Effects of the Ketogenic Diet on Strength Performance in Trained Men and Women: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Study Selection
2.3. Data Extraction
2.4. Quality Assessment
2.5. Metaanlysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Aragon, A.A.; Schoenfeld, B.J.; Wildman, R.; Kleiner, S.; VanDusseldorp, T.; Taylor, L.; Earnest, C.P.; Arciero, P.J.; Wilborn, C.; Kalman, D.S.; et al. International society of sports nutrition position stand: Diets and body composition. J. Int. Soc. Sports Nutr. 2017, 14, 16. [Google Scholar] [CrossRef] [PubMed]
- Westman, E.C.; Feinman, R.D.; Mavropoulos, J.C.; Vernon, M.C.; Volek, J.S.; Wortman, J.A.; Yancy, W.S.; Phinney, S.D. Low-carbohydrate nutrition and metabolism. Am. J. Clin. Nutr. 2007, 86, 276–284. [Google Scholar] [CrossRef] [PubMed]
- Pendergast, D.R.; Meksawan, K.; Limprasertkul, A.; Fisher, N.M. Influence of exercise on nutritional requirements. Eur. J. Appl. Physiol. 2011, 111, 379–390. [Google Scholar] [CrossRef] [PubMed]
- Slater, G.; Phillips, S.M. Nutrition guidelines for strength sports: Sprinting, weightlifting, throwing events, and bodybuilding. J. Sports Sci. 2011, 29 (Suppl. S1), S67–S77. [Google Scholar] [CrossRef]
- Vargas-Molina, S.; Gomez-Urquiza, J.L.; Garcia-Romero, J.; Benitez-Porres, J. Effects of the Ketogenic Diet on Muscle Hypertrophy in Resistance-Trained Men and Women: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2022, 19, 12629. [Google Scholar] [CrossRef] [PubMed]
- Paoli, A.; Cancellara, P.; Pompei, P.; Moro, T. Ketogenic Diet and Skeletal Muscle Hypertrophy: A Frenemy Relationship? J. Hum. Kinet. 2019, 68, 233–247. [Google Scholar] [CrossRef]
- Nair, K.S.; Welle, S.L.; Halliday, D.; Campbell, R.G. Effect of beta-hydroxybutyrate on whole-body leucine kinetics and fractional mixed skeletal muscle protein synthesis in humans. J. Clin. Investig 1988, 82, 198–205. [Google Scholar] [CrossRef]
- Polito, R.; La Torre, M.E.; Moscatelli, F.; Cibelli, G.; Valenzano, A.; Panaro, M.A.; Monda, M.; Messina, A.; Monda, V.; Pisanelli, D.; et al. The Ketogenic Diet and Neuroinflammation: The Action of Beta-Hydroxybutyrate in a Microglial Cell Line. Int. J. Mol. Sci. 2023, 24, 3102. [Google Scholar] [CrossRef]
- Morton, R.; Colenso-Semple, L.; Phillips, S. Training for strength and hypertrophy: An evidence-based approach. Curr. Opin. Physiol. 2019, 10, 90–95. [Google Scholar] [CrossRef]
- Vargas, S.; Petro, J.L.; Romance, R.; Bonilla, D.A.; Florido, M.A.; Kreider, R.B.; Schoenfeld, B.J.; Benitez-Porres, J. Comparison of changes in lean body mass with a strength- versus muscle endurance-based resistance training program. Eur. J. Appl. Physiol. 2019, 119, 933–940. [Google Scholar] [CrossRef]
- Dankel, S.J.; Mattocks, K.T.; Jessee, M.B.; Buckner, S.L.; Mouser, J.G.; Loenneke, J.P. Do metabolites that are produced during resistance exercise enhance muscle hypertrophy? Eur. J. Appl. Physiol. 2017, 117, 2125–2135. [Google Scholar] [CrossRef] [PubMed]
