Can Faecal Zonulin and Calprotectin Levels Be Used in the Diagnosis and Follow-Up in Infants with Milk Protein-Induced Allergic Proctocolitis?
Abstract
:1. Introduction
2. Materials and Methods
2.1. OFC Procedures
2.2. Faecal Samples
2.3. Statistical Analysis
3. Results
3.1. Faecal Calprotectin (FC)
3.2. Faecal-Zonulin-Related Proteins (FZRP)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sicherer, S.H. Epidemiology of food allergy. J. Allergy Clin. Immunol. 2011, 127, 594–602. [Google Scholar] [CrossRef] [PubMed]
- Nwaru, B.I.; Hickstein, L.; Panesar, S.S.; Muraro, A.; Werfel, T.; Cardona, V.; Dubois, A.E.J.; Halken, S.; Hoffmann-Sommergruber, K.; Poulsen, L.K.; et al. EAACI Food Allergy and Anaphylaxis Guidelines Group. The epidemiology of food allergy in Europe: A systematic review and meta-analysis. Allergy 2014, 69, 62–75. [Google Scholar] [CrossRef] [PubMed]
- Flom, J.D.; Sicherer, S.H. Epidemiology of Cow’s Milk Allergy. Nutrients 2019, 11, 1051. [Google Scholar] [CrossRef]
- Savage, J.; Johns, C.B. Food allergy: Epidemiology and natural history. Immunol. Allergy Clin. N. Am. 2015, 35, 45–59. [Google Scholar] [CrossRef]
- D’Auria, E.; Salvatore, S.; Pozzi, E.; Mantegazza, C.; Sartorio, M.U.A.; Pensabene, L.; Baldassarre, M.E.; Agosti, M.; Vandenplas, Y.; Zuccotti, G.V. Cow’s Milk Allergy: Immunomodulation by Dietary Intervention. Nutrients 2019, 11, 1399. [Google Scholar] [CrossRef] [PubMed]
- Vandenplas, Y.; Meyer, R.; Nowak-Węgrzyn, A.; Salvatore, S.; Venter, C.; Vieira, M.C. The Remaining Challenge to Diagnose and Manage Cow’s Milk Allergy: An Opinion Paper to Daily Clinical Practice. Nutrients 2023, 15, 4762. [Google Scholar] [CrossRef]
- Liacouras, C.A. Food-Protein-Induced Allergic Proctocolitis of Infancy-UPToDate. Available online: https://www.uptodate.com/contents/food-protein-induced-allergic-proctocolitis-of-infancy (accessed on 8 April 2021).
- Sopo, M.S.; Monaco, S.; Bersani, G.; Romano, A.; Fantacci, C. Proposal for management of the infant with suspected food protein-induced proctocolitis. Pediatr. Allergy Immunol. 2018, 29, 215–218. [Google Scholar] [CrossRef]
- Mennini, A.; Fiocchi, A.G.; Cafarotti, A.; Montesano, M.; Mauro, A.; Villa, M.P.; Di Nardo, G. Food protein- induced allergic proctocolitis in infants. Literature review and proposal of a management protocol. World Allergy Organ. J. 2020, 13, 100471. [Google Scholar]
- Nowak-Węgrzyn, A. Food protein-induced enterocolitis syndrome and allergic proctocolitis. Allergy Asthma Proc. 2015, 36, 172–184. [Google Scholar] [CrossRef]
- Buyuktiryaki, B.; KulhasCelik, I.; Erdem, S.B.; Capanoglu, M.; Civelek, E.; Guc, B.U.; Guvenir, H.; Cakir, M.; Misirlioglu, E.; Akcal, O.; et al. Risk Factors Influencing Toleranceand Clinical Features of Food Protein-induced Allergic Proctocolitis. J. Pediatr. Gastroenterol. Nutr. 2020, 70, 574–579. [Google Scholar] [CrossRef]
- Kaya, A.; Toyran, M.; Civelek, E.; Misirlioglu, C.; Kirsaclioglu, C.; Kocabas, C. Characteristics and prognosis of allergic proctocolitis in infants. J. Pediatr. Gastroenterol. Nutr. 2015, 61, 69–73. [Google Scholar] [CrossRef] [PubMed]
- Nowak-Węgrzyn, A.; Katz, Y.; Mehr, S.S.; Koletzko, S. Non-IgE-mediated gastrointestinal food allergy. J. Allergy Clin. Immunol. 2015, 135, 1114–1124. [Google Scholar] [CrossRef]
