When and How to Evaluate Vitamin D Status? A Viewpoint from the Belgian Bone Club
Abstract
:1. Introduction
1.1. Vitamin D Metabolism
Vitamin D—What’s in a Name?
1.2. Determinants of Vitamin D Status
Mechanism | Example Conditions |
---|---|
Reduced sunshine exposure from impaired outdoor physical activity | Chronic fatigue syndrome, fibromyalgia COPD Depression Dementia Heart failure Neuromuscular diseases Osteoarthritis Parkinson’s disease Rheumatic conditions |
Reduced sunshine exposure from avoidance of skin exposure to UV light | Dermatitis Melanoma/non-melanoma skin cancer Porphyria Psoriasis Systemic lupus erythematosus Xeroderma pigmentosum |
Increased body fat | Metabolic syndrome Obesity Type 2 diabetes |
Malabsorption and/or gastrointestinal loss of fat-soluble vitamins | Bariatric surgery Cystic fibrosis Exocrine pancreatic insufficiency Inflammatory bowel diseases Nutritional and eating disorders Primary biliary cirrhosis/primary sclerosing cholangitis Short bowel syndrome |
Renal loss of vitamin D-binding protein | Chronic kidney disease with proteinuria |
Impaired vitamin D synthesis | Old age (reduced vitamin D synthesis in the skin) Cirrhosis, fatty liver disease/metabolic syndrome (25-hydroxylation) Chronic kidney disease (impaired 1-alpha hydroxylation) |
Increased catabolism | CYP3A4 enzyme-inducing medications (for tuberculosis, epilepsy, etc.) CYP3A4-activating mutations |
2. Appraisal of Vitamin D Status
2.1. In Whom and When?
2.1.1. During Childhood and Youth
2.1.2. During Pregnancy and Lactation
2.1.3. During Menopause
2.1.4. In Older Individuals
2.1.5. In Obesity and after Bariatric Surgery
2.1.6. In Inflammatory Bowel Disease
2.1.7. In Prevention of Fractures and in Addition to Anti-Osteoporosis Therapies
2.1.8. In Rheumatic Disorders
2.1.9. In Chronic Kidney Disease (CKD)
Target Public | Scientific Body | Year | RDI | Screening Strategy | Screening Mode | Start of Screening | Screening Frequency | Diagnostic Thresholds |
---|---|---|---|---|---|---|---|---|
Children | ES [41] | 2024 | Not provided | Recommendation against routine testing | Serum 25(OH)D | NA | NA | NA |
French expert group [39] | 2022 | 400–800 IU daily | Screening when there are signs of rickets | Serum total 25(OH)D | Not provided | Not provided | Insufficiency: <75 nmol/L Deficiency: <50 nmol/L | |
General population | IOF [111] | 2024 | 800–1000 IU daily | Routine screening poorly justified | Serum 25(OH)D | NA | NA | NA |
ES [41] | 2024 | 600 IU daily | Recommendation against routine testing | Serum 25(OH)D | NA | NA | NA | |
USPSTF [55] | 2021 | NA | Not provided | Serum 25(OH)D | NA | NA | Not provided | |
ESCEO [56] | 2022 | 800–1000 IU daily | Not provided. Supplementation recommended in persons at increased risk of deficiency | Serum 25(OH)D | Not provided | Not provided | Insufficiency: <50 nmol/L Deficiency: <25 or 30 nmol/L | |
Pregnant women | ACOG [48] | 2011 | 600 IU daily | To be considered in those at risk for deficiency | Serum 25(OH)D | Not provided | Not provided | Not provided |
ES [41] | 2024 | 600 IU daily | Recommendation against routine testing | Serum 25(OH)D | NA | NA | NA | |
Postmenopausal women | BBC [3] | 2020 | 800–1000 IU daily | Women with at least 1 major risk factor for osteoporosis who undergo assessment for osteoporosis | Serum 25(OH)D (accurate and standardized method) | Women with at least 1 major risk factor for osteoporosis | Monitoring in those on supplements; bi-annual rescreening in non-treated women | Treatment target > 50 nmol/L |
EMAS [50] | 2023 | 800–2000 IU daily | To be considered in those at risk for deficiency | Serum 25(OH)D | Not provided | Not provided | Deficiency: <50 nmol/L Severe deficiency: <25 nmol/L | |
Obese adults | ESE [62] | 2020 | Not provided | Not routinely recommended | Serum 25(OH)D | Not provided | Not provided | Not provided |
ES [41] | 2024 | 600 IU daily | Recommendation against routine testing | Serum 25(OH)D | NA | NA | NA | |
Inflammatory bowel disease | AGA [81] | 2024 | Not provided | All patients with inflammatory bowel disease | Serum 25(OH)D | Not provided | Not provided | Not provided |
BSG [80] | 2019 | Not provided | Adults with Crohn’s disease or ulcerative colitis | Serum 25(OH)D | Not provided | Not provided | Deficiency: <50 nmol/L | |
Rheumatic disorders | ACR [107] | 2022 | 600–800 IU daily | Children and adults beginning or continuing chronic glucocorticoids at a dose of ≥2.5 mg/day for >3 months | Serum 25(OH)D | Before initiating treatment | Not provided | Target level 75 to 125 nmol/L |
Chronic kidney disease | KDIGO [110] | 2017 | Not provided | Suggested in patients with CKD, especially when treated with antiresorptives | Serum 25(OH)D | Not provided | Not provided | Not provided, but should at least be 50–75 nmol/L |
Older adults | IOF [57] | 2010 | 800–1000 IU daily | Measure in those at risk for deficiency | Serum 25(OH)D | Not provided | Not provided; retest 3 months after supplementation | Insufficiency: <75 nmol/L Deficiency: <50 nmol/L |
ES [41] | 2024 | 800 IU [20 μg] daily for those older than 70 years | Recommendation against routine screening | Serum 25(OH)D | NA | NA | NA | |
ESCEO [56] | 2022 | 800–1000 IU daily | Not provided. Supplementation recommended in persons at increased risk of deficiency | Serum 25(OH)D concentration | Not provided | Not provided | Deficiency: <25 or 30 nmol/L | |
BBC [3] | 2020 | 800–1000 IU daily | Postmenopausal women with at least 1 major risk factor for osteoporosis who undergo further assessment for osteoporosis | Serum 25(OH)D (accurate and standardized method) | Women age ≥ 65 years who undergo assessment for osteoporosis | Monitoring in those on supplements; re-screening every 2 years if non-treated | Treatment target > 50 nmol/L | |
After bariatric surgery | BOMSS [74] | 2020 | 2000–4000 IU daily, adjusted as per monitoring | Adults undergoing bariatric surgery | Serum 25(OH)D | Pre-surgery | 3, 6 and 12 months in the first year and at least annually | Serum 25(OH)D > 75 nmol/L considered sufficient |
ES [73] | 2010 | Not provided | Adults undergoing bariatric surgery | Serum 25(OH)D | Pre-surgery | Every 6 months | Serum 25(OH)D > 75 nmol/L considered optimal | |
After fragility fracture | EULAR/EFFORT [96] | 2017 | 800 IU daily | Patients older than 50 years with a fragility fracture | Not provided | When clinically indicated | Not provided | Not provided |
