Association between Coffee Consumption and Polycystic Ovary Syndrome: An Exploratory Case–Control Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design and Participants
- (1)
- Clinical and/or biochemical signs of hyperandrogenism (HA) (total testosterone level ≥ 2.6 nmol/L);
- (2)
- Polycystic ovarian morphology (PCOM) upon ultrasound examination and exclusion of other etiologies (≥12 follicles with a diameter of 2–9 mm in both ovaries);
- (3)
- Oligo-anovulation/amenorrhea or anovulation (OD) (menstrual cycle > 35 days or amenorrhea > 3 months).
- Phenotype A “HA + OD + PCOM”: hyperandrogenism + oligo-anovulation + polycystic ovarian morphology;
- Phenotype B “HA + OD”: hyperandrogenism + oligo-anovulation;
- Phenotype C “HA + PCOM”: hyperandrogenism + polycystic ovarian morphology;
- Phenotype D “OD + PCOM”: oligo-anovulation + polycystic ovarian morphology.
2.2. Assessment of Variables
2.3. Statistical Analysis
3. Results
3.1. Characteristics
3.2. Characteristics by Coffee Intake
3.3. Association between Coffee Intake and PCOS
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
PCOS | Polycystic Ovary Syndrome |
BMI | Body Mass Index |
H | Hyperandrogenism |
O | Oligo/amenorrhea |
POM | Polycystic ovary morphology |
H + O | “Hyperandorgenism + Oligo/amenorrhea” phenotype |
H + O + POM | “Hyperandorgenism + Oligo/amenorrhea + Polycystic ovaries morphology” phenotype |
H + O | “Hyperandorgenism + Oligo/amenorrhea” phenotype |
O + POM | “Oligo/amenorrhea + Polycystic ovaries morphology” phenotype |
References
- Azziz, R.; Carmina, E.; Chen, Z.; Dunaif, A.; Laven, J.S.E.; Legro, R.S.; Lizneva, D.; Natterson-Horowtiz, B.; Teede, H.J.; Yildiz, B.O. Polycystic Ovary Syndrome. Nat. Rev. Dis. Prim. 2016, 2, 16057. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Sun, F.; Yang, A.; Yu, X.; Li, Y.; Liang, S.; Jing, X.; Wang, K.; Zhang, L.; Xiao, S.; et al. Insulin-Like Growth Factor Binding Protein-1 and Insulin in Polycystic Ovary Syndrome: A Systematic Review and Meta-Analysis. Front. Endocrinol. 2023, 14, 1279717. [Google Scholar] [CrossRef]
- Lonardo, M.S.; Cacciapuoti, N.; Guida, B.; Di Lorenzo, M.; Chiurazzi, M.; Damiano, S.; Menale, C. Hypothalamic-Ovarian axis and Adiposity Relationship in Polycystic Ovary Syndrome: Physiopathology and Therapeutic Options for the Management of Metabolic and Inflammatory Aspects. Curr. Obes. Rep. 2024, 13, 51–70. [Google Scholar] [CrossRef] [PubMed]
- Herbert, S.; Woolf, K. Moving beyond Weight: A Narrative Review of the Dietary and Lifestyle Management for Reducing Cardiometabolic Risk in Polycystic Ovary Syndrome (PCOS). Nutrients 2023, 15, 5069. [Google Scholar] [CrossRef]
- Guo, H.; Luo, J.; Lin, H. Exploration of the Pathogenesis of Polycystic Ovary Syndrome Based on Gut Microbiota: A Review. Medicine 2023, 102, E36075. [Google Scholar] [CrossRef]
- Carmona, I.; García, F.; Saucedo, E.; Moraga, M.R. Síndrome de Ovario Poliquístico y Calidad de Vida. Rev. Iberoam. Fertil. Reprod. Humana 2021, 38, 1–14. Available online: https://revistafertilidad.com/index.php/rif/article/view/39 (accessed on 16 June 2022).
