Effects of Nasal Solution Incorporating Resveratrol and Carboxymethyl-Β-Glucan in Preschool Non-Atopic Children with Wheezing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
- -
- Presence of at least 8 episodes of wheezing in the previous 6 months;
- -
- Negative skin prick test (SPT) for the most common allergens;
- -
- Age less than 6 years;
- -
- Preschool program attendance both in the previous year and in the follow-up year.
- -
- Sensitization to food allergens;
- -
- Sensitization to perennial allergens or tree pollen allergens;
- -
- Presence of atopic dermatitis;
- -
- Background treatment with montelukast and/or inhaled corticosteroids;
- -
- Presence of comorbidities for infectious or respiratory diseases (such as immune disorders, cardiopathy, pulmonary disease, and preterm birth).
2.2. Skin Prick Tests
2.3. Clinical Symptoms, Rescue Medication, and Severity Evaluation
2.4. Statistical Analysis
3. Results
3.1. Upper Respiratory Infection Episodes
3.2. Wheezing Episodes
3.3. Severity Index
3.4. Safety
4. Discussion
4.1. Resveratrol plus Carboxymethyl-β-Glucan in Pediatric Respiratory Trials
4.2. Prospective and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Weintraub, B. Upper Respiratory Tract Infections. Pediatr. Rev. 2015, 36, 554–556. [Google Scholar] [CrossRef] [PubMed]
- Chiappini, E.; Santamaria, F.; Marseglia, G.L.; Marchisio, P.; Galli, L.; Cutrera, R.; de Martino, M.; Antonini, S.; Becherucci, P.; Biasci, P.; et al. Prevention of Recurrent Respiratory Infections: Inter-Society Consensus. Ital. J. Pediatr. 2021, 47, 211. [Google Scholar] [CrossRef] [PubMed]
- Esposito, S.; Rigante, D.; Principi, N. Do Children’s Upper Respiratory Tract Infections Benefit from Probiotics? BMC Infect. Dis. 2014, 14, 194. [Google Scholar] [CrossRef] [PubMed]
- Salehian, S.; Fleming, L.; Saglani, S.; Custovic, A. Phenotype and Endotype Based Treatment of Preschool Wheeze. Expert Rev. Respir. Med. 2023, 17, 853–864. [Google Scholar] [CrossRef] [PubMed]
- Wilson, N.M. Virus Infections, Wheeze and Asthma. Paediatr. Respir. Rev. 2003, 4, 184. [Google Scholar] [CrossRef]
- Johnston, S.L.; Pattemore, P.K.; Sanderson, G.; Smith, S.; Lampe, F.; Josephs, L.; Symington, P.; Toole, S.O.; Myint, S.H.; Tyrrell, D.A.J.; et al. Community Study of Role of Viral Infections in Exacerbations of Asthma in 9–11 Year Old Children. BMJ 1995, 310, 1225. [Google Scholar] [CrossRef] [PubMed]
- Lougheed, M.D.; Garvey, N.; Chapman, K.R.; Cicutto, L.; Dales, R.; Day, A.G.; Hopman, W.M.; Lam, M.; Sears, M.R.; Szpiro, K.; et al. The Ontario Asthma Regional Variation Study: Emergency Department Visit Rates and the Relation to Hospitalization Rates. Chest 2006, 129, 909–917. [Google Scholar] [CrossRef] [PubMed]
- Akinbami, L.J.; Schoendorf, K.C. Trends in Childhood Asthma: Prevalence, Health Care Utilization, and Mortality. Pediatrics 2002, 110 Pt 1, 315–322. [Google Scholar] [CrossRef] [PubMed]
- Castro-Rodríguez, J.A.; Holberg, C.J.; Wright, A.L.; Martinez, F.D. A Clinical Index to Define Risk of Asthma in Young Children with Recurrent Wheezing. Am. J. Respir. Crit. Care Med. 2000, 162 Pt 1, 1403–1406. [Google Scholar] [CrossRef]