3. How to Evaluate Vitamin D Status?
3.1. The Issues with Serum 25(OH)D?
3.2. The Measurement and Clinical Interest of the 24,25(OH)2D Metabolite
3.3. The Measurement and Clinical Relevance of 1,25(OH)2D
4. Challenges and Perspectives
5. Summary
Author Contributions
Funding
Conflicts of Interest
References
- Alonso, N.; Zelzer, S.; Eibinger, G.; Herrmann, M. Vitamin D Metabolites: Analytical Challenges and Clinical Relevance. Calcif. Tissue Int. 2023, 112, 158–177. [Google Scholar] [CrossRef]
- Giustina, A.; Bouillon, R.; Binkley, N.; Sempos, C.; Adler, R.A.; Bollerslev, J.; Dawson-Hughes, B.; Ebeling, P.R.; Feldman, D.; Heijboer, A.; et al. Controversies in Vitamin D: A Statement from the Third International Conference. JBMR Plus. 2020, 4, e10417. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Rodriguez, D.; Bergmann, P.; Body, J.J.; Cavalier, E.; Gielen, E.; Goemaere, S.; Lapauw, B.; Laurent, M.R.; Rozenberg, S.; Honvo, G.; et al. The Belgian Bone Club 2020 guidelines for the management of osteoporosis in postmenopausal women. Maturitas 2020, 139, 69–89. [Google Scholar] [CrossRef]
- Bouillon, R.; Carmeliet, G. Vitamin D insufficiency: Definition, diagnosis and management. Best Pract Res. Clin. Endocrinol. Metab. 2018, 32, 669–684. [Google Scholar] [CrossRef] [PubMed]
- Bikle, D.; Christakos, S. New aspects of vitamin D metabolism and action—Addressing the skin as source and target. Nat. Rev. Endocrinol. 2020, 16, 234–252. [Google Scholar] [CrossRef] [PubMed]
- Salinas, M.; López-Garrigós, M.; Flores, E.; Leiva-Salinas, C.; on behalf of the Pilot Group of the Appropriate Utilization of Laboratory Tests (REDCONLAB) working group. Temporal and regional variability in the request of vitamin D from general practitioners in Spain. Clin. Chem. Lab. Med. (CCLM) 2017, 55, 1754–1760. [Google Scholar] [CrossRef] [PubMed]
- Caillet, P.; Goyer-Joos, A.; Viprey, M.; Schott, A.M. Increase of Vitamin D assays prescriptions and associated factors: A population-based cohort study. Sci. Rep. 2017, 7, 10361. [Google Scholar] [CrossRef]
- Baird, J.; Jacob, C.; Barker, M.; Fall, C.H.D.; Hanson, M.; Harvey, N.C.; Inskip, H.M.; Kumaran, K.; Cooper, C. Developmental Origins of Health and Disease: A Lifecourse Approach to the Prevention of Non-Communicable Diseases. Healthcare 2017, 5, 14. [Google Scholar] [CrossRef] [PubMed]
- Avenell, A.; Jcs, M.; Connell, O.D. Vitamin D and vitamin D analogues for preventing fractures in post-menopausal women and older men. Cochrane Database Syst. Rev. 2014. [Google Scholar] [CrossRef]
- Bjelakovic, G.; Gluud, L.L.; Nikolova, D.; Withfield, K.; Wetterslev, J.; Simonetti, R.G.; Bjelakovic, M.; Gluud, C. Vitamin D supplementation for prevention of mortality in adults. Cochrane Database Syst. Rev. 2014, 1, 1–254. [Google Scholar] [CrossRef]
- Bjelakovic, G.; Gluud, L.L.; Nikolova, D.; Withfield, K.; Krstic, G.; Wetterslev, J.; Gluud, C. Vitamin D supplementation for prevention of cancer in adults. Cochrane Database Syst. Rev. 2014, 6, 1–135. [Google Scholar] [CrossRef]
- Manson, J.E.; Cook, N.R.; Lee, I.-M.; Christen, W.; Basuk, S.S.; Mora, S.; Gibson, H.; Gordon, D.; Copeland, T.; D’Agostino, D.; et al. Vitamin D Supplements and Prevention of Cancer and Cardiovascular Disease. N. Engl. J. Med. 2019, 380, 33–44. [Google Scholar] [CrossRef] [PubMed]
- Breth-Petersen, M.; Bell, K.; Pickles, K.; McGain, F.; McAlister, S.; Barratt, A. Health, financial and environmental impacts of unnecessary vitamin D testing: A triple bottom line assessment adapted for healthcare. BMJ Open 2022, 12, e056997. [Google Scholar] [CrossRef] [PubMed]
- Saponaro, F.; Saba, A.; Zucchi, R. An update on vitamin d metabolism. Int. J. Mol. Sci. 2020, 21, 6573. [Google Scholar] [CrossRef] [PubMed]
- Makris, K.; Bhattoa, H.P.; Cavalier, E.; Phinney, K.; Sempos, C.T.; Ulmer, C.Z.; Vasikaran, S.D.; Vesper, H.; Heijboer, A.C. Recommendations on the measurement and the clinical use of vitamin D metabolites and vitamin D binding protein—A position paper from the IFCC Committee on bone metabolism. Clin. Chim. Acta 2021, 517, 171–197. [Google Scholar] [CrossRef] [PubMed]
- Bailey, D.; Veljkovic, K.; Yazdanpanah, M.; Adeli, K. Analytical measurement and clinical relevance of vitamin D3 C3-epimer. Clin. Biochem. 2013, 46, 190–196. [Google Scholar] [CrossRef] [PubMed]
- Mantoanelli, L.; de Almeida, C.M.; Coelho, M.C.A.; Coutinho, M.; Levine, M.A.; Collett-Solberg, P.F.; Bordallo, A.P. Vitamin D—Dependent Rickets Type 3: A Case Report and Systematic Review. Calcif. Tissue Int. 2023, 112, 512–517. [Google Scholar] [CrossRef]
- Touvier, M.; Deschasaux, M.; Montourcy, M.; Sutton, A.; Charnaux, N.; Kesse-Guyot, E.; Assmann, K.E.; Fezeu, L.; Latino-Martel, P.; Druesne-Pecollo, N.; et al. Determinants of vitamin D status in Caucasian adults: Influence of sun exposure, dietary intake, sociodemographic, lifestyle, anthropometric, and genetic factors. J. Investig. Dermatol. 2015, 135, 378–388. [Google Scholar] [CrossRef] [PubMed]