- Yadav, S.; Delau, O.; Bonner, A.J.; Markovic, D.; Patterson, W.; Ottey, S.; Buyalos, R.P.; Azziz, R. Direct Economic Burden of Mental Health Disorders Associated with Polycystic Ovary Syndrome: Systematic Review and Meta-Analysis. Elife 2023, 12, e85338. [Google Scholar] [CrossRef]
- Ding, T.; Hardiman, P.J.; Petersen, I.; Baio, G. Incidence and Prevalence of Diabetes and Cost of Illness Analysis of Polycystic Ovary Syndrome: A Bayesian Modelling Study. Hum. Reprod. 2018, 33, 1299–1306. [Google Scholar] [CrossRef]
- Deswal, R.; Narwal, V.; Dang, A.; SPundir, C.; Pundir, C.S. The Prevalence of Polycystic Ovary Syndrome: A Brief Systematic Review. J. Hum. Reprod. Sci. 2020, 13, 261–271. [Google Scholar] [CrossRef] [PubMed]
- Skiba, M.A.; Islam, R.M.; Bell, R.J.; Davis, S.R. Understanding Variation in Prevalence Estimates of Polycystic Ovary Syndrome: A Systematic Review and Meta-Analysis. Hum. Reprod. Update 2018, 24, 694–709. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Ferrer, M.L.; Adoamnei, E.; Prieto-Sánchez, M.T.; Mendiola, J.; Corbalán-Biyang, S.; Moñino-García, M.; Palomar-Rodríguez, J.A.; Torres-Cantero, A.M. Health-related quality of life in women with polycystic ovary syndrome attending to a tertiary hospital in Southeastern Spain: A case-control study. Health Qual. Life Outcomes 2020, 18, 232. [Google Scholar] [CrossRef]
- Long, C.; Feng, H.; Duan, W.; Chen, X.; Zhao, Y.; Lan, Y.; Yue, R. Prevalence of Polycystic Ovary Syndrome in Patients with Type 2 Diabetes: A Systematic Review and Meta-Analysis. Front. Endocrinol. 2022, 13, 980405. [Google Scholar] [CrossRef]
- Barber, T.M.; Franks, S. Obesity and Polycystic Ovary Syndrome. Clin. Endocrinol. 2021, 95, 531–541. [Google Scholar] [CrossRef]
- Kazemi, M.; Kim, J.Y.; Wan, C.; Xiong, J.D.; Michalak, J.; Xavier, I.B.; Ganga, K.; Tay, C.T.; Grieger, J.A.; Parry, S.A.; et al. Comparison of Dietary and Physical Activity Behaviors in Women with and without Polycystic Ovary Syndrome: A Systematic Review and Meta-Analysis of 39 471 Women. Hum. Reprod. Update 2022, 28, 910–955. [Google Scholar] [CrossRef]
- Escobar-Morreale, H.F. Polycystic Ovary Syndrome: Definition, Aetiology, Diagnosis and Treatment. Nat. Rev. Endocrinol. 2018, 14, 270–284. [Google Scholar] [CrossRef]
- Del Tirado, F.J.C.; Ortega, A.J.M.; Del Tirado, R.A.C. Guía de Práctica Clínica de Síndrome de Ovario Poliquístico. Arch. Med. 2014, 10, 1–14. [Google Scholar]
- Shang, Y.; Zhou, H.; He, R.; Lu, W. Dietary Modification for Reproductive Health in Women With Polycystic Ovary Syndrome: A Systematic Review and Meta-Analysis. Front. Endocrinol. 2021, 12, 735954. [Google Scholar] [CrossRef]
- Zhang, X.; Zheng, Y.; Guo, Y.; Lai, Z. The Effect of Low Carbohydrate Diet on Polycystic Ovary Syndrome: A Meta-Analysis of Randomized Controlled Trials. Int. J. Endocrinol. 2019, 2019, 4386401. [Google Scholar] [CrossRef]
- Faghfoori, Z.; Fazelian, S.; Shadnoush, M.; Goodarzi, R. Nutritional Management in Women with Polycystic Ovary Syndrome: A Review Study. Diabetes Metab. Syndr. 2017, 11 (Suppl. S1), S429–S432. [Google Scholar] [CrossRef]
- Lim, S.S.; Hutchison, S.K.; Van Ryswyk, E.; Norman, R.J.; Teede, H.J.; Moran, L.J. Lifestyle Changes in Women with Polycystic Ovary Syndrome. Cochrane Database Syst. Rev. 2019, 3, CD007506. [Google Scholar] [CrossRef]
- Aryaeian, N.; Sedehi, S.K.; Arablou, T. Polyphenols and Their Effects on Diabetes Management: A Review. Med. J. Islam. Repub. Iran 2017, 31, 886–892. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, Y.; Deng, H.; Bu, X.-Q.; Li, T.; Zhong, Z.-H.; Tang, X.-J.; Feng, Q.; Fu, L.-J. Coffee Consumption and the Risk of Polycystic Ovary Syndrome: Evidence from a Case-Control Study. Res. Sq. 2021, 1–14. [Google Scholar] [CrossRef]
- Calcaterra, V.; Verduci, E.; Cena, H.; Magenes, V.C.; Todisco, C.F.; Tenuta, E.; Gregorio, C.; De Giuseppe, R.; Bosetti, A.; Di Profio, E.; et al. Polycystic Ovary Syndrome in Insulin-Resistant Adolescents with Obesity: The Role of Nutrition Therapy and Food Supplements as a Strategy to Protect Fertility. Nutrients 2021, 13, 1848. [Google Scholar] [CrossRef]