- Martinez, F.D.; Wright, A.L.; Taussig, L.M.; Holberg, C.J.; Halonen, M.; Morgan, W.J. Asthma and Wheezing in the First Six Years of Life. The Group Health Medical Associates. N. Engl. J. Med. 1995, 332, 133–138. [Google Scholar] [CrossRef]
- Fainardi, V.; Caffarelli, C.; Deolmi, M.; Skenderaj, K.; Meoli, A.; Morini, R.; Bergamini, B.M.; Bertelli, L.; Biserna, L.; Bottau, P.; et al. Management of Preschool Wheezing: Guideline from the Emilia-Romagna Asthma (ERA) Study Group. J. Clin. Med. 2022, 11, 4763. [Google Scholar] [CrossRef] [PubMed]
- Bacharier, L.B.; Phillips, B.R.; Bloomberg, G.R.; Zeiger, R.S.; Paul, I.M.; Krawiec, M.; Guilbert, T.; Chinchilli, V.M.; Strunk, R.C. Severe Intermittent Wheezing in Preschool Children: A Distinct Phenotype. J. Allergy Clin. Immunol. 2007, 119, 604–610. [Google Scholar] [CrossRef]
- Horner, C.C.; Bacharier, L.B. Management Approaches to Intermittent Wheezing in Young Children. Curr. Opin. Allergy Clin. Immunol. 2007, 7, 180–184. [Google Scholar] [CrossRef] [PubMed]
- Fitzpatrick, A.M.; Jackson, D.J.; Mauger, D.T.; Boehmer, S.J.; Phipatanakul, W.; Sheehan, W.J.; Moy, J.N.; Paul, I.M.; Bacharier, L.B.; Cabana, M.D.; et al. Individualized Therapy for Persistent Asthma in Young Children. J. Allergy Clin. Immunol. 2016, 138, 1608–1618.e12. [Google Scholar] [CrossRef] [PubMed]
- Csonka, P.; Kaila, M.; Laippala, P.; Iso-Mustajärvi, M.; Vesikari, T.; Ashorn, P. Oral Prednisolone in the Acute Management of Children Age 6 to 35 Months with Viral Respiratory Infection-Induced Lower Airway Disease: A Randomized, Placebo-Controlled Trial. J. Pediatr. 2003, 143, 725–730. [Google Scholar] [CrossRef] [PubMed]
- Panickar, J.; Lakhanpaul, M.; Lambert, P.C.; Kenia, P.; Stephenson, T.; Smyth, A.; Grigg, J. Oral Prednisolone for Preschool Children with Acute Virus-Induced Wheezing. N. Engl. J. Med. 2009, 360, 329–338. [Google Scholar] [CrossRef] [PubMed]
- Ameli, F.; Brocchetti, F.; Mignosi, S.; Tosca, M.A.; Gallo, F.; Ciprandi, G. Recurrent Respiratory Infections in Children: A Study in Clinical Practice. Acta Biomed. Atenei Parm. 2020, 91, e2020179. [Google Scholar] [CrossRef]
- Miraglia Del Giudice, M.; Maiello, N.; Capristo, C.; Alterio, E.; Capasso, M.; Perrone, L.; Ciprandi, G. Resveratrol plus Carboxymethyl-β-Glucan Reduces Nasal Symptoms in Children with Pollen-Induced Allergic Rhinitis. Curr. Med. Res. Opin. 2014, 30, 1931–1935. [Google Scholar] [CrossRef] [PubMed]
- Kanda, A.; Kobayashi, Y.; Asako, M.; Tomoda, K.; Kawauchi, H.; Iwai, H. Regulation of Interaction between the Upper and Lower Airways in United Airway Disease. Med. Sci. 2019, 7, 27. [Google Scholar] [CrossRef] [PubMed]
- Fokkens, W.; Reitsma, S. Unified Airway Disease: A Contemporary Review and Introduction. Otolaryngol. Clin. N. Am. 2023, 56, 1–10. [Google Scholar] [CrossRef]
- Caimmi, D.; Marseglia, A.; Pieri, G.; Benzo, S.; Bosa, L.; Caimmi, S. Nose and Lungs: One Way, One Disease. Ital. J. Pediatr. 2012, 38, 60. [Google Scholar] [CrossRef] [PubMed]
- Klain, A.; Indolfi, C.; Dinardo, G.; Licari, A.; Cardinale, F.; Caffarelli, C.; Manti, S.; Ricci, G.; Pingitore, G.; Tosca, M.; et al. United Airway Disease. Acta Bio Medica Atenei Parm. 2021, 92 (Suppl. S7), 2021526. [Google Scholar] [CrossRef]