- Thuesen, B.; Husemoen, L.; Fenger, M.; Jakobsen, J.; Schwarz, P.; Toft, U.; Ovese, L.; Jorgensen, T.; Linneberg, A. Determinants of vitamin D status in a general population of Danish adults. Bone 2012, 50, 605–610. [Google Scholar] [CrossRef]
- Adebayo, F.A.; Itkonen, S.T.; Lilja, E.; Jääskeäinen, T.; Lundqvist, A.; Laatikainen, T.; Koponen, P.; Cashman, K.D.; Erkkola, M.; Lamberg-Allardt, C. Prevalence and determinants of vitamin D deficiency and insufficiency among three immigrant groups in Finland: Evidence from a population-based study using standardised 25-hydroxyvitamin D data. Public Health Nutr. 2020, 23, 1254–1265. [Google Scholar] [CrossRef]
- Lips, P.; van Schoor, N.M.; de Jongh, R.T. Diet, sun, and lifestyle as determinants of vitamin D status. Ann. N. Y. Acad. Sci. 2014, 1317, 92–98. [Google Scholar] [CrossRef] [PubMed]
- Berry, D.; Hyppönen, E. Determinants of vitamin D status: Focus on genetic variations. Curr. Opin. Nephrol. Hypertens. 2011, 20, 331–336. [Google Scholar] [CrossRef] [PubMed]
- Hyppönen, E.; Vimaleswaran, K.S.; Zhou, A. Genetic Determinants of 25-Hydroxyvitamin D Concentrations and Their Relevance to Public Health. Nutrients 2022, 14, 4408. [Google Scholar] [CrossRef] [PubMed]
- Powe, C.E.; Evans, M.K.; Wenger, J.; Zonderman, A.B.; Berg, A.H.; Nalls, M.; Tamez, H.; Zhang, D.; Bhan, I.; Karumanchi, A.; et al. Vitamin D–Binding Protein and Vitamin D Status of Black Americans and White Americans. N. Engl. J. Med. 2013, 369, 1991–2000. [Google Scholar] [CrossRef] [PubMed]
- Weishaar, T.; Rajan, S.; Keller, B. Probability of Vitamin D Deficiency by Body Weight and Race/Ethnicity. J. Am. Board. Fam. Med. 2016, 29, 226–232. [Google Scholar] [CrossRef] [PubMed]
- Theodoratou, E.; Tzoulaki, I.; Zgaga, L.; Ioannidis, J.P.A. Vitamin D and multiple health outcomes: Umbrella review of systematic reviews and meta-analyses of observational studies and randomised trials. Br. Med. J. 2014, 348, g2035. [Google Scholar] [CrossRef] [PubMed]
- Bucurica, S.; Prodan, I.; Pavalean, M.; Taubner, C.; Bucutrica, A.; Socol, C.; Calin, R.; Ionita-Radu, F.; Jinga, M. Association of Vitamin D Deficiency and Insufficiency with Pathology in Hospitalized Patients. Diagnostics 2023, 13, 998. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Schuetz, E.G.; Xu, Y.; Thummel, K.E. Interplay between vitamin D and the drug metabolizing enzyme CYP3A4. J. Steroid Biochem. Mol. Biol. 2013, 136, 54–58. [Google Scholar] [CrossRef] [PubMed]
- Lenherr-taube, N.; Furman, M.; Assor, E.; Thummel, K.; Levine, A.; Sochett, E. Rifampin monotherapy for children with idiopathic infantile hypercalcemia. J. Steroid Biochem. Mol. Biol. 2023, 231, 106301. [Google Scholar] [CrossRef]
- Davidson, Z.E.; Walker, K.Z.; Truby, H. Do Glucocorticosteroids Alter Vitamin D Status ? A Systematic Review with Meta-Analyses of Observational Studies. J. Clin. Endocrinol. Metab. 2012, 97, 738–744. [Google Scholar] [CrossRef]
- Marcinowska-Suchowierska EwaKupisz-Urbanska, M.; Lukaszkiewicz, J.; Pludowski, P.; Jones, G. Vitamin D Toxicity—A Clinical Perspective. Front. Endocrinol. 2018, 9, 550. [Google Scholar] [CrossRef]
- Cools, M.; Goemaere, S.; Baetens, D.; Raes, A.; Desloovere, A.; Kaufman, J.M.; De Schepper, J.; Jans, I.; Vanderschueren, D.; Billen, J.; et al. Calcium and bone homeostasis in heterozygous carriers of CYP24A1 mutations: A cross-sectional study. Bone 2015, 81, 89–96. [Google Scholar] [CrossRef]
- Schlingmann, K.P.; Ruminska, J.; Kaufmann, M.; Dursun, I.; Patti, M.; Kranz, B.; Pronicka, E.; Ciara, E.; Akcay, T.; Bulus, D.; et al. Autosomal-Recessive Mutations in SLC34A1 Encoding Sodium-Phosphate Cotransporter 2A Cause Idiopathic Infantile Hypercalcemia. J. Am. Soc. Nephrol. 2016, 27, 604–614. [Google Scholar] [CrossRef]
- Holick, M.F. The vitamin D deficiency pandemic: Approaches for diagnosis, treatment and prevention. Rev. Endocr. Metab. Disord. 2017, 25, 153–165. [Google Scholar] [CrossRef]
- Cashman, K.D. Vitamin D in childhood and adolescence. Postgrad. Med. J. 2007, 25, 230–235. [Google Scholar] [CrossRef]
- Saggese, G.; Vierucci, F.; Boot, A.M.; Czech-Kowalska, J.; Weber, G.; Camargo, C.A.; Mallet, E.; Fanos, M.; Shaw, N.J.; Holick, M.F. Vitamin D in childhood and adolescence: An expert position statement. Eur. J. Pediatr. 2015, 174, 565–576. [Google Scholar] [CrossRef]
- Institute of Medicine. Dietary Reference Intakes for Calcium and Vitamin D; The National Academies Press: Washington, DC, USA, 2011. [Google Scholar]
- Antonucci, R.; Locci, C.; Clemente, M.G.; Chicconi, E.; Antonucci, L. Vitamin D deficiency in childhood: Old lessons and current challenges. J. Pediatr. Endocrinol. Metab. 2018, 31, 247–260. [Google Scholar] [CrossRef]
- Bacchetta, J.; Edouard, T.; Laverny, G.; Bernardor, J.; Bertholet-thomas, A.; Castanet, M. Vitamin D and calcium intakes in general pediatric populations: A French expert consensus paper. Arch. Paediatr. 2022, 29, 312–325. [Google Scholar] [CrossRef]