- Goto, A.; Song, Y.; Chen, B.H.; Manson, J.E.; Buring, J.E.; Liu, S. Coffee and Caffeine Consumption in Relation to Sex Hormone-Binding Globulin and Risk of Type 2 Diabetes in Postmenopausal Women. Diabetes 2011, 60, 269–275. [Google Scholar] [CrossRef]
- Szczuko, M.; Kikut, J.; Szczuko, U.; Szydłowska, I.; Nawrocka-Rutkowska, J.; Ziętek, M.; Verbanac, D.; Saso, L. Nutrition Strategy and Life Style in Polycystic Ovary Syndrome-Narrative Review. Nutrients 2021, 13, 2452. [Google Scholar] [CrossRef]
- Tong, C.; Wu, Y.; Zhang, L.; Yu, Y. Insulin Resistance, Autophagy and Apoptosis in Patients with Polycystic Ovary Syndrome: Association with Pi3k Signaling Pathway. Front. Endocrinol. 2022, 13, 1091147. [Google Scholar] [CrossRef]
- Abuelezz, N.Z.; Shabana, M.E.; Abdel-Mageed, H.M.; Rashed, L.; Morcos, G.N.B. Nanocurcumin Alleviates Insulin Resistance and Pancreatic Deficits in Polycystic Ovary Syndrome Rats: Insights on Pi3k/Akt/Mtor and Tnf-A Modulations. Life Sci. 2020, 256, 118003. [Google Scholar] [CrossRef]
- Rebollo-Hernanz, M.; Zhang, Q.; Aguilera, Y.; Martín-Cabrejas, M.A.; Gonzalez de Mejia, E. Phenolic Compounds from Coffee by-Products Modulate Adipogenesis-Related Inflammation, Mitochondrial Dysfunction, and Insulin Resistance in Adipocytes, via Insulin/PI3K/AKT Signaling Pathways. Food Chem. Toxicol. 2019, 132, 110672. [Google Scholar] [CrossRef]
- Raoofi, A.; Rezaie, M.J.; Delbari, A.; Ghoreishi, S.A.H.; Sichani, P.H.; Maleki, S.; Nasiry, D.; Akhlaghi, M.; Ebrahimi, V.; Khaneghah, A.M. Therapeutic potentials of the caffeine in polycystic ovary syndrome in a rat model: Via modulation of proinflammatory cytokines and antioxidant activity. Allergol. Immunopathol. 2022, 50, 137–146. [Google Scholar] [CrossRef]
- Mohammadi, M. Oxidative Stress and Polycystic Ovary Syndrome: A Brief Review. Int. J. Prev. Med. 2019, 10, 86. [Google Scholar] [CrossRef]
- Hulsmans, M.; Holvoet, P. The Vicious Circle between Oxidative Stress and Inflammation in Atherosclerosis. J. Cell. Mol. Med. 2010, 14, 70. [Google Scholar] [CrossRef]
- Milanski, M.; Degasperi, G.; Coope, A.; Morari, J.; Denis, R.; Cintra, D.E.; Tsukumo, D.M.L.; Anhe, G.; Amaral, M.E.; Takahashi, H.K.; et al. Saturated Fatty Acids Produce an Inflammatory Response Predominantly through the Activation of TLR4 Signaling in Hypothalamus: Implications for the Pathogenesis of Obesity. J. Neurosci. 2009, 29, 359. [Google Scholar] [CrossRef]
- Horrigan, L.A.; Kelly, J.P.; Connor, T.J. Caffeine Suppresses TNF-α Production via Activation of the Cyclic AMP/Protein Kinase A Pathway. Int. Immunopharmacol. 2004, 4, 1409–1417. [Google Scholar] [CrossRef]
- Iris, M.; Tsou, P.S.; Sawalha, A.H. Caffeine Inhibits STAT1 Signaling and Downregulates Inflammatory Pathways Involved in Autoimmunity. Clin. Immunol. 2018, 192, 68–77. [Google Scholar] [CrossRef]
- Briansó-Llort, L.; Fuertes-Rioja, L.; Ramos-Perez, L.; Hernandez, C.; Simó, R.; Selva, D.M. Caffeine Upregulates Hepatic Sex Hormone-Binding Globulin Production by Increasing Adiponectin Through AKT/FOXO1 Pathway in White Adipose Tissue. Mol. Nutr. Food Res. 2020, 64, 1901253. [Google Scholar] [CrossRef]
- Hang, D.; Kværner, A.S.; Ma, W.; Hu, Y.; Tabung, F.K.; Nan, H.; Hu, Z.; Shen, H.; Mucci, L.A.; Chan, A.T.; et al. Coffee Consumption and Plasma Biomarkers of Metabolic and Inflammatory Pathways in US Health Professionals. Am. J. Clin. Nutr. 2019, 109, 586–596. [Google Scholar] [CrossRef]
- Ochoa-Rosales, C.; van der Schaft, N.; Braun, K.V.E.; Ho, F.K.; Petermann-Rocha, F.; Ahmadizar, F.; Kavousi, M.; Pell, J.P.; Ikram, M.A.; Celis-Morales, C.A.; et al. C-Reactive Protein Partially Mediates the Inverse Association between Coffee Consumption and Risk of Type 2 Diabetes: The UK Biobank and the Rotterdam Study Cohorts. Clin. Nutr. 2023, 42, 661–669. [Google Scholar] [CrossRef]