- Ciprandi, G.; Caimmi, D.; del Giudice, M.M.; La Rosa, M.; Salpietro, C.; Marseglia, G.L. Recent Developments in United Airways Disease. Allergy. Asthma Immunol. Res. 2012, 4, 171–177. [Google Scholar] [CrossRef] [PubMed]
- Passalacqua, G.; Ciprandi, G.; Canonica, G.W. The Nose-Lung Interaction in Allergic Rhinitis and Asthma: United Airways Disease. Curr. Opin. Allergy Clin. Immunol. 2001, 1, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Budden, K.F.; Gellatly, S.L.; Wood, D.L.A.; Cooper, M.A.; Morrison, M.; Hugenholtz, P.; Hansbro, P.M. Emerging Pathogenic Links between Microbiota and the Gut-Lung Axis. Nat. Rev. Microbiol. 2017, 15, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Dickson, R.P.; Erb-Downward, J.R.; Freeman, C.M.; McCloskey, L.; Falkowski, N.R.; Huffnagle, G.B.; Curtis, J.L. Bacterial Topography of the Healthy Human Lower Respiratory Tract. MBio 2017, 8, e02287-16. [Google Scholar] [CrossRef] [PubMed]
- Hoggard, M.; Biswas, K.; Zoing, M.; Wagner Mackenzie, B.; Taylor, M.W.; Douglas, R.G. Evidence of Microbiota Dysbiosis in Chronic Rhinosinusitis. Int. Forum Allergy Rhinol. 2017, 7, 230–239. [Google Scholar] [CrossRef] [PubMed]
- Man, W.H.; De Steenhuijsen Piters, W.A.A.; Bogaert, D. The Microbiota of the Respiratory Tract: Gatekeeper to Respiratory Health. Nat. Rev. Microbiol. 2017, 15, 259–270. [Google Scholar] [CrossRef] [PubMed]
- Ciprandi, G.; Miraglia del Giudice, M.; Drago, L. Progress on Probiotics as Add-on Therapy for Allergic Rhinitis. Rev. Fr. Allergol. 2024, 64, 103766. [Google Scholar] [CrossRef]
- Filardo, S.; Di Pietro, M.; Mastromarino, P.; Sessa, R. Therapeutic Potential of Resveratrol against Emerging Respiratory Viral Infections. Pharmacol. Ther. 2020, 214, 107613. [Google Scholar] [CrossRef]
- Miraglia Del Giudice, M.; Maiello, N.; Decimo, F.; Capasso, M.; Campana, G.; Leonardi, S.; Ciprandi, G. Resveratrol plus Carboxymethyl-β-Glucan May Affect Respiratory Infections in Children with Allergic Rhinitis. Pediatr. Allergy Immunol. 2014, 25, 724–728. [Google Scholar] [CrossRef] [PubMed]
- Ciprandi, G.; Aragona, S.E.; Drago, L.; La Mantia, I. The Nutraceuticals: A New Therapeutic Strategy in the Management of Digestive and Respiratory Disorders. Acta Biomed. 2019, 90, 5–7. [Google Scholar] [CrossRef] [PubMed]
- Ciprandi, G.; Daglia, M.; Brindisi, G.; Brunese, F.P.; Dinardo, G.; Gori, A.; Indolfi, C.; Naso, M.; Tondina, E.; Trincianti, C.; et al. Attitude to Food Supplement Use: A Survey Promoted by the Italian Society of Pediatric Allergy and Immunology. Ital. J. Pediatr. 2024, 50, 118. [Google Scholar] [CrossRef] [PubMed]
- Gori, A.; Brindisi, G.; Daglia, M.; del Giudice, M.M.; Dinardo, G.; Di Minno, A.; Drago, L.; Indolfi, C.; Naso, M.; Trincianti, C.; et al. Exploring the Role of Lactoferrin in Managing Allergic Airway Diseases among Children: Unrevealing a Potential Breakthrough. Nutrients 2024, 16, 1906. [Google Scholar] [CrossRef] [PubMed]
- EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Safety of Synthetic Trans-resveratrol as a Novel Food Pursuant to Regulation (EC) No 258/97. EFSA J. 2016, 14, 4368. [Google Scholar] [CrossRef]