- Figueiredo, V.C.; de Salles, B.F.; Trajano, G.S. Volume for Muscle Hypertrophy and Health Outcomes: The Most Effective Variable in Resistance Training. Sports Med. 2018, 48, 499–505. [Google Scholar] [CrossRef] [PubMed]
- Baz-Valle, E.; Fontes-Villalba, M.; Santos-Concejero, J. Total Number of Sets as a Training Volume Quantification Method for Muscle Hypertrophy: A Systematic Review. J. Strength Cond. Res. 2021, 35, 870–878. [Google Scholar] [CrossRef] [PubMed]
- Burke, L.M.; Hawley, J.A.; Wong, S.H.; Jeukendrup, A.E. Carbohydrates for training and competition. J. Sports Sci. 2011, 29 (Suppl. S1), S17–S27. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Suzuki, K. Keto-Adaptation and Endurance Exercise Capacity, Fatigue Recovery, and Exercise-Induced Muscle and Organ Damage Prevention: A Narrative Review. Sports 2019, 7, 40. [Google Scholar] [CrossRef] [PubMed]
- Zoladz, J.A.; Konturek, S.J.; Duda, K.; Majerczak, J.; Sliwowski, Z.; Grandys, M.; Bielanski, W. Effect of moderate incremental exercise, performed in fed and fasted state on cardio-respiratory variables and leptin and ghrelin concentrations in young healthy men. J. Physiol. Pharmacol. Off. J. Pol. Physiol. Soc. 2005, 56, 63–85. [Google Scholar]
- Henselmans, M.; Bjornsen, T.; Hedderman, R.; Varvik, F.T. The Effect of Carbohydrate Intake on Strength and Resistance Training Performance: A Systematic Review. Nutrients 2022, 14, 856. [Google Scholar] [CrossRef] [PubMed]
- Israetel, M.; Feather, J.; Faleiro, T.V.; Juneau, C.-E. Mesocycle Progression in Hypertrophy: Volume Versus Intensity. Strength Cond. J. 2020, 42, 2–6. [Google Scholar] [CrossRef]
- Schoenfeld, B.J.; Ogborn, D.; Krieger, J.W. Effects of Resistance Training Frequency on Measures of Muscle Hypertrophy: A Systematic Review and Meta-Analysis. Sports Med. 2016, 46, 1689–1697. [Google Scholar] [CrossRef]
- Vargas-Molina, S.; Garcia-Sillero, M.; Bonilla, D.A.; Petro, J.L.; Garcia-Romero, J.; Benitez-Porres, J. The effect of the ketogenic diet on resistance training load management: A repeated-measures clinical trial in trained participants. J. Int. Soc. Sports Nutr. 2024, 21, 2306308. [Google Scholar] [CrossRef]
- Vargas-Molina, S.; Petro, J.L.; Romance, R.; Kreider, R.B.; Schoenfeld, B.J.; Bonilla, D.A.; Benitez-Porres, J. Effects of a ketogenic diet on body composition and strength in trained women. J. Int. Soc. Sports Nutr. 2020, 17, 19. [Google Scholar] [CrossRef]
- Wilson, J.M.; Lowery, R.P.; Roberts, M.D.; Sharp, M.H.; Joy, J.M.; Shields, K.A.; Partl, J.M.; Volek, J.S.; D’Agostino, D.P. Effects of Ketogenic Dieting on Body Composition, Strength, Power, and Hormonal Profiles in Resistance Training Men. J. Strength Cond. Res. 2020, 34, 3463–3474. [Google Scholar] [CrossRef]