- Raaijmakers, A.; Van Winckel, M.; Plaete, J.; Bovijn, L.; Van Overmeire, B.; Vandenplas, Y. Vitamine D voor kinderen in Vlaanderen. Tijdschr. voor Geneeskd. 2022, 79, 10–47671. [Google Scholar] [CrossRef]
- Demay, M.B.; Pittas, A.G.; Bikle, D.D.; Diab, D.L.; Kiely, M.E.; Lazaretti-Castro, M.; Lips, P.; Mitchel, D.M.; Murand, M.H.; Powers, S.; et al. Vitamin D for the Prevention of Disease: An Endocrine Society Clinical Practice Guideline. J. Clin. Endocrinol. Metab. 2024, 109, 1961–1974. [Google Scholar] [CrossRef]
- Van Schoor, N.M.; Lips, P. Worldwide vitamin D status. Best. Pract. Res. Clin. Endocrinol. Metab. 2011, 25, 671–680. [Google Scholar] [CrossRef] [PubMed]
- Aghajafari, F.; Nagulesapillai, T.; Ronksley, P.E.; Tough, S.C.; O’Beirne, M.; Rabi, D.M. Association between maternal serum 25-hydroxyvitamin D level and pregnancy and neonatal outcomes: Systematic review and meta-analysis of observational Studies. BMJ. 2013, 346, f1169. [Google Scholar] [CrossRef]
- Bi, W.G.; Nuyt, A.M.; Weiler, H.; Leduc, L.; Santamaria, C.; Wei, S.Q. Association between Vitamin D supplementation during pregnancy and offspring growth, morbidity, and mortality: A systematic review and meta-analysis. JAMA Pediatr. 2018, 172, 635–645. [Google Scholar] [CrossRef]
- Palacios, C.; Kostiuk, L.K.; Peña-Rosas, J.P. Vitamin D supplementation for women during pregnancy. Cochrane Database Syst. Rev. 2019, 7, CD008873. [Google Scholar] [CrossRef]
- Roth, D.E.; Morris, S.K.; Zlotkin, S.; Gernand, A.D.; Ahmed, T.; Shanta, S.S.; Papp, E.; Korsiak, J.; Shi, J.; Islam, M.M.; et al. Vitamin D Supplementation in Pregnancy and Lactation and Infant Growth. N. Engl. J. Med. 2018, 379, 535–546. [Google Scholar] [CrossRef]
- Roth, D.E.; Leung, M.; Mesfin, E.; Qamar, H.; Watterworth, J.; Papp, E. Vitamin D supplementation during pregnancy: State of the evidence from a systematic review of randomised trials. BMJ 2017, 359, j5237. [Google Scholar] [CrossRef]
- American College of Obstetricians and Gynecologists. Vitamin D: Screening and supplementation during pregnancy. Committee Opinion No. 495. Obs. Gynecol. 2011, 118, 197–198. [Google Scholar] [CrossRef]
- Rothman, K.J.; Moore, L.L.; Singer, M.R.; Nguyen, U.-S.D.; Mannino, S.; Milunsky, A. Teratogenicity of high vitamin a intake. N. Engl. J. Med. 1995, 333, 1369–1373. [Google Scholar] [CrossRef]
- Anagnostis, P.; Livadas, S.; Goulis, D.G.; Bretz, S.; Ceausu, I.; Durmusoglu, F.; Erkkola, R.; Fistonic, I.; Gambacciani, M.; Geukes, M.; et al. EMAS position statement: Vitamin D and menopausal health. Maturitas 2023, 169, 2–9. [Google Scholar] [CrossRef]
- de Jongh, R.T.; van Schoor, N.M.; Lips, P. Changes in vitamin D endocrinology during aging in adults. Mol. Cell Endocrinol. 2017, 453, 144–150. [Google Scholar] [CrossRef]
- Giustina, A.; Bouillon, R.; Dawson-Hughes, B.; Ebeling, P.R.; Lazaretti-Castro, M.; Lips, P.; Marcocci, C.; Bilezikian, J.P. Vitamin D in the older population: A consensus statement. Endocrine 2023, 79, 31–44. [Google Scholar] [CrossRef]
- Lips, P. Vitamin D deficiency and secondary hyperparathyroidism in the elderly: Consequences for bone loss and fractures and therapeutic implications. Endocr. Rev. 2001, 22, 477–501. [Google Scholar] [CrossRef]
- Rosen, C.J.; Taylor, C.L. Common misconceptions about vitamin D—Implications for clinicians. Nat. Rev. Endocrinol. 2013, 9, 434–438. [Google Scholar] [CrossRef]
- Krist, A.H.; Davidson, K.W.; Mangione, C.M.; Cabana, M.; Caughey, A.B.; Davis, E.M.; Donahue, K.E.; Doubeni, C.A.; Epling, J.W.; Kubik, M.; et al. Screening for Vitamin D Deficiency in Adults: US Preventive Services Task Force Recommendation Statement. JAMA—J. Am. Med. Assoc. 2021, 325, 1436–1442. [Google Scholar] [CrossRef]
- Chevalley, T.; Brandi, M.L.; Cashman, K.D.; Cavalier, E.; Harvey, N.C.; Maggi, S.; Cooper, C.; Al-Daghri, N.; Bock, O.; Bruyère, O.; et al. Role of vitamin D supplementation in the management of musculoskeletal diseases: Update from an European Society of Clinical and Economical Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases (ESCEO) working group. Aging Clin. Exp. Res. 2022, 34, 2603–2623. [Google Scholar] [CrossRef]
- Dawson-Hughes, B.; Mithal, A.; Bonjour, J.P.; Boonen, S.; Burckhardt, P.; Fuleihan, G.E.H.; Josse, R.G.; Lips, P.; Morales-Torres, J.; Yoshimura, N. IOF position statement: Vitamin D recommendations for older adults. Osteoporos. Int. 2010, 21, 1151–1154. [Google Scholar] [CrossRef]
- Binkley, N.; Lappe, J.; Singh, R.J.; Khosla, S.; Krueger, D.; Drezner, M.K.; Blank, R.D. Can vitamin D metabolite measurements facilitate a “treat-to-target” paradigm to guide vitamin D supplementation? Osteoporos. Int. 2015, 26, 1655–1660. [Google Scholar] [CrossRef]
- De Laet, C.; Kanis, J.A.; Odén, A.; Johanson, H.; Johnell, O.; Delmas, P.; Eisman, J.A.; Kroger, H.; Fujiwara, S.; Garnero, P.; et al. Body mass index as a predictor of fracture risk: A meta-analysis. Osteoporos. Int. 2005, 16, 1330–1338. [Google Scholar] [CrossRef]