- Chen, X.; Song, X.; Zhao, X.; Zhang, Y.; Wang, Y.; Jia, R.; Zou, Y.; Li, L.; Yin, Z. Insights into the Anti-Inflammatory and Antiviral Mechanisms of Resveratrol. Mediators Inflamm. 2022, 2022, 7138756. [Google Scholar] [CrossRef] [PubMed]
- Shankar, S.; Singh, G.; Srivastava, R.K. Chemoprevention by Resveratrol: Molecular Mechanisms and Therapeutic Potential. Front. Biosci. 2007, 12, 4839–4854. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.T.; Kwon, D.Y.; Park, O.J.; Kim, M.S. Resveratrol Protects ROS-Induced Cell Death by Activating AMPK in H9c2 Cardiac Muscle Cells. Genes Nutr. 2008, 2, 323–326. [Google Scholar] [CrossRef]
- Sang, M.S.; Il, J.C.; Sang, G.K. Resveratrol Protects Mitochondria against Oxidative Stress through AMP-Activated Protein Kinase-Mediated Glycogen Synthase Kinase-3beta Inhibition Downstream of Poly(ADP-Ribose)Polymerase-LKB1 Pathway. Mol. Pharmacol. 2009, 76, 884–895. [Google Scholar] [CrossRef]
- Zheng, Y.; Liu, Y.; Ge, J.; Wang, X.; Liu, L.; Bu, Z.; Liu, P. Resveratrol Protects Human Lens Epithelial Cells against H2O2-Induced Oxidative Stress by Increasing Catalase, SOD-1, and HO-1 Expression. Mol. Vis. 2010, 16, 1467. [Google Scholar]
- Posadino, A.M.; Cossu, A.; Giordo, R.; Zinellu, A.; Sotgia, S.; Vardeu, A.; Hoa, P.T.; Van Nguyen, L.H.; Carru, C.; Pintus, G. Resveratrol Alters Human Endothelial Cells Redox State and Causes Mitochondrial-Dependent Cell Death. Food Chem. Toxicol. 2015, 78, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Zang, N.; Li, S.; Li, W.; Xie, X.; Ren, L.; Long, X.; Xie, J.; Deng, Y.; Fu, Z.; Xu, F.; et al. Resveratrol Suppresses Persistent Airway Inflammation and Hyperresponsivess Might Partially via Nerve Growth Factor in Respiratory Syncytial Virus-Infected Mice. Int. Immunopharmacol. 2015, 28, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Mageswary, M.U.; Ang, X.Y.; Lee, B.K.; Chung, Y.L.F.; Azhar, S.N.A.; Hamid, I.J.A.; Bakar, H.A.; Roslan, N.S.; Liu, X.; Kang, X.; et al. Probiotic Bifidobacterium Lactis Probio-M8 Treated and Prevented Acute RTI, Reduced Antibiotic Use and Hospital Stay in Hospitalized Young Children: A Randomized, Double-Blind, Placebo-Controlled Study. Eur. J. Nutr. 2022, 61, 1679–1691. [Google Scholar] [CrossRef] [PubMed]
- Costagliola, G.; Nuzzi, G.; Spada, E.; Comberiati, P.; Verduci, E.; Peroni, D.G. Nutraceuticals in Viral Infections: An Overview of the Immunomodulating Properties. Nutrients 2021, 13, 2410. [Google Scholar] [CrossRef]
- Lee, M.; Kim, S.; Kwon, O.K.; Oh, S.R.; Lee, H.K.; Ahn, K. Anti-Inflammatory and Anti-Asthmatic Effects of Resveratrol, a Polyphenolic Stilbene, in a Mouse Model of Allergic Asthma. Int. Immunopharmacol. 2009, 9, 418–424. [Google Scholar] [CrossRef] [PubMed]
- Drago, L.; Ciprandi, G.; Brindisi, G.; Brunese, F.P.; Dinardo, G.; Gori, A.; Indolfi, C.; Naso, M.; Tondina, E.; Trincianti, C.; et al. Certainty and Uncertainty in the Biological Activities of Resveratrol. Food Front. 2024, 5, 849–854. [Google Scholar] [CrossRef]
- Francioso, A.; Mastromarino, P.; Restignoli, R.; Boffi, A.; D’Erme, M.; Mosca, L. Improved Stability of Trans-Resveratrol in Aqueous Solutions by Carboxymethylated (1,3/1,6)-β-D-Glucan. J. Agric. Food Chem. 2014, 62, 1520–1525. [Google Scholar] [CrossRef] [PubMed]
