Assessing Carbohydrate Counting Accuracy: Current Limitations and Future Directions
Abstract
:1. Introduction
2. The Role of Carbohydrate Counting on Glycemic Control in Patients with T1DM
2.1. Carbohydrate Counting and Glycemic Control in Children and Adolescents
2.2. Carbohydrate Counting and Glycemic Control in Adults
3. Nutritional Education and Carbohydrate Counting Tools
3.1. The Importance of Patients’ Nutritional Literacy
3.2. Tools and Methods Used to Assist Patients in Carbohydrate Counting
4. Assessing the Accuracy of Carbohydrate Counting Estimations
Tools and Methods Used in Carbohydrate Counting Assessment
5. Discussion
5.1. Current Limitations
5.2. Future Directions
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- IDF Diabetes Atlas, 10th ed.; International Diabetes Federation: Brussels, Belgium, 2021.
- American Diabetes Association. Defining and Reporting Hypoglycemia in Diabetes. Diabetes Care 2005, 28, 1245–1249. [Google Scholar] [CrossRef] [PubMed]
- Ratner, R.E. Hypoglycemia: New Definitions and Regulatory Implications. Diabetes Technol. Ther. 2018, 20, S250–S253. [Google Scholar] [CrossRef] [PubMed]
- Shafiee, G.; Mohajeri-Tehrani, M.; Pajouhi, M.; Larijani, B. The importance of hypoglycemia in diabetic patients. J. Diabetes Metab. Disord. 2012, 11, 17. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes Association. Diagnosis and Classification of Diabetes Mellitus. Diabetes Care 2014, 37, S81–S90. [Google Scholar] [CrossRef] [PubMed]
- Reiterer, F.; Freckmann, G. Advanced carbohydrate counting: An engineering perspective. Annu. Rev. Control 2019, 48, 401–422. [Google Scholar] [CrossRef]
- Morrish, N.J.; Wang, S.L.; Stevens, L.K.; Fuller, J.H.; Keen, H. Mortality and causes of death in the WHO multinational study of vascular disease in diabetes. Diabetologia 2001, 44, S14–S21. [Google Scholar] [CrossRef] [PubMed]
- Viigimaa, M.; Sachinidis, A.; Toumpourleka, M.; Koutsampasopoulos, K.; Alliksoo, S.; Titma, T. Macrovascular Complications of Type 2 Diabetes Mellitus. Curr. Vasc. Pharmacol. 2020, 18, 110–116. [Google Scholar] [CrossRef] [PubMed]
- Bertachi, A.; Ramkissoon, C.M.; Bondia, J.; Vehí, J. Automated blood glucose control in type 1 diabetes: A review of progress and challenges. Endocrinol. Diabetes Nutr. (Engl. Ed.) 2018, 65, 172–181. [Google Scholar] [PubMed]
- Laurenzi, A.; Bolla, A.M.; Panigoni, G.; Doria, V.; Uccellatore, A.; Peretti, E.; Saibene, A.; Galimberti, G.; Bosi, E.; Scavini, M. Effects of carbohydrate counting on glucose control and quality of life over 24 weeks in adult patients with type 1 diabetes on continuous subcutaneous insulin infusion: A randomized, prospective clinical trial (GIOCAR). Diabetes Care 2011, 34, 823–827. [Google Scholar] [CrossRef]
- Bell, K.J.; Smart, C.E.; Steil, G.M.; Brand-Miller, J.C.; King, B.; Wolpert, H.A. Impact of fat, protein, and glycemic index on postprandial glucose control in type 1 diabetes: Implications for intensive diabetes management in the continuous glucose monitoring era. Diabetes Care 2015, 38, 1008–1015. [Google Scholar] [CrossRef]
- Brazeau, A.S.; Mircescu, H.; Desjardins, K.; Leroux, C.; Strychar, I.; Ekoé, J.M.; Rabasa-Lhoret, R. Carbohydrate counting accuracy and blood glucose variability in adults with type 1 diabetes. Diabetes Res. Clin. Pract. 2013, 99, 19–23. [Google Scholar] [CrossRef]