- Greene, D.A.; Varley, B.J.; Hartwig, T.B.; Chapman, P.; Rigney, M. A Low-Carbohydrate Ketogenic Diet Reduces Body Mass without Compromising Performance in Powerlifting and Olympic Weightlifting Athletes. J. Strength Cond. Res. 2018, 32, 3373–3382. [Google Scholar] [CrossRef] [PubMed]
- Gregory, R.M.; Hamdan, H.; Torisky, D.M.; Akers, J.D. A Low-Carbohydrate Ketogenic Diet Combined with 6-Weeks of Crossfit Training Improves Body Composition and Performance. Int. J. Sports Exerc. Med. 2017, 3, 054. [Google Scholar] [CrossRef]
- Durkalec-Michalski, K.; Nowaczyk, P.M.; Glowka, N.; Ziobrowska, A.; Podgorski, T. Is a Four-Week Ketogenic Diet an Effective Nutritional Strategy in CrossFit-Trained Female and Male Athletes? Nutrients 2021, 13, 864. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Badillo, J.J.; Sanchez-Medina, L. Movement velocity as a measure of loading intensity in resistance training. Int. J. Sports Med. 2010, 31, 347–352. [Google Scholar] [CrossRef]
- Ploutz-Snyder, L.L.; Giamis, E.L. Orientation and familiarization to 1RM strength testing in old and young women. J. Strength Cond. Res. 2001, 15, 519–523. [Google Scholar] [PubMed]
- LaFountain, R.A.; Miller, V.J.; Barnhart, E.C.; Hyde, P.N.; Crabtree, C.D.; McSwiney, F.T.; Beeler, M.K.; Buga, A.; Sapper, T.N.; Short, J.A.; et al. Extended Ketogenic Diet and Physical Training Intervention in Military Personnel. Mil. Med. 2019, 184, e538–e547. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ (Clin. Res. Ed.) 2021, 372, n71. [Google Scholar] [CrossRef]
- Maher, C.G.; Sherrington, C.; Herbert, R.D.; Moseley, A.M.; Elkins, M. Reliability of the PEDro scale for rating quality of randomized controlled trials. Phys. Ther. 2003, 83, 713–721. [Google Scholar] [CrossRef]
- Higgins, J.P.; Altman, D.G.; Gotzsche, P.C.; Juni, P.; Moher, D.; Oxman, A.D.; Savovic, J.; Schulz, K.F.; Weeks, L.; Sterne, J.A.; et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ 2011, 343, d5928. [Google Scholar] [CrossRef] [PubMed]
- Kysel, P.; Haluzikova, D.; Dolezalova, R.P.; Lankova, I.; Lacinova, Z.; Kasperova, B.J.; Trnovska, J.; Hradkova, V.; Mraz, M.; Vilikus, Z.; et al. The Influence of Cyclical Ketogenic Reduction Diet vs. Nutritionally Balanced Reduction Diet on Body Composition, Strength, and Endurance Performance in Healthy Young Males: A Randomized Controlled Trial. Nutrients 2020, 12, 2832. [Google Scholar] [CrossRef] [PubMed]
- Kephart, W.C.; Pledge, C.D.; Roberson, P.A.; Mumford, P.W.; Romero, M.A.; Mobley, C.B.; Martin, J.S.; Young, K.C.; Lowery, R.P.; Wilson, J.M.; et al. The Three-Month Effects of a Ketogenic Diet on Body Composition, Blood Parameters, and Performance Metrics in CrossFit Trainees: A Pilot Study. Sports 2018, 6, 1. [Google Scholar] [CrossRef] [PubMed]
