wightman, E.; Khan, J.; Grothe, T.; Jackson, P. The Acute and Chronic Cognitive and Cerebral Blood-Flow Effects of Nepalese Pepper (Zanthoxylum armatum DC.) Extract-A Randomized, Double-Blind, Placebo-Controlled Study in Healthy Humans. Nutrients 2019, 11, 3022. [Google Scholar] [CrossRef] [PubMed]
- Ye, X.; Linton, J.M.; Schork, N.J.; Buck, L.B.; Petrascheck, M. A pharmacological network for lifespan extension in Caenorhabditis elegans. Aging Cell 2014, 13, 206–215. [Google Scholar] [CrossRef] [PubMed]
- Jin, M.; Cai, S.Q. Mechanisms Underlying Brain Aging Under Normal and Pathological Conditions. Neurosci. Bull. 2023, 39, 303–314. [Google Scholar] [CrossRef]
- Jia, J.; Zhao, T.; Liu, Z.; Liang, Y.; Li, F.; Li, Y.; Liu, W.; Li, F.; Shi, S.; Zhou, C.; et al. Association between healthy lifestyle and memory decline in older adults: 10 year, population based, prospective cohort study. BMJ 2023, 380, e072691. [Google Scholar] [CrossRef]
- Indahlastari, A.; Woods, A.J. Neurotransmitter in the Aging Brain. In Encyclopedia of Gerontology and Population Aging; Springer: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jongsma, E.; Grigolon, G.; Baumann, J.; Weinkove, D.; Ewald, C.Y.; Wandrey, F.; Grothe, T. Timut Pepper Extract Slows Age-Dependent Decline of Mobility and Collagen Loss and Promotes Longevity. Nutrients 2024, 16, 2122. https://doi.org/10.3390/nu16132122
Jongsma E, Grigolon G, Baumann J, Weinkove D, Ewald CY, Wandrey F, Grothe T. Timut Pepper Extract Slows Age-Dependent Decline of Mobility and Collagen Loss and Promotes Longevity. Nutrients. 2024; 16(13):2122. https://doi.org/10.3390/nu16132122
Chicago/Turabian StyleJongsma, Elisabeth, Giovanna Grigolon, Julia Baumann, David Weinkove, Collin Y. Ewald, Franziska Wandrey, and Torsten Grothe. 2024. "Timut Pepper Extract Slows Age-Dependent Decline of Mobility and Collagen Loss and Promotes Longevity" Nutrients 16, no. 13: 2122. https://doi.org/10.3390/nu16132122
APA StyleJongsma, E., Grigolon, G., Baumann, J., Weinkove, D., Ewald, C. Y., Wandrey, F., & Grothe, T. (2024). Timut Pepper Extract Slows Age-Dependent Decline of Mobility and Collagen Loss and Promotes Longevity. Nutrients, 16(13), 2122. https://doi.org/10.3390/nu16132122