- Kawamura, T.; Takamura, C.; Hirose, M.; Hashimoto, T.; Higashide, T.; Kashihara, Y.; Hashimura, K.; Shintaku, H. The factors affecting on estimation of carbohydrate content of meals in carbohydrate counting. Clin. Pediatr. Endocrinol. 2015, 24, 153–165. [Google Scholar] [CrossRef]
- Robart, E.; Giovannini-Chami, L.; Savoldelli, C.; Baechler-Sadoul, E.; Gastaud, F.; Tran, A.; Chevalier, N.; Hoflack, M. Variation of carbohydrate intake in diabetic children on carbohydrate counting. Diabetes Res. Clin. Pract. 2019, 150, 227–235. [Google Scholar] [CrossRef] [PubMed]
- Abreu, C.; Miranda, F.; Felgueiras, P. An adaptive mealtime bolus calculator to minimize the effects of inaccurate carbohydrate counting. In Proceedings of the International Conference of Numerical Analysis and Applied Mathematics (ICNAAM 2018), Rhodes, Greece, 13–18 September 2018; Volume 2116, p. 250011. [Google Scholar] [CrossRef]
- Bruttomesso, D.; Pianta, A.; Crazzolara, D.; Capparotto, C.; Dainese, E.; Zurlo, C.; Minicuci, N.; Briani, G.; Tiengo, A. Teaching and training programme on carbohydrate counting in Type 1 diabetic patients. Diabetes Nutr. Metab. 2001, 14, 259–267. [Google Scholar] [PubMed]
- Ulahannan, T.J.; Ross, W.; Davies, F.C. Carbohydrate counting in type 1 diabetes: Time to REACCT. Pract. Diabetes Int. 2007, 24, 134–136. [Google Scholar] [CrossRef]
- Donzeau, A.; Bonnemaison, E.; Vautier, V.; Menut, V.; Houdon, L.; Bendelac, N.; Bismuth, E.; Bouhours-Nouet, N.; Quemener, E.; Baron, S.; et al. Effects of advanced carbohydrate counting on glucose control and quality of life in children with type 1 diabetes. Pediatr. Diabetes 2020, 21, 1240–1248. [Google Scholar] [CrossRef]
- De Albuquerque, I.Z.; Stringhini, M.L.F.; De Morais Borges Marques, R.; Mundim, C.A.; Rodrigues, M.L.D.; Campos, M.R.H. Contagem de carboidratos, estado nutricional e perfil metabólico em adolescentes com diabetes mellitus tipo 1. Sci. Med. 2014, 24, 343–352. [Google Scholar] [CrossRef]
- Smiraglia, M.; Grancini, V.; Lunati, M.E.; Palmieri, E.; Resi, V.; Orsi, E. Effectiveness of carbohydrate counting on glycemic control and healthy dietary lifestyle in T1DM patients. G. Ital. Diabetol. Metab. 2016, 36, 15–21. [Google Scholar]
- Spiegel, G.; Bortsov, A.; Bishop, F.K.; Owen, D.; Klingensmith, G.J.; Mayer-Davis, E.J.; Maahs, D.M. Randomized Nutrition Education Intervention to Improve Carbohydrate Counting in Adolescents with Type 1 Diabetes Study: Is More Intensive Education Needed? J. Acad. Nutr. Diet. 2012, 112, 1736–1746. [Google Scholar] [CrossRef]
- Abreu, C.; Miranda, F.; Felgueiras, P. Carbohydrate counting: How accurate should it be to achieve glycemic control in patients on intensive insulin regimens? In Proceedings of the International Conference of Numerical Analysis and Applied Mathematics (ICNAAM 2018), Rhodes, Greece, 13–18 September 2018; Volume 2116, p. 250009. [Google Scholar]
- Higgins, J.; Thomas, J.; Chandler, J.; Cumpston, M.; Li, T.; Page, M.; Welch, V. (Eds.) Cochrane Handbook for Systematic Reviews of Interventions; Version 6.2; John Wiley & Sons: Hoboken, NJ, USA, 2021; Available online: https://training.cochrane.org/handbook (accessed on 4 July 2024).