- Paoli, A.; Cenci, L.; Pompei, P.; Sahin, N.; Bianco, A.; Neri, M.; Caprio, M.; Moro, T. Effects of Two Months of Very Low Carbohydrate Ketogenic Diet on Body Composition, Muscle Strength, Muscle Area, and Blood Parameters in Competitive Natural Body Builders. Nutrients 2021, 13, 374. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.; Ratamess, N.A.; Faigenbaum, A.D.; Bush, J.A. Ergogenic Properties of Ketogenic Diets in Normal-Weight Individuals: A Systematic Review. J. Am. Coll. Nutr. 2020, 39, 665–675. [Google Scholar] [CrossRef] [PubMed]
- Murphy, N.E.; Carrigan, C.T.; Margolis, L.M. High-Fat Ketogenic Diets and Physical Performance: A Systematic Review. Adv. Nutr. 2021, 12, 223–233. [Google Scholar] [CrossRef] [PubMed]
- Koerich, A.C.C.; Borszcz, F.K.; Thives Mello, A.; de Lucas, R.D.; Hansen, F. Effects of the ketogenic diet on performance and body composition in athletes and trained adults: A systematic review and Bayesian multivariate multilevel meta-analysis and meta-regression. Crit. Rev. Food Sci. Nutr. 2022, 63, 11399–11424. [Google Scholar] [CrossRef]
- Valenzuela, P.L.; Castillo-Garcia, A.; Lucia, A.; Naclerio, F. Effects of Combining a Ketogenic Diet with Resistance Training on Body Composition, Strength, and Mechanical Power in Trained Individuals: A Narrative Review. Nutrients 2021, 13, 3083. [Google Scholar] [CrossRef]
- Kang, J. Nutrition and Metabolism in Sports, Exercise, and Health; Routledge: London, UK, 2018. [Google Scholar]
Reference | Sample | Duration | Nutritional Protocol | Country | Main Results | Measurement of Strength/Performance |
---|---|---|---|---|---|---|
Paoli et al., 2021 [34] | Male body-builders KD = 9; NKD = 10 Age KD = 26.2 ± 5.09; NKD = 31.67 ± 10.39 years. Weight KD = 86.39 ± 15.42; NKD = 89.04 ± 11.73. BMI KD = 26.97 ± 1.86; NKD = 26.66 ± 2.04 kg/m2 | 8 weeks | KD: CHO, 5%, less than 50 g/day PRO, 2.5 g∙kg−1·d−1 WD: CHO, 55% PRO, 2.5 g∙kg−1·d−1 The fats in both groups would be the calories until reaching 45 kcal/kg of muscle mass. | Italy | Maximal strength increased similarly in both groups. | 1-RM Bench Press 1-RM Squat |
Vargas-Molina et al., 2020 [21] | Resistance-trained women KD = 10; NKD = 11 Age KD = 26.8 ± 3.9; NKD = 28.3 ± 4.1 years. Weight KD = 61.9 ± 9.8; NKD = 62.6 ± 3.9 kg. BMI KD = 23.8 ± 3.6; NKD = 23.7 ± 2.2 kg/m2 | 8 weeks | 40–45 kcal∙kg-FFM−1∙d−1 (KD: 1.7 g∙kg−1·d−1 PRO, 30–40 g∙kg∙d−1 CHO, remaining calories FAT; NKD: 1.7 g∙kg−1·d−1 PRO, 1 g∙kg−1·d−1 FAT, remaining calories CHO) | Spain | KD: No significant changes in BP. Significant changes in SQ and CMJ (5.6 kg/1.7 cm). NKD: Significant changes in BP, SQ, and CMJ (4.8 kg, 15.6 kg, 2.2 cm, respectively) | 1-RM Bench Press 1-RM Squat CMJ |
Kysel et al., 2020 [32] | 25 recreational trained males in RT KD = 13; NKD = 12 Age CKD: 23.0 ± 5 and RD: 24.0 ± 4 years. Weight KD = 85.6 ± 13.4; NKD = 93 ± 17.5 kg. BMI KD = 26.1 ± 3.7; NKD = 26.9 ± 4.3 kg/m2 | 8 weeks | CKD: 5 days 30 g CHO, 1.6 g∙kg−1·d−1 PRO, rest FAT + 2 days 8–10 g∙kg−1·d−1 CHO (70% CHO, 15% PRO, 15% FAT) RD: 55% CHO, 30% FAT, 15% PRO. 500 Kcal deficit (CKL and RD) | Czech Republic | KD: No change in strength. NKD: Significant changes in Lat pull down (70.4/75.2) and Leg press (127.8/140). | 1-RM Bench Press 1-RM Lat pull-down 1-RM Leg Press |