- Francioso, A.; Cossi, R.; Fanelli, S.; Mastromarino, P.; Mosca, L. Studies on Trans-Resveratrol/Carboxymethylated (1,3/1,6)-β-d-Glucan Association for Aerosol Pharmaceutical Applications. Int. J. Mol. Sci. 2017, 18, 967. [Google Scholar] [CrossRef] [PubMed]
- Lehtovaara, B.C.; Gu, F.X. Pharmacological, Structural, and Drug Delivery Properties and Applications of 1,3-β-Glucans. J. Agric. Food Chem. 2011, 59, 6813–6828. [Google Scholar] [CrossRef]
- Vetvicka, V.; Volny, T.; Saraswat-Ohri, S.; Vashishta, A.; Vancikova, Z.; Vetvickova, J. Glucan and Resveratrol Complex--Possible Synergistic Effects on Immune System. Biomed. Pap. Med. Fac. Univ. Palacky. Olomouc. 2007, 151, 41–46. [Google Scholar] [CrossRef]
- Vetvicka, V.; Vetvickova, J. Anti-Stress Action of an Orally-given Combination of Resveratrol, β-Glucan, and Vitamin C. Molecules 2014, 19, 13724–13734. [Google Scholar] [CrossRef] [PubMed]
- Varricchio, A.M.; Capasso, M.; Della Volpe, A.; Malafronte, L.; Mansi, N.; Varricchio, A.; Ciprandi, G. Resveratrol plus Carboxymethyl-β-Glucan in Children with Recurrent Respiratory Infections: A Preliminary and Real-Life Experience. Ital. J. Pediatr. 2014, 40, 93. [Google Scholar] [CrossRef] [PubMed]
- Venkatesan, P. 2023 GINA Report for Asthma. Lancet. Respir. Med. 2023, 11, 589. [Google Scholar] [CrossRef]
- Mailing, H.-J. 2. Methods of Skin Testing. Allergy 1993, 48, 55–56. [Google Scholar] [CrossRef]
- Martinez, J.; Moreno, J.J. Effect of Resveratrol, a Natural Polyphenolic Compound, on Reactive Oxygen Species and Prostaglandin Production. Biochem. Pharmacol. 2000, 59, 865–870. [Google Scholar] [CrossRef] [PubMed]
- Kode, A.; Rajendrasozhan, S.; Caito, S.; Yang, S.R.; Megson, I.L.; Rahman, I. Resveratrol Induces Glutathione Synthesis by Activation of Nrf2 and Protects against Cigarette Smoke-Mediated Oxidative Stress in Human Lung Epithelial Cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 2008, 294, L478. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.H.; Zang, N.; Li, S.M.; Wang, L.J.; Deng, Y.; He, Y.; Yang, X.Q.; Liu, E.M. Resveratrol Inhibits Respiratory Syncytial Virus-Induced IL-6 Production, Decreases Viral Replication, and Downregulates TRIF Expression in Airway Epithelial Cells. Inflammation 2012, 35, 1392–1401. [Google Scholar] [CrossRef] [PubMed]
- Abba, Y.; Hassim, H.; Hamzah, H.; Noordin, M.M. Antiviral Activity of Resveratrol against Human and Animal Viruses. Adv. Virol. 2015, 2015, 184241. [Google Scholar] [CrossRef] [PubMed]
- Rossi, G.A.; Sacco, O.; Capizzi, A.; Mastromarino, P. Can Resveratrol-Inhaled Formulations Be Considered Potential Adjunct Treatments for COVID-19? Front. Immunol. 2021, 12, 670955. [Google Scholar] [CrossRef]
- Mastromarino, P.; Capobianco, D.; Cannata, F.; Nardis, C.; Mattia, E.; De Leo, A.; Restignoli, R.; Francioso, A.; Mosca, L. Resveratrol Inhibits Rhinovirus Replication and Expression of Inflammatory Mediators in Nasal Epithelia. Antiviral Res. 2015, 123, 15–21. [Google Scholar] [CrossRef]