- Wedick, N.M.; Brennan, A.M.; Sun, Q.; Hu, F.B.; Mantzoros, C.S.; Van Dam, R.M. Effects of Caffeinated and Decaffeinated Coffee on Biological Risk Factors for Type 2 Diabetes: A Randomized Controlled Trial. Nutr. J. 2011, 10, 93. [Google Scholar] [CrossRef]
- Mousavi, A.; Saedisomeolia, A.; Yekaninejad, M.; Ildarabadi, A.; Meshkani, M.; Vahid-Dastjerdi, M. Effect of Green Coffee Supplementation on Androgens Level in Women with Polycystic Ovary Syndrome: A Randomized Clinical Trial. Obes. Med. 2020, 20, 100298. [Google Scholar] [CrossRef]
- Sánchez-Ferrer, M.L.; Prieto-Sánchez, M.T.; Corbalán-Biyang, S.; Mendiola, J.; Adoamnei, E.; Hernández-Peñalver, A.I.; Carmona-Barnosi, A.; Salido-Fiérrez, E.J.; Torres-Cantero, A.M. Are there Differences in Basal Thrombophilias and C-Reactive Protein between Women with or without PCOS? Reprod. Biomed. Online 2019, 38, 1018–1026. [Google Scholar] [CrossRef]
- Cutillas-Tolín, A.; Arense-Gonzalo, J.J.; Mendiola, J.; Adoamnei, E.; Navarro-Lafuente, F.; Sánchez-Ferrer, M.L.; Prieto-Sánchez, M.T.; Carmona-Barnosi, A.; Vioque, J.; Torres-Cantero, A.M. Are Dietary Indices Associated with Polycystic Ovary Syndrome and Its Phenotypes? A Preliminary Study. Nutrients 2021, 13, 313. [Google Scholar] [CrossRef]
- Hernández-Peñalver, A.I.; Sánchez-Ferrer, M.L.; Mendiola, J.; Adoamnei, E.; Prieto-Sánchez, M.T.; Corbalán-Biyang, S.; Carmona-Barnosi, A.; Nieto, A.; Torres-Cantero, A.M. Assessment of anogenital distance as a diagnostic tool in polycystic ovary syndrome. Reprod. Biomed. Online 2018, 37, 741–749. [Google Scholar] [CrossRef]
- Navarro-Lafuente, F.; Arense-Gonzalo, J.J.; Sánchez-Ferrer, M.L.; Prieto-Sánchez, M.T.; Cutillas-Tolín, A.; Mendiola, J.; Adoamnei, E.; Gazabat-Barbado, E.; Vioque, J.; Torres-Cantero, A.M. Fat intake pattern in women with polycystic ovary syndrome. Reprod. Biomed. Online 2022, 44, 93–103. [Google Scholar] [CrossRef]
- Fauser, B.C.J.M. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. Fertil. Steril. 2004, 81, 19–25. [Google Scholar] [CrossRef]
- de Guevara, A.; Vantman, N.; Echiburú, B. ¿ Qué hay de nuevo en el síndrome de ovario poliquístico? Rev. Chil. Endocrinol. Diabetes 2013, 6, 69–75. [Google Scholar]
- Lizneva, D.; Suturina, L.; Walker, W.; Brakta, S.; Gavrilova-Jordan, L.; Azziz, R. Criteria, Prevalence, and Phenotypes of Polycystic Ovary Syndrome. Fertil. Steril. 2016, 106, 6–15. [Google Scholar] [CrossRef]
- Sánchez-Ferrer, M.L.; Mendiola, J.; Hernández-Peñalver, A.I.; Corbalán-Biyang, S.; Carmona-Barnosi, A.; Prieto-Sánchez, M.T.; Nieto, A.; Torres-Cantero, A.M. Presence of Polycystic Ovary Syndrome Is Associated with Longer Anogenital Distance in Adult Mediterranean Women. Hum. Reprod. 2017, 32, 2315–2323. [Google Scholar] [CrossRef]
- García-Arenzana, N.; Navarrete-Muñoz, E.M.; Vázquez-Carrete, J.A.; Moreno, M.P.; Vidal, C.; Salas, D.; Ederra, M.; Pedraz, C.; Collado-García, F.; Sánchez-Contador, C.; et al. Compliance with Current Dietary Recommendations and Geographical Variability of Diet in Women Participa-ting in 7 Screening Programs for Breast Cancer in Spain. Nutr. Hosp. 2011, 26, 863–873. [Google Scholar] [CrossRef]
- García-Arenzana, N.; Navarrete-Muñoz, E.M.; Peris, M.; Salas, D.; Ascunce, N.; Gonzalez, I.; Sánchez-Contador, C.; Santamariña, C.; Moreo, P.; Moreno, M.P.; et al. Diet Quality and Related Factors among Spanish Female Participants in Breast Cancer Screening Programs. Menopause 2012, 19, 1121–1129. [Google Scholar] [CrossRef]
- Willett, W.C.; Sampson, L.; Stampfer, M.J.; Rosner, B.; Bain, C.; Witschi, J.; Hennekens, C.H.; Speizer, F.E. Reproducibility and Validity of a Semiquantitative Food Frequency Questionnaire. Am. J. Epidemiol. 1985, 122, 51–65. [Google Scholar] [CrossRef]
- Palma, L.; Farran, A.; Cantós, D. Tablas de Composición de Alimentos Del CESNID. Available online: https://www.sennutricion.org/es/2013/05/13/tablas-de-composicin-de-alimentos-del-cesnid (accessed on 16 June 2022).