- Premaor, M.O.; Pilbrow, L.; Tonkin, C.; Parker, R.A.; Compston, J. Obesity and fractures in postmenopausal women. J. Bone Miner. Res. 2010, 25, 292–297. [Google Scholar] [CrossRef]
- Pittas, A.G.; Jorde, R.; Kawahara, T.; Dawson-Hughes, B. Vitamin D supplementation for prevention of type 2 diabetes mellitus: To D or Not to D? J. Clin. Endocrinol. Metab. 2020, 105, 3721–3733. [Google Scholar] [CrossRef]
- Pasquali, R.; Casanueva, F.; Haluzik, M.; Van Hulsteijn, L.; Ledoux, S.; Monteiro, M.P.; Salvador, J.; Santini, F. European Society of Endocrinology Clinical Practice Guideline: Endocrine work-up in obesity. Eur. J. Endocrinol. 2020, 182, G1–G32. [Google Scholar] [CrossRef] [PubMed]
- Grethen, E.; McClintock, R.; Gupta, C.E.; Jones, R.M.; Cacucci, B.M.; Diaz, D.; Fulford, A.D.; Perkins, S.M.; Considine, R.V.; Peacock, M. Vitamin D and hyperparathyroidism in obesity. J. Clin. Endocrinol. Metab. 2011, 96, 1320–1326. [Google Scholar] [CrossRef] [PubMed]
- Roizen, J.D.; Long, C.; Casella, A.; O’Lear, L.; Caplan, I.; Lai, M.; Sasson, I.; Singh, R.; Makowski, A.J.; Simmons, R.; et al. Obesity Decreases Hepatic 25-Hydroxylase Activity Causing Low Serum 25-Hydroxyvitamin D. J. Bone Miner. Res. 2019, 34, 1068–1073. [Google Scholar] [CrossRef] [PubMed]
- Pittas, A.G.; Dawson-Hughes, B.; Sheehan, P.; Ware, J.H.; Knowler, W.C.; Aroda, V.R.; Brodsky, I.; Ceglia, L.; Chadha, C.; Chatterjee, R.; et al. Vitamin D Supplementation and Prevention of Type 2 Diabetes. N. Engl. J. Med. 2019, 381, 520–530. [Google Scholar] [CrossRef] [PubMed]
- Sohl, E.; De Jongh, R.T.; Heymans, M.W.; Van Schoor, N.M.; Lips, P. Thresholds for serum 25(OH)D concentrations with respect to different outcomes. J. Clin. Endocrinol. Metab. 2015, 100, 2480–2488. [Google Scholar] [CrossRef] [PubMed]
- Drincic, A.; Fuller, E.; Heaney, R.P.; Armas, L.A.G. 25-Hydroxyvitamin D response to graded vitamin D3 supplementation among obese adults. J. Clin. Endocrinol. Metab. 2013, 98, 4845–4851. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Wu, D.; Zhang, J.F.; Xu, D.; Xu, W.F.; Chen, Y.; Liu, B.Y.; Li, P.; Li, L. Changes in Bone Metabolism in Morbidly Obese Patients After Bariatric Surgery: A Meta-Analysis. Obes. Surg. 2016, 26, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.H.; Lee, W.J.; Chong, K.; Lee, Y.C.; Chen, S.C.; Huang, P.H.; Lin, S.J. High Incidence of Secondary Hyperparathyroidism in Bariatric Patients: Comparing Different Procedures. Obes. Surg. 2018, 28, 798–804. [Google Scholar] [CrossRef] [PubMed]
- Paccou, J.; Tsourdi, E.; Meier, C.; Palermo, A.; Pepe, J.; Body, J.J.; Zillikens, M.C. Bariatric surgery and skeletal health: A narrative review and position statement for management by the European Calcified Tissue Society (ECTS). Bone 2022, 154, 116236. [Google Scholar] [CrossRef]
- Riedt, C.S.; Brolin, R.E.; Sherrell, R.M.; Field, M.P.; Shapses, S.A. True fractional calcium absorption is decreased after Roux-en-Y gastric bypass surgery. Obesity 2006, 14, 1940–1948. [Google Scholar] [CrossRef]
- Schafer, A.L.; Weaver, C.M.; Black, D.M.; Wheeler, A.L.; Chang, H.; Szefc, G.V.; Stewart, L.; Rogers, S.J.; Carter, J.T.; Posselt, A.M.; et al. Intestinal Calcium Absorption Decreases Dramatically after Gastric Bypass Surgery Despite Optimization of Vitamin D Status. J. Bone Miner. Res. 2015, 30, 1377–1385. [Google Scholar] [CrossRef] [PubMed]
- Heber, D.; Greenway, F.L.; Kaplan, L.M.; Livingston, E.; Salvador, J.; Still, C. Endocrine and Nutritional Management of the Post-Bariatric Surgery Patient: An Endocrine Society Clinical Practice Guideline. J. Clin. Endocrinol. Metab. 2010, 95, 4823–4843. [Google Scholar] [CrossRef] [PubMed]
- Kane, M.O.; Parretti, H.M.; Pinkney, J.; Welbourn, R.; Hughes, C.A.; Mok, J.; Walker, N.; Thomas, D.; Devin, J.; Coulman, K.D.; et al. British Obesity and Metabolic Surgery Society Guidelines on perioperative and postoperative biochemical monitoring and micronutrient replacement for patients undergoing bariatric surgery—2020 update. Obes. Rev. 2020, 21, e13087. [Google Scholar] [CrossRef] [PubMed]
- Mokhtari, Z.; Hosseini, E.; Zaroudi, M.; Gibson, D.L.; Hekmatdoost, A.; Mansourian, M.; Salehi-Abargouei, A.; Faghihimani, Z.; Askari, G. The Effect of Vitamin D Supplementation on Serum 25-Hydroxy Vitamin D in the Patients Undergoing Bariatric Surgery: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. Obes. Surg. 2022, 32, 3088–3103. [Google Scholar] [CrossRef] [PubMed]
- White, J.H. Journal of Steroid Biochemistry & Molecular Biology Vitamin D deficiency and the pathogenesis of Crohn’s disease. J. Steroid Biochem. Mol. Biol. 2018, 175, 23–28. [Google Scholar] [PubMed]
- Ananthakrishnan, A.N.; Cagan, A.; Gainer, V.S.; Cai, T.; Cheng, S.C.; Savova, G.; Chen, P.; Szolovits, P.; Xia, Z.; De Jager, P.L.; et al. Normalization of plasma 25-hydroxy vitamin D is associated with reduced risk of surgery in Crohn’s disease. Inflamm. Bowel Dis. 2013, 19, 1921–1927. [Google Scholar] [CrossRef] [PubMed]