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372. [Google Scholar] [CrossRef]
- Chamberlain, J.J.; Kalyani, R.R.; Leal, S.; Rhinehart, A.S.; Shubrook, J.H.; Skolnik, N.; Herman, W.H. Treatment of Type 1 Diabetes: Synopsis of the 2017 American Diabetes Association Standards of Medical Care in Diabetes. Ann. Intern. Med. 2017, 167, 493–498. [Google Scholar] [CrossRef]
- Holt, R.I.G.; DeVries, J.H.; Hess-Fischl, A.; Hirsch, I.B.; Kirkman, M.S.; Klupa, T.; Ludwig, B.; Nørgaard, K.; Pettus, J.; Renard, E.; et al. The management of type 1 diabetes in adults. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia 2021, 64, 2609–2652. [Google Scholar] [CrossRef]
- Dyson, P.A.; Twenefour, D.; Breen, C.; Duncan, A.; Elvin, E.; Goff, L.; Hill, A.; Kalsi, P.; Marsland, N.; McArdle, P.; et al. Diabetes UK evidence-based nutrition guidelines for the prevention and management of diabetes. Diabet. Med. 2018, 35, 541–547. [Google Scholar] [CrossRef]
- Anderson, E.J.; Delahanty, L.; Richardson, M.; Castle, G.; Cercone, S.; Lyon, R.; Mueller, D.; Snetselaar, L. Nutrition interventions for intensive therapy in the diabetes control and complications trial. J. Am. Diet. Assoc. 1993, 93, 768–772. [Google Scholar] [CrossRef]
- Nathan, D.M.; DCCT/EDIC Research Group. The Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Study at 30 Years: Overview. Diabetes Care 2014, 37, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Miranda, F.; Abreu, C.; Felgueiras, P. Assessing the impact of inaccurate insulin-to-carbohydrate ratio on the patient’s glycemic targets and lifestyle management. In Proceedings of the International Conference of Numerical Analysis and Applied Mathematics ICNAAM, Rhodes, Greece, 23–28 September 2019. [Google Scholar]
- Fonseca, F.; Fernando, P.; Albuquerque, I.; Afonso, M.J.; Baptista, N.; Túbal, V. Manual de Contagem de Hidratos de Carbono na Diabetes Mellitus para Profissionais de Saúde; Associação Portuguesa dos Nutricionistas: Porto, Portugal, 2015. [Google Scholar]
- Previato, H. Carbohydrate Counting in Diabetes. Nutr. Food Technol. 2016, 2, 1–4. [Google Scholar]
- Schmidt, S.; Schelde, B.; Nørgaard, K. Effects of advanced carbohydrate counting in patients with type 1 diabetes: A systematic review. Diabet. Med. 2014, 31, 886–896. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, S.; Nørgaard, K. Bolus Calculators. J. Diabetes Sci. Technol. 2014, 8, 1035–1041. [Google Scholar] [CrossRef]
- Vaz, E.; Porfírio, G.; Nunes, H.; Nunes-Nogueira, V. Effectiveness and safety of carbohydrate counting in the management of adult patients with type 1 diabetes mellitus: A systematic review and meta-analysis. Arch. Endocrinol. Metab. 2018, 62, 337–345. [Google Scholar] [CrossRef]
- Gökşen, D.; Atik Altınok, Y.; Ozen, S.; Demir, G.; Darcan, S. Effects of carbohydrate counting method on metabolic control in children with type 1 diabetes mellitus. J. Clin. Res. Pediatr. Endocrinol. 2014, 6, 74–78. [Google Scholar] [CrossRef] [PubMed]
- Rabbone, I.; Scaramuzza, A.E.; Ignaccolo, M.G.; Tinti, D.; Sicignano, S.; Redaelli, F.; De Angelis, L.; Bosetti, A.; Zuccotti, G.V.; Cerutti, F. Carbohydrate counting with an automated bolus calculator helps to improve glycaemic control in children with type 1 diabetes using multiple daily injection therapy: An 18-month observational study. Diabetes Res. Clin. Pract. 2014, 103, 388–394. [Google Scholar] [CrossRef] [PubMed]