- US Department of Health and Human Services. Dietary Guidelines for Americans 2015–2020. Available online: https://dhhr.wv.gov/hpcd/FocusAreas/Nutrition/Pages/2015-2020-Dietary-Guidelines-for-Americans.aspx (accessed on 16 June 2022).
- Willett, W.C.; Howe, G.R.; Kushi, L.H. Adjustment for Total Energy Intake in Epidemiologic Studies. Am. J. Clin. Nutr. 1997, 65, 1220S–1228S. [Google Scholar] [CrossRef]
- IPAQ Research Committee. Guidelines for the Data Processing and Analysis of the International Physical Activity Questionnaire (IPAQ); Revised 2005. Available online: https://sites.google.com/view/ipaq/score?authuser=0 (accessed on 3 May 2022).
- Kotsopoulos, J.; Eliassen, A.H.; Missmer, S.A.; Hankinson, S.E.; Tworoger, S.S. Relationship between Caffeine intake and Plasma sex Hormone Concentrations in Premenopausal and Postmenopausal Women. Cancer 2009, 115, 2765–2774. [Google Scholar] [CrossRef]
- Wedick, N.M.; Mantzoros, C.S.; Ding, E.L.; Brennan, A.M.; Rosner, B.; Rimm, E.B.; Hu, F.B.; Van Dam, R.M. The Effects of Caffeinated and Decaffeinated Coffee on Sex Hormone-Binding Globulin and Endogenous Sex Hormone Levels: A Randomized Controlled Trial. Nutr. J. 2012, 11, 86. [Google Scholar] [CrossRef]
- Zhu, J.; Chen, Z.; Feng, W.; Long, S.; Mo, Z.C. Sex Hormone-Binding Globulin and Polycystic Ovary Syndrome. Clin. Chim. Acta 2019, 499, 142–148. [Google Scholar] [CrossRef]
- Pihan-Le Bars, F.; Gusto, G.; Boutron-Ruault, M.-C.; Fagherazzi, G.; Bonnet, F. Cross-Sectional Association of Coffee and Caffeine Consumption with Sex Hormone-Binding Globulin in Healthy Nondiabetic Women. Clin. Endocrinol. 2017, 87, 475–483. [Google Scholar] [CrossRef]
- Goto, A.; Chen, B.H.; Song, Y.; Cauley, J.; Cummings, S.R.; Farhat, G.N.; Gunter, M.; Van Horn, L.; Howard, B.V.; Jackson, R.; et al. Age, Body Mass, Usage of Exogenous Estrogen, and Lifestyle Factors in Relation to Circulating Sex Hormone-Binding Globulin Concentrations in Postmenopausal Women. Clin. Chem. 2014, 60, 174–185. [Google Scholar] [CrossRef]
- Zeng, X.; Xie, Y.J.; Liu, Y.T.; Long, S.L.; Mo, Z.C. Polycystic Ovarian Syndrome: Correlation between Hyperandrogenism, Insulin Resistance and Obesity. Clin. Chim. Acta 2020, 502, 214–221. [Google Scholar] [CrossRef]
- Ding, M.; Bhupathiraju, S.N.; Chen, M.; Van Dam, R.M.; Hu, F.B. Caffeinated and Decaffeinated Coffee Consumption and Risk of Type 2 Diabetes: A Systematicreview and a Dose-Response Meta-Analysis. Diabetes Care 2014, 37, 569–586. [Google Scholar] [CrossRef]
- Nehlig, A. Interindividual Differences in Caffeine Metabolism and Factors Driving Caffeine Consumption. Pharmacol. Rev. 2018, 70, 384–411. [Google Scholar] [CrossRef]
- Sisti, J.S.; Hankinson, S.E.; Caporaso, N.E.; Gu, F.; Tamimi, R.M.; Rosner, B.; Xu, X.; Ziegler, R.; Eliassen, A.H. Caffeine, Coffee and Tea Intake and Urinary Estrogens and Estrogen Metabolites in Premenopausal Women. Cancer Epidemiol. Biomark. Prev. 2015, 24, 1174. [Google Scholar] [CrossRef]