- Heikkilä, K.; Pearce, J.; Mäki, M.; Kaukinen, K. Celiac disease and bone fractures: A systematic review and meta analysis. J. Clin. Endocrinol. Metab. 2015, 100, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Larussa, T.; Suraci, E.; Nazionale, I.; Abenavoli, L.; Imeneo, M.; Luzza, F. Bone mineralization in celiac disease. Gastroenterol. Res. Pract. 2012, 2012, 198025. [Google Scholar] [CrossRef] [PubMed]
- Lamb, C.A.; Kennedy, N.A.; Raine, T.; Hendy, P.A.; Smith, P.J.; Limdi, J.K.; Bennett, C.; Gittens, S.; Dunlop, M.G.; Faiz, O.; et al. British Society of Gastroenterology consensus guidelines on the management of inflammatory bowel disease in adults. Gut 2019, 68, S1–S106. [Google Scholar] [CrossRef] [PubMed]
- Hashash, J.G.; Elkins, J.; Lewis, J.D.; Binion, D.G. AGA Clinical Practice Update on Diet and Nutritional Therapies in Patients With Inflammatory Bowel Disease: Expert Review. Gastroenterology 2024, 166, 521–532. [Google Scholar] [CrossRef]
- Bouillon, R.; Marcocci, C.; Carmeliet, G.; Bikle, D.; White, J.H.; Dawson-Hughes, B.; Lips, P.; Munns, C.F.; Lazaretti-Castro, M.; Giustina, A.; et al. Skeletal and Extraskeletal Actions of Vitamin D: Current Evidence and Outstanding Questions. Endocr. Rev. 2019, 40, 1109–1151. [Google Scholar] [CrossRef] [PubMed]
- Bertoldo, F.; Cianferotti, L.; Falchetti, A.; Fassio, A.; Gatti, D.; Gennari, L.; Giannini, S.; Girasole, G.; Gonnelli, S.; Malavolta, N.; et al. Definition, Assessment, and Management of Vitamin D Inadequacy: Suggestions, Recommendations, and Warnings from the Italian Society for Osteoporosis, Mineral Metabolism and Bone Diseases (SIOMMMS). Nutrients 2022, 25, 4148. [Google Scholar] [CrossRef] [PubMed]
- Gallagher, J.C.; Rosen, C.J. Vitamin D: 100 years of discoveries, yet controversy continues. Lancet Diabetes Endocrinol. 2023, 11, 362–374. [Google Scholar] [CrossRef] [PubMed]
- Chakhtoura, M.; Bacha, D.S.; Gharios, C.; Ajjour, S.; Assaad, M.; Jabbour, Y.; Kahale, F.; Bassatne, A.; Antoun, S.; Akl, E.A.; et al. Vitamin D Supplementation and Fractures in Adults: A Systematic Umbrella Review of Meta-Analyses of Controlled Trials. J. Clin. Endocrinol. Metab. 2022, 107, 882–898. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Chen, Y.; Ji, J.; Chang, J.; Yu, S.; Yu, B. The relationship between serum vitamin D and fracture risk in the elderly: A meta- analysis. J. Orthop. Surg. Res. 2020, 15, 81. [Google Scholar] [CrossRef] [PubMed]
- Ghahfarrokhi, S.H.; Hafshejani, A.M.; Sherwin, C.M.T.; Soureshjani, S.H. Relationship between serum vitamin D and hip fracture in the elderly: A systematic review and meta—Analysis. J. Bone Miner. Res. 2022, 40, 541–553. [Google Scholar] [CrossRef] [PubMed]
- National Osteoporosis Guideline Group. UK Clinical guideline for the prevention and treatment of osteoporosis. Arch. Osteoporos. 2021, 12, 43. [Google Scholar]
- Camacho, P.M.; Petak, S.M. Clinical Practice Guidelines American Association of Clinical Endocrinologists/American College of Endocrinology Clinical Practice Guidelines for the Diagnosis and Treatment of Postmenopausal Osteoporosis—2020 UPDATE. Endocr. Pract. 2020, 26, 1–46. [Google Scholar] [CrossRef]
- Radominski, C.S.; Bernardo, W.; De Paula, A.P.; Albergaria, B.; Moreira, C.; Eduardo, C.; Castro, C.H.M.; Augusto, C.; Zerbini, D.F.; Domiciano, D.S.; et al. Brazilian guidelines for the diagnosis and treatment of postmenopausal osteoporosis. Rev. Bras. Reumatol. 2017, 57 (Suppl. S2), 452–466. [Google Scholar] [CrossRef]
- Kanis, J.A.; Cooper, C.; Rizzoli, R.; Reginster, J.; Advisory, S. European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos. Int. 2019, 30, 3–44. [Google Scholar] [CrossRef]
- Morin, S.N.; Feldman, S.; Funnell, L.; Giangregorio, L.; Kim, S.; Mcdonald-blumer, H.; Santesso, N.; Ridout, R.; Ward, W.; Ashe, M.C.; et al. Clinical practice guideline for management of osteoporosis and fracture prevention in Canada: 2023 update. Can. Med. Assoc. J. 2023, 195, 1333–1348. [Google Scholar] [CrossRef]
- Shoback, D.; Rosen, C.J.; Black, D.M.; Cheung, A.M.; Murad, H.; Eastell, R. Pharmacological Management of Osteoporosis in Postmenopausal Women: An Endocrine Society Guideline Update. J. Clin. Endocrinol. Metab. 2020, 105, 587–594. [Google Scholar] [CrossRef] [PubMed]
- Scottish Intercollegiate Guidelines Network. SIGN 142—Management of Osteoporosis and the Prevention of Fragility Fractures; SIGN: Edinburgh, UK, 2021. [Google Scholar]
- Qaseem, A.; Forciea, M.A.; McLean, R.M.; Denberg, T.D. Treatment of Low Bone Density or Osteoporosis to Prevent Fractures in Men and Women: A Clinical Practice Guideline Update From the American College of Physicians. Ann. Intern. Med. 2017, 166, 818–839. [Google Scholar] [CrossRef] [PubMed]