- Liu, L.; Yu, J.; Shen, X.; Cao, X.; Zhan, Q.; Guo, Y.; Yu, F. Resveratrol Enhances the Antimicrobial Effect of Polymyxin B on Klebsiella Pneumoniae and Escherichia Coli Isolates with Polymyxin B Resistance. BMC Microbiol. 2020, 20, 306. [Google Scholar] [CrossRef] [PubMed]
- Ma, D.S.L.; Tan, L.T.H.; Chan, K.G.; Yap, W.H.; Pusparajah, P.; Chuah, L.H.; Ming, L.C.; Khan, T.M.; Lee, L.H.; Goh, B.H. Resveratrol-Potential Antibacterial Agent against Foodborne Pathogens. Front. Pharmacol. 2018, 9, 102. [Google Scholar] [CrossRef] [PubMed]
- Baldassarre, M.E.; Di Mauro, A.; Labellarte, G.; Pignatelli, M.; Fanelli, M.; Schiavi, E.; Mastromarino, P.; Capozza, M.; Panza, R.; Laforgia, N. Resveratrol plus Carboxymethyl-β-Glucan in Infants with Common Cold: A Randomized Double-Blind Trial. Heliyon 2020, 6, e03814. [Google Scholar] [CrossRef] [PubMed]
- Tosca, M.A.; Varricchio, A.; Schiavetti, I.; Naso, M.; Damiani, V.; Ciprandi, G. Managing Children with Frequent Respiratory Infections and Associated Wheezing: A Preliminary Randomized Study with a New Multicomponent Nasal Spray. Allergol. Immunopathol. 2024, 52, 22–30. [Google Scholar] [CrossRef]
- Lv, C.; Zhang, Y.; Shen, L. Preliminary Clinical Effect Evaluation of Resveratrol in Adults with Allergic Rhinitis. Int. Arch. Allergy Immunol. 2018, 175, 231–236. [Google Scholar] [CrossRef]
Group | 1 (Placebo) | 2 (Active) | p |
---|---|---|---|
n. patients (male) | 20 (12) | 19 (12) | |
Upper respiratory infections | |||
Total n. | 130 | 117 | NS 1 |
Episodes/patient (median [IQR]) | 6.03 [2.31] | 6.05 [1.36] | NS 1 |
Days/month (mean) | 6.1 | 4.9 | NS 1 |
Wheezing episodes | |||
Total n. | 86 | 23 | <0.001 |
Episodes/patient (median [IQR]) | 3.89 [2.05] | 1.29 [1.29] | <0.001 |
Days/month (mean) | 2.1 | 0.5 | <0.01 |
Severity index | |||
Total n. hospitalization (days) | 18 | 1 | <0.001 |
Total OCS 1 administration (days) | 53 | 10 | <0.01 |
Severity days/month (mean) | 0.6 | 0.1 | <0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Indolfi, C.; Mignini, C.; Valitutti, F.; Bizzarri, I.; Dinardo, G.; Klain, A.; Miraglia del Giudice, M.; Di Cara, G. Effects of Nasal Solution Incorporating Resveratrol and Carboxymethyl-Β-Glucan in Preschool Non-Atopic Children with Wheezing. Nutrients 2024, 16, 2197. https://doi.org/10.3390/nu16142197
Indolfi C, Mignini C, Valitutti F, Bizzarri I, Dinardo G, Klain A, Miraglia del Giudice M, Di Cara G. Effects of Nasal Solution Incorporating Resveratrol and Carboxymethyl-Β-Glucan in Preschool Non-Atopic Children with Wheezing. Nutrients. 2024; 16(14):2197. https://doi.org/10.3390/nu16142197
Chicago/Turabian StyleIndolfi, Cristiana, Costanza Mignini, Francesco Valitutti, Ilaria Bizzarri, Giulio Dinardo, Angela Klain, Michele Miraglia del Giudice, and Giuseppe Di Cara. 2024. "Effects of Nasal Solution Incorporating Resveratrol and Carboxymethyl-Β-Glucan in Preschool Non-Atopic Children with Wheezing" Nutrients 16, no. 14: 2197. https://doi.org/10.3390/nu16142197
APA StyleIndolfi, C., Mignini, C., Valitutti, F., Bizzarri, I., Dinardo, G., Klain, A., Miraglia del Giudice, M., & Di Cara, G. (2024). Effects of Nasal Solution Incorporating Resveratrol and Carboxymethyl-Β-Glucan in Preschool Non-Atopic Children with Wheezing. Nutrients, 16(14), 2197. https://doi.org/10.3390/nu16142197