- Li, Y.; Ma, L. The Association between Coffee Intake and Breast Cancer Risk: A Meta-Analysis and Dose-Response Analysis Using Recent Evidence. Ann. Palliat. Med. 2021, 10, 3804816. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, K.; Yatsuya, H.; Muramatsu, T.; Toyoshima, H.; Murohara, T.; Tamakoshi, K. Association of Coffee Consumption with Serum Adiponectin, Leptin, Inflammation and Metabolic Markers in Japanese Workers: A Cross-Sectional Study. Nutr. Diabetes 2012, 2, e33. [Google Scholar] [CrossRef]
- Abalo, R. Coffee and Caffeine Consumption for Human Health. Nutrients 2021, 13, 2918. [Google Scholar] [CrossRef]
- Norman, R.J.; Davies, M.J.; Lord, J.; Moran, L.J. The Role of Lifestyle Modification in Polycystic Ovary Syndrome. Trends Endocrinol. Metab. 2002, 13, 251–257. [Google Scholar] [CrossRef]
- Hossain, N.; Stepanova, M.; Afendy, A.; Nader, F.; Younossi, Y.; Rafiq, N.; Goodman, Z.; Younossi, Z.M. Non-Alcoholic Steatohepatitis (NASH) in Patients with Polycystic Ovarian Syndrome (PCOS). Scand. J. Gastroenterol. 2011, 46, 479–484. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, H.; Li, S.; Li, W.D.; Wang, Y. Consumption of Coffee and Tea and Risk of Developing Stroke, Dementia, and Poststroke Dementia: A Cohort Study in the UK Biobank. PLoS Med. 2021, 18, e1003830. [Google Scholar] [CrossRef]
- Ma, L.; Hu, Y.; Alperet, D.J.; Liu, G.; Malik, V.; Manson, J.A.E.; Rimm, E.B.; Hu, F.B.; Sun, Q. Beverage Consumption and Mortality among Adults with Type 2 Diabetes: Prospective Cohort Study. BMJ 2023, 381, e073406. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Lai, Y.; Konijnenberg, H.; Huerta, J.M.; Vinagre-Aragon, A.; Sabin, J.A.; Hansen, J.; Petrova, D.; Sacerdote, C.; Zamora-Ros, R.; et al. Association of Coffee Consumption and Prediagnostic Caffeine Metabolites With Incident Parkinson Disease in a Population-Based Cohort. Neurology 2024, 102, e209201. [Google Scholar] [CrossRef] [PubMed]
- Carlström, M.; Larsson, S.C. Coffee Consumption and Reduced Risk of Developing Type 2 Diabetes: A Systematic Review with Meta-Analysis. Nutr. Rev. 2018, 76, 395–417. [Google Scholar] [CrossRef]
- Aguirre-Jaime, A.; Cabrera De León, A.; Domínguez Coello, S.; Borges Álamo, C.; Carrillo Fernández, L.; Gavilán Batista, J.C.; Rodríguez Pérez, M.D.C.; Almeida González, D. Validación de un cuestionario de frecuencia de consumo de alimentos adaptado para el estudio y seguimiento de la población adulta de las Islas Canarias. Rev. Esp. Salud Publica 2008, 82, 509–518. [Google Scholar] [CrossRef]
- Rani, R.; Hajam, Y.A.; Kumar, R.; Bhat, R.A.; Rai, S.; Rather, M.A. A Landscape Analysis of the Potential Role of Polyphenols for the Treatment of Polycystic Ovarian Syndrome (PCOS). Phytomed. Plus 2022, 2, 100161. [Google Scholar] [CrossRef]
- Shim, J.-S.; Oh, K.; Kim, H.C. Dietary Assessment Methods in Epidemiologic Studies. Epidemiol. Health 2014, 36, e2014009. [Google Scholar] [CrossRef] [PubMed]
Control (n = 155) | PCOS (n = 121) | p-Value | |
---|---|---|---|
Median (P25–P75) | Median (P25–P75) | ||
Age (years) | 31.0 (24.25–34.75) | 28.00 (23.00–32.00) | 0.001 |
BMI (kg/m2) | 22.2 (20.4–24.5) | 24.06 (23.9) | 0.01 |
Vigorous exercise (hours/week) | 1.0 (0.0–3.8) | 0.0 (0.0–1.7) | <0.001 |