- Shiraishi, S.; Miyao, S.; Kikuchi, N.; Ochi, K.; Sato, E.; Ohashi, J.; Kawamura, R.; Osawa, H.; Makino, H. Effects of carbohydrate counting on glycemic control and quality of life in patients with type 1 diabetes: A pilot study. Diabetol. Int. 2013, 5, 181–186. [Google Scholar] [CrossRef]
- Delgado-Noguera, M.; Mena Gallego, J.; Maya, J.D. Efectividad del conteo de hidratos de carbono para el control metabólico de niños con diabetes mellitus tipo 1: Revisión sistemática. Rev. Argent. Endocrinol. Metab. 2016, 53, 142–148. [Google Scholar] [CrossRef]
- Pearson, K.K.; Reiland, S.A.; Meara, J.G.O.; Brown, J.K.; Fedraw, L.A.; Mapes, D.L. Improving Glycemic Control and Insulin Ordering Efficiency for Hospitalized Patients with Diabetes Through Carbohydrate Counting. J. Healthc. Qual. 2016, 38, e1–e9. [Google Scholar] [CrossRef] [PubMed]
- Souto, D.L.; Zajdenverg, L.; Rodacki, M.; Rosado, E.L. Impact of advanced and basic carbohydrate counting methods on metabolic control in patients with type 1 diabetes. Nutrition 2014, 30, 286–290. [Google Scholar] [CrossRef]
- Fu, S.; Li, L.; Deng, S.; Zan, L.; Liu, Z. Effectiveness of advanced carbohydrate counting in type 1 diabetes mellitus: A systematic review and meta-analysis. Sci. Rep. 2016, 6, 37067. [Google Scholar] [CrossRef] [PubMed]
- Ministério da Saúde; Direção-Geral da Saúde. Crianças e Jovens com Diabetes Mellitus Tipo 1. Manual de Formação para Apoio aos Profissionais de Saúde e de Educação; Direção-Geral da Saúde: Lisbon, Portugal, 2019. [Google Scholar]
- Evert, A.B.; Dennison, M.; Gardner, C.D.; Timothy Garvey, W.; Lau, K.H.K.; MacLeod, J.; Mitri, J.; Pereira, R.F.; Rawlings, K.; Robinson, S.; et al. Nutrition Therapy for Adults with Diabetes or Prediabetes: A Consensus Report. Diabetes Care 2019, 42, 731–754. [Google Scholar] [CrossRef]
- Health Promotion Glossary of Terms; World Health Organization: Geneva, Switzerland, 2021.
- Carbone, E.T.; Zoellner, J.M. Nutrition and Health Literacy: A Systematic Review to Inform Nutrition Research and Practice. J. Acad. Nutr. Diet. 2012, 112, 254–265. [Google Scholar] [CrossRef]
- Bayindir-Gümüş, A.; Tunçer, E.; Keser, A. Health and nutrition literacy levels affect diabetes mellitus management. J. Hyg. Eng. Des. 2020, 31, 73–81. [Google Scholar]
- Krause, C.; Sommerhalder, K.; Beer-Borst, S.; Abel, T. Just a subtle difference? Findings from a systematic review on definitions of nutrition literacy and food literacy. Health Promot. Int. 2018, 33, 378–389. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, M.; Fontes, T.; Ferreira-Pêgo, C. Nutrition Literacy of Portuguese Adults-A Pilot Study. Int. J. Environ. Res. Public Health 2021, 18, 3177. [Google Scholar] [CrossRef] [PubMed]
- GBD 2017 Diet Collaborators. Health effects of dietary risks in 195 countries, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2019, 393, 1958–1972. [Google Scholar] [CrossRef] [PubMed]
- Marciano, L.; Camerini, A.L.; Schulz, P.J. The Role of Health Literacy in Diabetes Knowledge, Self-Care, and Glycemic Control: A Meta-analysis. J. Gen. Intern. Med. 2019, 34, 1007–1017. [Google Scholar] [CrossRef] [PubMed]
- Hashim, S.; Barakatun-Nisak, M.; Abu Saad, H.; Ismail, S.; Hamdy, O.; Mansour, A. Association of Health Literacy and Nutritional Status Assessment with Glycemic Control in Adults with Type 2 Diabetes Mellitus. Nutrients 2020, 12, 3152. [Google Scholar] [CrossRef]