Wilson et al., 2020 [22] | Resistance-trained males KD = 13; NKD = 12 Age KD: 23.0 ± 4.5 and NKD: 21.3 ± 3.7 years | 10 weeks + 1 week = 11 weeks | KD = 5% CHO 20% PRO 75% FAT; NKD = 55% CHO, 20% PRO, 25% FAT | United States | KD: Bench Press, 252.7 to 275.38 Squat, 287.31 to 315.38 NKD: Bench Press, 248.8 to 265 Squat, 271.3 to 304.6 No differences between groups. | 1-RM Bench press 1-RM Squat |
LaFountain et al., 2019 [28] | Military health adults males/women KD = 15; NKD = 14 Age KD: 27.4 ± 6.8 and MD: 24.6 ± 9 years. Weight KD = 85.7 ± 7.8; NKD = 79.8 ± 5.5 kg. BMI KD = 27.9 ± 2.9; NKD = 24.9 ± 2.4 kg/m2 | 12 weeks | KD ≤ 50 g/day CHO 0.6–1.0 g∙kg−1·d−1 of LBM PRO Rest calories FAT Ad Libitum MD = maintained their habitual diet with a minimum consumption of ~40% CHO | United States | KD: SQ: Strength level was maintained (Pre: 117.6; Pos: 129.4 kg, p = 0.069). BP: Pre and Post 95.9 kg, p = 0.974) CMJ: Pre 34; Post 34.7 cm, p = 0.803) NKD: SQ: (Pre: 103, Post 122.4 Kg). BP: (Pre: 84.6, Post: 90.9 kg). CMJ: (Pre: 34.3, Post: 35.6 cm) | 1-RM Bench press 1-RM Squat CMJ |
Kephart et al., 2018 [33] | CrossFit-trained males/women (9 M, 3 W). KD = 7; NKD = 5. Age KD = 32 ± 3; NKD = 29 ± 3 years. Weight KD = 82.7 ± 8.2; NKD = 76.9 ± 5.5. | 12 weeks | Not reported Ad Libitum | United States | No significant differences or changes between groups. SQ: p = 0.422 PC: p = 0.347 | 1-RM Back Squat 1-RM Power clean |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vargas-Molina, S.; Murri, M.; Gonzalez-Jimenez, A.; Gómez-Urquiza, J.L.; Benítez-Porres, J. Effects of the Ketogenic Diet on Strength Performance in Trained Men and Women: A Systematic Review and Meta-Analysis. Nutrients 2024, 16, 2200. https://doi.org/10.3390/nu16142200
Vargas-Molina S, Murri M, Gonzalez-Jimenez A, Gómez-Urquiza JL, Benítez-Porres J. Effects of the Ketogenic Diet on Strength Performance in Trained Men and Women: A Systematic Review and Meta-Analysis. Nutrients. 2024; 16(14):2200. https://doi.org/10.3390/nu16142200
Chicago/Turabian StyleVargas-Molina, Salvador, Mora Murri, Andrés Gonzalez-Jimenez, José Luis Gómez-Urquiza, and Javier Benítez-Porres. 2024. "Effects of the Ketogenic Diet on Strength Performance in Trained Men and Women: A Systematic Review and Meta-Analysis" Nutrients 16, no. 14: 2200. https://doi.org/10.3390/nu16142200
APA StyleVargas-Molina, S., Murri, M., Gonzalez-Jimenez, A., Gómez-Urquiza, J. L., & Benítez-Porres, J. (2024). Effects of the Ketogenic Diet on Strength Performance in Trained Men and Women: A Systematic Review and Meta-Analysis. Nutrients, 16(14), 2200. https://doi.org/10.3390/nu16142200