Calorie intake (Kcal) | 1770.9 (1430.2–2145.0) | 1948.5 (1572.8–2304.9) | 0.13 |
Saturated fats (g/day) | 11.4 (10.0–13.9) | 12.6 (11.0–14.4) | 0.07 |
Alcohol intake (g/day) | 2.3 (0.9–6.0) | 1.3 (0.0–3.8) | <0.001 |
Caffeine intake (mg/day) | 49.3 (21.5–92.1) | 25.2 (11.27–53.08) | <0.001 |
Sex hormone-binding globulin (SHBG) (nmol/L) | 44.0 (28.0–58.0) | 29.0 (17.9–45.5) | <0.001 |
Smoking, n (%) | 80.0 (51.6%) | 60.0 (49.6%) | 0.71 |
Never | <1 Cup/Day | 1 Cup/Day | ≥2 Cups/Day | p-Value | |
---|---|---|---|---|---|
n = 86 | n = 70 | n = 56 | n = 62 | ||
Median (P25–P75) | Median (P25–P75) | Median (P25–P75) | Median (P25–P75) | ||
Age (years) | 29.50 (23.75–34.00) | 25.00 (22.00–31.00) | 30.00 (27.00–33.00) | 32.00 (27.00–35.00) | <0.001 |
BMI (kg/m2) | 22.59 (20.06–27.68) | 23.24 (20.84–28.92) | 22.48 (20.30–26.30) | 22.43 (20.99–25.64) | 0.811 |
Moderate exercise (hours/week) | 4.42 (0.25–8.50) | 4.25 (0.63–10.00) | 4.50 (1.50–14.00) | 4.00 (1.88–7.13) | 0.595 |
Vigorous exercise (hours/week) | 0.00 (0.00–2.00) | 0.00 (0.00–2.25) | 0.75 (0.00–3.83) | 1.00 (0.00–4.50) | 0.055 |
Energy intake (kcals/day) | 1746.01 (1398.73–2204.89) | 1843.43 (1387.39–2320.01) | 1865.17 (1415.97–2218.14) | 1908.00 (1534.97–2572.64) | 0.397 |
Diet quality, AHEI 2010 | 59.00 (53.00–59.00) | 61.00 (54.40–70.25) | 66.50 (55.25–72.75) | 66.50 (61.25–75.00) | 0.002 |
Diet quality, DASH | 22.00 (18.00–26.00) | 22.00 (19.00–25.00) | 23.00 (20.00–26.75) | 24.00 (20.00–29.00) | 0.040 |
Protein (g/day) | 90.21 (79.63–101.66) | 88.13 (79.94–101.00) | 85.48 (80.17–103.74) | 94.10 (82.30–105.18) | 0.243 |
Carbohydrate (g/day) | 174.14 (143.86–192.35) | 171.55 (152.08–194.09) | 188.11 (165.77–210.27) | 174.66 (152.69–197.81) | 0.042 |
Total fat (g/day) | 73.53 (65.62–80.89) | 72.87 (63.64–77.84) | 67.35 (858.32–75.78) | 70.62 (64.26–78.69) | 0.051 |
Saturated fat (g/day) | 20.61 (18.44–24.56) | 21.23 (16.84–24.49) | 19.94 (16.23–22.82) | 19.99 (16.97–22.30) | 0.180 |
Monosaturated fat (g/day) | 32.99 (29.14–38.26) | 31.30 (27.92–38.32) | 30.8 4 (25.69–34.12) | 32.03 (28.61–37.11) | 0.082 |
Polyunsaturated fat (g/day) | 11.73 (10.25–13.78) | 11.54 (10.36–14.21) | 11.48 (9.86–14.41) | 12.93 (10.70–14.96) | 0.234 |
Omega-3 fatty acids (g/day) | 1.38 (1.22–1.63) | 1.47 (1.18–1.78) | 1.40 (1.16–1.73) | 1.56 (1.32–1.93) | 0.048 |
Cholesterol (mg/day) | 277.81 (230.89–346.23) | 279.48 (223.01–363.74) | 257.68 (207.29–308.47) | 273.49 (207.35–340.55) | 0.421 |
Fiber (g/day) | 19.20 (14.95–23.62) | 18.27 (15.11–23.86) | 20.04 (16.34–25.95) | 20.93 (17.39–25.38) | 0.128 |
Sugar (g/day) | 68.57 (58.44–83.44) | 76.64 (59.93–87.50) | 83.35 (65.55–102.62) | 71.09 (60.12–84.19) | 0.005 |
Alcohol (g/day) | 1.20 (0.00–3.41) | 2.33 (0.56–4.56) | 1.70 (0.52–5.04) | 3.62 (1.03–6.76) | 0.009 |
Caffeine (mg/day) | 11.02 (5.75–19.80) | 28.49 (17.03–43.02) | 55.12 (46.18–60.70) | 109.14 (84.51–128.06) | <0.001 |
Other sources of caffeine | |||||
Tea (servings/day) | 0.00 (0.03–0.43) | 0.00 (0.07–0.21) | 0.00 (0.03–0.29) | 0.00 (0.03–0.07) | 0.023 |