- Nugent, T.; Galea, A.; Sammut, R. Health literacy, self-management and glycaemic control in persons living with type 2 diabetes mellitus: A cross-sectional study. Pract. Diabetes 2023, 40, 28–34. [Google Scholar] [CrossRef]
- Wolff, K.; Cavanaugh, K.; Malone, R.; Hawk, V.; Gregory, B.P.; Davis, D.; Wallston, K.; Rothman, R.L. The Diabetes Literacy and Numeracy Education Toolkit (DLNET): Materials to facilitate diabetes education and management in patients with low literacy and numeracy skills. Diabetes Educ. 2009, 35, 233–245. [Google Scholar] [CrossRef]
- Wolff, K.; Chambers, L.; Bumol, S.; White, R.O.; Gregory, B.P.; Davis, D.; Rothman, R.L. The PRIDE (Partnership to Improve Diabetes Education) Toolkit: Development and Evaluation of Novel Literacy and Culturally Sensitive Diabetes Education Materials. Diabetes Educ. 2016, 42, 23–33. [Google Scholar] [CrossRef]
- Kawamura, T. The importance of carbohydrate counting in the treatment of children with diabetes. Pediatr. Diabetes 2007, 8 (Suppl. S6), 57–62. [Google Scholar] [CrossRef]
- Enander, R.; Gundevall, C.; Strömgren, A.; Chaplin, J.; Hanas, R. Carbohydrate counting with a bolus calculator improves post-prandial blood glucose levels in children and adolescents with type 1 diabetes using insulin pumps. Pediatr. Diabetes 2012, 13, 545–551. [Google Scholar] [CrossRef]
- Tascini, G.; Berioli, M.; Cerquiglini, L.; Santi, E.; Mancini, G.; Rogari, F.; Toni, G.; Esposito, S. Carbohydrate Counting in Children and Adolescents with Type 1 Diabetes. Nutrients 2018, 10, 109. [Google Scholar] [CrossRef] [PubMed]
- Di Folco, U.; Morviducci, L.; Nardone, R.; Hassan, O.; Tubili, C. Carbohydrate counting and bolus calculation in type 1 diabetes patients using multiple daily injections [Counting dei carboidrati e calcolatore di bolo in pazienti con diabete di tipo 1 in terapia multiniettiva]. G. Ital. Diabetol. Metab. 2014, 34, 188–193. [Google Scholar]
- Yamada, E.; Okada, S.; Nakajima, Y.; Bastie, C.C.; Tagaya, Y.; Osaki, A.; Shimoda, Y.; Shibusawa, R.; Saito, T.; Ozawa, A.; et al. Effect of carbohydrate counting using bolus calculators on glycemic control in type 1 diabetes patients during continuous subcutaneous insulin infusion. J. Diabetes Investig. 2017, 8, 496–500. [Google Scholar] [CrossRef] [PubMed]
- Rhyner, D.; Loher, H.; Dehais, J.; Anthimopoulos, M.; Shevchik, S.; Botwey, R.H.; Duke, D.; Stettler, C.; Diem, P.; Mougiakakou, S. Carbohydrate Estimation by a Mobile Phone-Based System Versus Self-Estimations of Individuals with Type 1 Diabetes Mellitus: A Comparative Study. J. Med. Internet Res. 2016, 18, e101. [Google Scholar] [CrossRef] [PubMed]
- Domhardt, M.; Tiefengrabner, M.; Dinic, R.; Fötschl, U.; Oostingh, G.J.; Stütz, T.; Stechemesser, L.; Weitgasser, R.; Ginzinger, S.W. Training of carbohydrate estimation for people with diabetes using mobile augmented reality. J. Diabetes Sci. Technol. 2015, 9, 516–524. [Google Scholar] [CrossRef] [PubMed]
- Alfonsi, J.E.; Choi, E.E.Y.; Arshad, T.; Sammott, S.A.S.; Pais, V.; Nguyen, C.; Maguire, B.R.; Stinson, J.N.; Palmert, M.R. Carbohydrate Counting App Using Image Recognition for Youth with Type 1 Diabetes: Pilot Randomized Control Trial. JMIR mHealth uHealth 2020, 8, e22074. [Google Scholar] [CrossRef] [PubMed]
- Doupis, J.; Festas, G.; Tsilivigos, C.; Efthymiou, V.; Kokkinos, A. Smartphone-Based Technology in Diabetes Management. Diabetes Ther. 2020, 11, 607–619. [Google Scholar] [CrossRef] [PubMed]