- Lems, W.F.; Dreinhöfer, K.E.; Blauth, M.; Czerwinski, E.; Silva, J.A.P.; Herrera, A.; Hoffmeyer, P.; Kvien, T.; Maalouf, G.; Marsh, D.; et al. EULAR / EFORT recommendations for management of patients older than 50 years with a fragility fracture and prevention of subsequent fractures. Ann. Rheum. Dis. 2017, 76, 802–810. [Google Scholar] [CrossRef]
- Adami, S.; Isaia, G.; Luisetto, G.; Minisola, S.; Sinigaglia, L.; Gentilella, R.; Agnusdei, D.; Iori, N.; Nuti, R. Fracture Incidence and Characterization in Patients on Osteoporosis Treatment: The ICARO Study. J. Bone Miner. Res. 2006, 21, 1565–1570. [Google Scholar] [CrossRef] [PubMed]
- Adami, S.; Giannini, S.; Bianchi, G.; Sinigaglia, L.; Di Munno, O.; Fiore, C.E.; Minisola, S.; Rossini, M. Vitamin D status and response to treatment in post-menopausal osteoporosis. Osteoporos. Int. 2009, 25, 239–244. [Google Scholar] [CrossRef] [PubMed]
- Ishijima, M.; Sakamoto, Y.; Yamanaka, M.; Tokita, A.; Kitahara, K.; Kaneko, H.; Kurosawa, H. Minimum Required Vitamin D Level for Optimal Increase in Bone Mineral Density with Alendronate Treatment in Osteoporotic Women. Calcif. Tissue Int. 2009, 85, 398–404. [Google Scholar] [CrossRef] [PubMed]
- Carmel, A.S.; Shieh, A.; Bang, H.; Bockman, R.S. The 25(OH)D level needed to maintain a favorable bisphosphonate response is ≥33 ng/ml. Osteoporos. Int. 2012, 23, 2479–2487. [Google Scholar] [CrossRef] [PubMed]
- Antoniucci, D.M.; Vittinghof, E.; Palermo, L.; Black, D.M.; Sellmeyer, D.E. Vitamin D insufficiency does not affect response of bone mineral density to alendronate. Osteoporos. Int. 2009, 20, 1259–1266. [Google Scholar] [CrossRef]
- Gatenby, P.; Lucas, R.; Swaminathan, A. Vitamin D deficiency and risk for rheumatic diseases: An update. Curr. Opin. Rheumatol. 2013, 25, 184–191. [Google Scholar] [CrossRef]
- Franco, A.S.; Freitas, T.Q.; Bernardo, W.M.; Pereira, R.M.R. Vitamin D supplementation and disease activity in patients with immune-mediated rheumatic diseases. Medicine 2017, 96, e7024. [Google Scholar] [CrossRef] [PubMed]
- Harrison, S.R.; Li, D.; Jeffery, L.E.; Raza, K.; Hewison, M. Vitamin D, Autoimmune Disease and Rheumatoid Arthritis. Calcif. Tissue Int. 2020, 106, 58–75. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, Y.; Sigaux, J.; Letarouilly, J.; Sanchez, P. Efficacy of Oral Vitamin Supplementation in Inflammatory Rheumatic Disorders: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients 2021, 13, 107. [Google Scholar] [CrossRef] [PubMed]
- Sharp, C.A.; Macphie, E. Choosing Wisely UK, British Society for Rheumatology Clinicians’ recommendations. Clin. Med. 2018, 18, 439. [Google Scholar] [CrossRef]
- Humphrey, M.B.; Russell, L.; Danila, M.I.; Fink, H.A.; Guyatt, G.; Cannon, M.; Caplan, L.; Gore, S.; Grossman, J.; Hansen, K.E.; et al. 2022 American College of Rheumatology Guideline for the Prevention and Treatment of Glucocorticoid-Induced Osteoporosis. Arthritis Rheumatol. 2023, 75, 2088–2102. [Google Scholar] [CrossRef] [PubMed]
- Evenepoel, P.; Cunningham, J.; Ferrari, S.; Haarhaus, M.; Javaid, M.K.; Prieto-alhambra, D.; Cannata-andia, J.; Ferreira, A. European Consensus Statement on the diagnosis and management of osteoporosis in chronic kidney disease stages G4–G5D. Nephrol. Dial. Transplant. 2021, 36, 42–59. [Google Scholar] [CrossRef] [PubMed]
- Christodoulou, M.; Aspray, T.J.; Schoenmakers, I. Vitamin D Supplementation for Patients with Chronic Kidney Disease: A Systematic Review and Meta—Analyses of Trials Investigating the Response to Supplementation and an Overview of Guidelines. Calcif. Tissue Int. 2021, 109, 157–178. [Google Scholar] [CrossRef]
- Wheeler, D.C.; Winkelmayer, W.C. KDIGO 2017 Clinical Practice Guideline Update for the Diagnosis, Evaluation, Prevention, and Treatment of Chronic Kidney Disease—Mineral and Bone Disorder (CKD-MBD). Kidney Int. Suppl. 2017, 7, 1–59. [Google Scholar] [CrossRef]
- Harvey, N.C.; Ward, K.A.; Binkley, D.A.N.; Campusano, E.B.C. Optimisation of vitamin D status in global populations. Osteoporos. Int. 2024, 25, 0123456789. [Google Scholar] [CrossRef]
- Bikle, D.; Bouillon, R.; Thadhani, R.; Schoenmakers, I. Vitamin D metabolites in captivity? Should we measure free or total 25(OH)D to assess vitamin D status? J. Steroid Biochem. Mol. Biol. 2017, 173, 105–116. [Google Scholar] [CrossRef]
- Tsuprykov, O.; Chen, X.; Hocher, C.; Skoblo, R.; Yin, L.; Hocher, B. Why should we measure free 25 ( OH ) vitamin D ? J. Steroid Biochem. Mol. Biol. 2018, 180, 87–104. [Google Scholar] [CrossRef] [PubMed]
- Jukic, A.M.Z.; Hoofnagle, A.N.N.; Lutsey, P.L.L. Measurement of Vitamin D for Epidemiologic and Clinical Research: Shining Light on a Complex Decision. Am. J. Epidemiol. 2018, 187, 879–890. [Google Scholar] [CrossRef] [PubMed]
- Herrmann, M.; Farrell, C.J.L.; Pusceddu, I.; Fabregat-Cabello, N.; Cavalier, E. Assessment of Vitamin D status—A changing landscape. Clin. Chem. Lab. Med. 2017, 55, 3–26. [Google Scholar] [CrossRef] [PubMed]