Decaffeinated coffee (servings/day) | 0.00 (0.00–0.07) | 0.00 (0.14–0.52) | 0.00 (0.00–0.12) | 0.00 (0.00–0.07) | 0.195 |
Chocolate (2 chocolates) (servings/day) | 0.07 (0.00–0.14) | 0.07 (0.00–0.14) | 0.07 (0.14–0.43) | 0.07 (0.07–0.36) | 0.011 |
Cocoa powder | 0.00 (0.00–0.21) | 0.07 (0.00–0.21) | 0.00 (0.00–0.12) | 0.00 (0.00–0.07) | 0.023 |
Smoking, n (%) | |||||
Yes | 19 (22.6) | 19 (27.5) | 17(32.1) | 29 (45.3) | 0.066 |
Former | 18 (21.4) | 36 (52.2) | 10 (18.9) | 15 (23.4) | |
Never | 47 (56) | 14 (20.3) | 26 (49.1) | 20 (31.3) |
Coffee, Cups | 0 Cups/Day | <1 Cup/Day | 1 Cup/Day | ≥2 Cups/Day | p-Value for Trend |
---|---|---|---|---|---|
Median, P25–P75 | 0 (0–0) | 0.3 (0.07–0.4) | 1 (1–1) | 2.5 (2.5–2.5) | |
N (%) | 86 (31.2) | 70 (25.4) | 56 (20.3) | 64 (23.2) | |
Total PCOS (n = 155) | |||||
N cases/controls | 37/49 | 35/35 | 20/36 | 17/47 | |
Crude OR | 1 | 0.76 (0.40–1.42) | 0.42 (0.21–0.84) | 0.27 (0.14–0.55) | 0.001 |
p-value | 0.385 | 0.014 | <0.001 | ||
Adjusted models 1 | 1 | 0.53 (0.26–1.11) | 0.50 (0.23–1.09) | 0.31 (0.14–0.69) | 0.034 |
p-value | 0.093 | 0.083 | 0.004 | ||
Anovulatory phenotype (n = 88) | |||||
N cases/controls | 37/37 | 28/35 | 10/36 | 13/47 | |
Crude OR | 1 | 0.80 (0.41–1.57) | 0.28 (0.12–0.64) | 0.28 (0.13–0.59) | <0.001 |
p-value | 0.517 | 0.003 | <0.001 | ||
Adjusted models 1 | 1 | 0.55 (0.25–1.22) | 0.28 (0.11–0.76) | 0.29 (0.12–0.72) | 0.019 |
p-value | 0.141 | 0.012 | 0.007 | ||
Ovulatory phenotype (n = 33) | |||||
N cases/controls | 12/37 | 7/35 | 10/36 | 4/47 | |
Crude OR | 1 | 0.62 (0.22–1.75) | 0.86 (0.33–2.23) | 0.26 (0.08–0.88) | 0.164 |
p-value | 0.362 | 0.751 | 0.030 | ||
Adjusted models 1 | 1 | 0.39 (0.13–1.23) | 0.91 (0.32–2.57) | 0.28 (0.08–1.03) | 0.126 |
p-value | 0.109 | 0.854 | 0.055 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meliani-Rodríguez, A.; Cutillas-Tolín, A.; Mendiola, J.; Sánchez-Ferrer, M.L.; De la Cruz-Sánchez, E.; Vioque, J.; Torres-Cantero, A.M. Association between Coffee Consumption and Polycystic Ovary Syndrome: An Exploratory Case–Control Study. Nutrients 2024, 16, 2238. https://doi.org/10.3390/nu16142238
Meliani-Rodríguez A, Cutillas-Tolín A, Mendiola J, Sánchez-Ferrer ML, De la Cruz-Sánchez E, Vioque J, Torres-Cantero AM. Association between Coffee Consumption and Polycystic Ovary Syndrome: An Exploratory Case–Control Study. Nutrients. 2024; 16(14):2238. https://doi.org/10.3390/nu16142238
Chicago/Turabian StyleMeliani-Rodríguez, Aïcha, Ana Cutillas-Tolín, Jaime Mendiola, María Luisa Sánchez-Ferrer, Ernesto De la Cruz-Sánchez, Jesús Vioque, and Alberto M. Torres-Cantero. 2024. "Association between Coffee Consumption and Polycystic Ovary Syndrome: An Exploratory Case–Control Study" Nutrients 16, no. 14: 2238. https://doi.org/10.3390/nu16142238
APA StyleMeliani-Rodríguez, A., Cutillas-Tolín, A., Mendiola, J., Sánchez-Ferrer, M. L., De la Cruz-Sánchez, E., Vioque, J., & Torres-Cantero, A. M. (2024). Association between Coffee Consumption and Polycystic Ovary Syndrome: An Exploratory Case–Control Study. Nutrients, 16(14), 2238. https://doi.org/10.3390/nu16142238