- Vasiloglou, M.F.; Mougiakakou, S.; Aubry, E.; Bokelmann, A.; Fricker, R.; Gomes, F.; Guntermann, C.; Meyer, A.; Studerus, D.; Stanga, Z. A Comparative Study on Carbohydrate Estimation: GoCARB vs. Dietitians. Nutrients 2018, 10, 741. [Google Scholar] [CrossRef] [PubMed]
- Ryan, E.A.; Holland, J.; Stroulia, E.; Bazelli, B.; Babwik, S.A.; Li, H.; Senior, P.; Greiner, R. Improved A1C Levels in Type 1 Diabetes with Smartphone App Use. Can. J. Diabetes 2017, 41, 33–40. [Google Scholar] [CrossRef]
- Kirwan, M.; Vandelanotte, C.; Fenning, A.; Duncan, M. Diabetes Self-Management Smartphone Application for Adults with Type 1 Diabetes: Randomized Controlled Trial. J. Med. Internet Res. 2013, 15, e235. [Google Scholar] [CrossRef]
- Drion, I.; Pameijer, L.R.; Van Dijk, P.R.; Groenier, K.H.; Kleefstra, N.; Bilo, H.J.G. The Effects of a Mobile Phone Application on Quality of Life in Patients with Type 1 Diabetes Mellitus: A Randomized Controlled Trial. J. Diabetes Sci. Technol. 2015, 9, 1086–1091. [Google Scholar] [CrossRef] [PubMed]
- Rossi, M.C.; Nicolucci, A.; Di Bartolo, P.; Bruttomesso, D.; Girelli, A.; Ampudia, F.J.; Kerr, D.; Ceriello, A.; Mayor, C.D.L.Q.; Pellegrini, F.; et al. Diabetes Interactive Diary: A New Telemedicine System Enabling Flexible Diet and Insulin Therapy While Improving Quality of Life: An open-label, international, multicenter, randomized study. Diabetes Care 2009, 33, 109–115. [Google Scholar] [CrossRef] [PubMed]
- Doupis, J.; Papandreopoulou, V.; Glykofridi, S.; Andrianesis, V. Mobile-Based Artificial Intelligence Significantly Improves Type 1 Diabetes Management. Diabetes 2018, 67, 1058-P. [Google Scholar] [CrossRef]
- Foltynski, P.; Ladyzynski, P.; Pankowska, E.; Mazurczak, K. Efficacy of automatic bolus calculator with automatic speech recognition in patients with type 1 diabetes: A randomized cross-over trial. J. Diabetes 2018, 10, 600–608. [Google Scholar] [CrossRef] [PubMed]
- Kern, E.O.; Watts, S.A.; Anselmo, J.; Skala, M.B.; Ricke, A.G. A Novel Tool to Assess Carbohydrate Counting Knowledge in Adults with Diabetes. Diabetes 2007, 56, 449. [Google Scholar]
- Walker, A. Reliability and Validity of a Questionnaire to Assess Carbohydrate Counting Skills, Knowledge of Heart-Healthy Food, and Nutrition Label-Reading Skills in Adults with Diabetes. Ph.D. Thesis, University of Kansas, Lawrence, KS, USA, 2012. [Google Scholar]
- Koontz, M.B.; Cuttler, L.; Palmert, M.R.; O’Riordan, M.; Borawski, E.A.; McConnell, J.; Kern, E.O. Development and validation of a questionnaire to assess carbohydrate and insulin-dosing knowledge in youth with type 1 diabetes. Diabetes Care 2010, 33, 457–462. [Google Scholar] [CrossRef] [PubMed]
- Watts, S.A.; Anselmo, J.M.; Kern, E. Validating the AdultCarbQuiz: A Test of Carbohydrate-Counting Knowledge for Adults with Diabetes. Diabetes Spectr. 2011, 24, 154–160. [Google Scholar] [CrossRef]
- Beal, J.; Farrent, S.; Farndale, L.; Bell, L. Reliability and Validity of a Carbohydrate-Counting Knowledge Questionnaire for Young Australians with Type 1 Diabetes. J. Nutr. Educ. Behav. 2021, 53, 614–618. [Google Scholar] [CrossRef] [PubMed]
- Meade, L.T.; Rushton, W.E. Accuracy of Carbohydrate Counting in Adults. Clin. Diabetes 2016, 34, 142–147. [Google Scholar] [CrossRef]
- Gurnani, M.; Pais, V.; Cordeiro, K.; Steele, S.; Chen, S.; Hamilton, J.K. One potato, two potato,… assessing carbohydrate counting accuracy in adolescents with type 1 diabetes. Pediatr. Diabetes 2018, 19, 1302–1308. [Google Scholar] [CrossRef]