- Bhan, I.; Powe, C.E.; Berg, A.H.; Ankers, E.; Wenger, J.B.; Karumanchi, S.A.; Thadhani, R.I. Bioavailable vitamin D is more tightly linked to mineral metabolism than total vitamin D in incident hemodialysis patients. Kidney Int. 2012, 82, 84–89. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Shapses, S.A.; Al-Hraishawi, H. Free and Bioavailable 25-Hydroxyvitamin D Levels in Patients with Primary Hyperparathyroidism. Endocr. Pract. 2016, 23, 66–71. [Google Scholar] [CrossRef] [PubMed]
- Jemielita, T.O.; Leonard, M.B.; Baker, J.; Sayed, S.; Zemel, B.S.; Shults, J.; Herskovitz, R.; Denburg, M.R. Association of 25-hydroxyvitamin D with areal and volumetric measures of bone mineral density and parathyroid hormone: Impact of vitamin D-binding protein and its assays. Osteoporos. Int. 2016, 27, 617–626. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Molina, M.; Santillan, C.; Murillo, M.; Valls, A.; Bosch, L.; Bel, J.; Granada, M.L. Measured free 25-hydroxyvitamin D in healthy children and relationship to total 25-hydroxyvitamin D, calculated free 25-hydroxyvitamin D and vitamin D binding protein. Clin. Biochem. 2018, 61, 23–27. [Google Scholar] [CrossRef] [PubMed]
- Stubbs, J.R.; Zhang, S.; Friedman, P.A.; Nolin, T.D. Decreased conversion of 25-hydroxyvitamin D3 to 24,25-dihydroxyvitamin D3 following cholecalciferol therapy in patients with CKD. Clin. J. Am. Soc. Nephrol. 2014, 9, 1965–1973. [Google Scholar] [CrossRef]
- Prytuła, A.; Vande, J.; Hans, W. Factors associated with 1, 25-dihydroxyvitamin D 3 concentrations in liver transplant recipients: A prospective observational longitudinal study. Endocrine 2016, 52, 93–102. [Google Scholar] [CrossRef]
- Powe, C.E.; Ricciardi, C.; Berg, A.H.; Erdenesanaa, D.; Collerone, G.; Ankers, E.; Wenger, J.; Karumanchi, S.A.; Thadhani, R.R.; Bhan, I. Vitamin D-binding protein modifies the vitamin D-bone mineral density relationship. J. Bone Miner. Res. 2011, 26, 1609–1616. [Google Scholar] [CrossRef]
- Jassil, N.K.; Sharma, A.; Bikle, D.; Wang, X. Vitamin D Binding Protein and 25-OH Vitamin D levels: Emerging applications. Endocr. Pract. 2017, 23, 605–613. [Google Scholar] [CrossRef] [PubMed]
- Henderson, C.M.; Lutsey, P.L.; Misialek, J.R.; Laha, T.J.; Selvin, E.; Eckfeldt, J.H.; Hoofnagle, A.N. Measurement by a novel LC-MS/MS methodology reveals similar serum concentrations of Vitamin D-binding protein in blacks and whites. Clin. Chem. 2016, 62, 179–187. [Google Scholar] [CrossRef] [PubMed]
- Nielson, C.M.; Jones, K.S.; Chun, R.F.; Jacobs, J.M.; Wang, Y.; Hewison, M.; Adams, J.S.; Swanson, C.M.; Lee, C.G.; Vanderschueren, D.D.; et al. Free 25-hydroxyvitamin D: Impact of vitamin D binding protein assays on racial-genotypic associations. J. Clin. Endocrinol. Metab. 2016, 101, 2226–2234. [Google Scholar] [CrossRef] [PubMed]
- Nielson, C.M.; Jones, K.S.; Bouillon, R. Role of Assay Type in Determining free 25-hydroxyvitamin D Levels in Diverse Populations. N. Engl. J. Med. 2016, 374, 1695–1696. [Google Scholar] [CrossRef] [PubMed]
- Kilpatrick, L.E.; Bouillon, R.; Davis, W.C.; Davis, W.C.; Henderson, C.M.; Hoofnagle, A.N.; Pauwels, S.; Vanderschueren, D.; Waelkens, E.; Wildiers, H.; et al. The influence of proteoforms: Assessing the accuracy of total vitamin D-binding protein quantification by proteolysis and LC-MS/MS. Clin. Chem. Lab. Med. 2023, 61, 78–85. [Google Scholar] [CrossRef]
- Ginsberg, C.; Hoofnagle, A.N.; Katz, R.; Becker, J.O.; Kritchevsky, S.B. The Vitamin D Metabolite Ratio Is Independent of Vitamin D Binding Protein Concentration. Clin. Chem. 2021, 67, 385–393. [Google Scholar] [CrossRef]
- Delanaye, P.; Lanot, A.; Bouquegneau, A.; Warling, X.; Radermacher, L.; Masset, C.; Krzesinski, J.M.; Moranne, O.; Cavalier, E. Monitoring 25-OH and 1,25-OH vitamin D levels in hemodialysis patients after starting therapy: Does it make sense? Clin. Chim. Acta 2023, 539, 50–54. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lapauw, B.; Laurent, M.R.; Rozenberg, S.; Body, J.-J.; Bruyère, O.; Gielen, E.; Goemaere, S.; Iconaru, L.; Cavalier, E. When and How to Evaluate Vitamin D Status? A Viewpoint from the Belgian Bone Club. Nutrients 2024, 16, 2388. https://doi.org/10.3390/nu16152388
Lapauw B, Laurent MR, Rozenberg S, Body J-J, Bruyère O, Gielen E, Goemaere S, Iconaru L, Cavalier E. When and How to Evaluate Vitamin D Status? A Viewpoint from the Belgian Bone Club. Nutrients. 2024; 16(15):2388. https://doi.org/10.3390/nu16152388
Chicago/Turabian StyleLapauw, Bruno, Michaël R. Laurent, Serge Rozenberg, Jean-Jacques Body, Olivier Bruyère, Evelien Gielen, Stefan Goemaere, Laura Iconaru, and Etienne Cavalier. 2024. "When and How to Evaluate Vitamin D Status? A Viewpoint from the Belgian Bone Club" Nutrients 16, no. 15: 2388. https://doi.org/10.3390/nu16152388
APA StyleLapauw, B., Laurent, M. R., Rozenberg, S., Body, J.-J., Bruyère, O., Gielen, E., Goemaere, S., Iconaru, L., & Cavalier, E. (2024). When and How to Evaluate Vitamin D Status? A Viewpoint from the Belgian Bone Club. Nutrients, 16(15), 2388. https://doi.org/10.3390/nu16152388