- Deeb, A.; Al Hajeri, A.; Alhmoudi, I.; Nagelkerke, N. Accurate Carbohydrate Counting Is an Important Determinant of Postprandial Glycemia in Children and Adolescents with Type 1 Diabetes on Insulin Pump Therapy. J. Diabetes Sci. Technol. 2017, 11, 753–758. [Google Scholar] [CrossRef] [PubMed]
- Smart, C.E.; Ross, K.; Edge, J.A.; Collins, C.E.; Colyvas, K.; King, B.R. Children and adolescents on intensive insulin therapy maintain postprandial glycaemic control without precise carbohydrate counting. Diabet. Med. 2009, 26, 279–285. [Google Scholar] [CrossRef] [PubMed]
- Smart, C.E.; King, B.R.; McElduff, P.; Collins, C.E. In children using intensive insulin therapy, a 20-g variation in carbohydrate amount significantly impacts on postprandial glycaemia. Diabet. Med. 2012, 29, e21–e24. [Google Scholar] [CrossRef] [PubMed]
- Amorim, D.; Miranda, F.; Abreu, C. In Silico Validation of Personalized Safe Intervals for Carbohydrate Counting Errors. Nutrients 2023, 15, 4110. [Google Scholar] [CrossRef] [PubMed]
- Lameirão, M. Avaliação do Cumprimento do Método de Contagem de Hidratos de Carbono na Diabetes Mellitus Tipo I; Repositório Aberto da Universidade do Porto: Porto, Portugal, 2020. [Google Scholar]
- Turrin, K.B.; Trujillo, J.M. Effects of Diabetes Numeracy on Glycemic Control and Diabetes Self-Management Behaviors in Patients on Insulin Pump Therapy. Diabetes Ther. 2019, 10, 1337–1346. [Google Scholar] [CrossRef] [PubMed]
- Christensen, M.B.; Serifovski, N.; Herz, A.M.H.; Schmidt, S.; Hommel, E.; Raimond, L.; Perrild, H.; Gotfredsen, A.; Gæde, P.; Nørgaard, K. Efficacy of Bolus Calculation and Advanced Carbohydrate Counting in Type 2 Diabetes: A Randomized Clinical Trial. Diabetes Technol. Ther. 2021, 23, 95–103. [Google Scholar] [CrossRef] [PubMed]
- Joubert, M.; Meyer, L.; Doriot, A.; Dreves, B.; Jeandidier, N.; Reznik, Y. Prospective Independent Evaluation of the Carbohydrate Counting Accuracy of Two Smartphone Applications. Diabetes Ther. 2021, 12, 1809–1820. [Google Scholar] [CrossRef] [PubMed]
- Addala, A.; Suttiratana, S.; Wong, J.; Lanning, M.; Barnard-Kelly, K.; Weissberg-Benchell, J.; Laffel, L.; Hood, K.; Naranjo, D. Cost considerations for adoption of diabetes technology are pervasive: A qualitative study of persons living with type 1 diabetes and their families. Diabet. Med. 2021, 38, e14575. [Google Scholar] [CrossRef] [PubMed]
- Roversi, C.; Vettoretti, M.; Del Favero, S.; Facchinetti, A.; Choudhary, P.; Sparacino, G. Impact of Carbohydrate Counting Error on Glycemic Control in Open-Loop Management of Type 1 Diabetes: Quantitative Assessment Through an In Silico Trial. J. Diabetes Sci. Technol. 2022, 16, 1541–1549. [Google Scholar] [CrossRef]
- Samadi, S.; Turksoy, K.; Hajizadeh, I.; Feng, J.; Sevil, M.; Cinar, A. Meal Detection and Carbohydrate Estimation Using Continuous Glucose Sensor Data. IEEE J. Biomed. Health Inform. 2017, 21, 619–627. [Google Scholar] [CrossRef]
- Kamel Boulos, M.N.; Zhang, P. Digital Twins: From Personalised Medicine to Precision Public Health. J. Pers. Med. 2021, 11, 745. [Google Scholar] [CrossRef] [PubMed]
- Shamanna, P.; Saboo, B.; Damodharan, S.; Mohammed, J.; Mohamed, M.; Poon, T.; Kleinman, N.; Thajudeen, M. Reducing HbA1c in Type 2 Diabetes Using Digital Twin Technology-Enabled Precision Nutrition: A Retrospective Analysis. Diabetes Ther. 2020, 11, 2703–2714. [Google Scholar] [CrossRef] [PubMed]
Tool | Technology | Main Purpose | Patient Intervention |
---|---|---|---|
Insulin pump bolus wizards | Calculator | Calculate bolus insulin | Input CHO estimation and BG values |
Automatic insulin dose calculators | Calculator | Calculate bolus insulin | Input CHO estimation and BG values |
GoCARBS [65] | Mobile application—based on computer vision | Estimate CHO content in a meal | Take pictures of the meal’s plate |
BE(AR) [62] | Mobile application—based on augmented reality | Estimate CHO content in a meal | Point camera to meal’s plate and drawing |
iSpy [63] | Mobile application—based on computer vision and voice recognition | Estimate CHO content in a meal | Take pictures of the meal’s plate or orally describe it |
Intelligent Diabetes Management [66] | Mobile application | Diabetes diary and calculate bolus insulin | Input all the diabetes-related data (BG, CHO, exercise) |
Glucose Buddy [67] | Mobile application—offering telemedicine | Connection with smart BG meter, generate reports and professional support anytime | Input meal nutritional information, body weight, and exercise |
Diabetes Manager [64] | Mobile application | Calculate bolus insulin and record food CHO data | Input CHO estimation and BG values |
Diabetes Diary [64] | Mobile application | Diabetes diary, food and medication advisor | Input CHO estimation and BG values |
Dbees [68] | Mobile application | Diabetes diary, send reports to the doctor, set alarms | Input all the diabetes-related data (BG, CHO, exercise) |
Diabetes Interactive Diary [69] | Mobile application—offering telemedicine | Carbohydrate/insulin bolus calculator, communication with health professionals | Select food picture and amount, input BG values |
D-Partner [70] | Mobile application—offering telemedicine | Calculate bolus insulin, communication with health professionals, automatic notifications | Input all the diabetes-related data (BG, CHO, exercise) |
VoiceDiab [71] | Mobile application—with automatic speech recognition | Calculate bolus insulin, estimate CHO content in a meal | Voice description of the meal |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amorim, D.; Miranda, F.; Santos, A.; Graça, L.; Rodrigues, J.; Rocha, M.; Pereira, M.A.; Sousa, C.; Felgueiras, P.; Abreu, C. Assessing Carbohydrate Counting Accuracy: Current Limitations and Future Directions. Nutrients 2024, 16, 2183. https://doi.org/10.3390/nu16142183
Amorim D, Miranda F, Santos A, Graça L, Rodrigues J, Rocha M, Pereira MA, Sousa C, Felgueiras P, Abreu C. Assessing Carbohydrate Counting Accuracy: Current Limitations and Future Directions. Nutrients. 2024; 16(14):2183. https://doi.org/10.3390/nu16142183
Chicago/Turabian StyleAmorim, Débora, Francisco Miranda, Andreia Santos, Luís Graça, João Rodrigues, Mara Rocha, Maria Aurora Pereira, Clementina Sousa, Paula Felgueiras, and Carlos Abreu. 2024. "Assessing Carbohydrate Counting Accuracy: Current Limitations and Future Directions" Nutrients 16, no. 14: 2183. https://doi.org/10.3390/nu16142183
APA StyleAmorim, D., Miranda, F., Santos, A., Graça, L., Rodrigues, J., Rocha, M., Pereira, M. A., Sousa, C., Felgueiras, P., & Abreu, C. (2024). Assessing Carbohydrate Counting Accuracy: Current Limitations and Future Directions. Nutrients, 16(14), 2183. https://doi.org/10.3390/nu16142183