- Lozinsky, A.C.; Morais, M. Eosinophyllic colitis in infants. J. Pediatr. 2014, 90, 16–21. [Google Scholar] [CrossRef] [PubMed]
- Cianferoni, A. Non-IgE Mediated Food allergy. Curr. Pediatr. Rev. 2020, 16, 95–105. [Google Scholar] [PubMed]
- Calvani, M.; Anania, C.; Cuomo, B.; D’Auria, E.; Decimo, F.; Indirli, G.C.; Marseglia, G.; Mastrorilli, V.; Santorio, M.U.A.; Santoro, A.; et al. Non-IgE- or Mixed IgE/Non-IgE-Mediated Gastrointestinal Food Allergies in the First Years of Life: Old and New Tools for Diagnosis. Nutrients 2021, 13, 226. [Google Scholar] [CrossRef] [PubMed]
- Del Arco, D.; Taxonera, C.; Olivares, D.; Acenero, F. Eosinophyllic colitis. Case series and literaturę review. Pathol. Res. Pract. 2018, 214, 100–104. [Google Scholar] [CrossRef]
- Koletzko, S.; Niggemann, B.; Aratό, A.; Dias, J.A.; Heuschkel, R.; Husby, S.; Mearin, M.L.; Papadopoulou, A.; Ruemmele, F.M.; Staiano, A.; et al. Diagnostic approach and management of cow’s-milk protein allergy in infants and children: ESPGHAN GI Committee practical guidelines. J. Pediatr. Gastroenterol. Nutr. 2012, 55, 221–229. [Google Scholar] [CrossRef]
- Waligora-Dupriet, A.J.; Campeotto, F.; Romero, K.; Mangin, I.; Rouzaud, G.; Ménard, O.; Suau, A.; Soulaines, P.; Nicolis, I.; Kapel, N.; et al. Diversity of gut Bifidobacterium 3905name proteins: Is calpoprotein a properspecies is not altered between allergic and non-allergic French infants. Anaerobe 2011, 17, 91–96. [Google Scholar] [CrossRef]
- Koninckx, C.R.; Donat, E.; Benninga, M.A.; Broekaert, I.J.; Gottrand, F.; Kolho, K.-L.; Lionetti, P.; Miele, E.; Orel, R.; Papadopoulou, A.; et al. The Use of Fecal Calpoprotectin Testing in Paediatric Disorders: A Position Paper of the European Society for Gastroenterology and Nutrition Gastroenterology Committee. J. Ped. Gastroenterol. Nutrition 2021, 4, 617–640. [Google Scholar] [CrossRef]
- Ajamian, M.; Steer, D.; Rosella, G.; Gibson, P.R. Serum zonulin as a marker of intestinal mucosal barier function: May not be what it seems. PLoS ONE 2019, 14, e0210728. [Google Scholar] [CrossRef]
- Fasano, A. Zonulin and its regulation of intestinal barier function: The biological door to inflammation, autoimmunity, and cancer. Physiol. Rev. 2011, 91, 151–175. [Google Scholar] [CrossRef] [PubMed]
- Fasano, A. Intestinal permeability and its regulation by zonulin: Diagnostic and therapeutic implications. Clin. Gastroenterol. Hepatol. 2012, 10, 1096–1100. [Google Scholar] [CrossRef] [PubMed]
- Drago, S.; Asmar, R.E.; Di Pierro, M.; Clemente, M.G.; Tripathi, A.; Sapone, A.; Thakar, M.; Iacono, G.; Carroccio, A.; D’Agate, C.; et al. Gliadin, zonulin and gut permeability: Effects on celiac and non-celiac intestine mucosa and intestinal cell lines. Scand. J. Gastroenterol. 2006, 4, 408–419. [Google Scholar] [CrossRef] [PubMed]
- Fiocchi, A.; Brozek, J.; Schunemann, H.; Bahna, S.; von Berg, A.; Beyer, K.; Bozzola, M.; Bradsher, J.; Compalati, E.; Ebisawa, M.; et al. World Allergy Organization (WAO) diagnosis and rationale for action against cow’s milk allergy (DRACMA) guidelines. World Allergy Organ. J. 2010, 3, 57–161. [Google Scholar] [CrossRef]
- Muraro, A.; Werfel, T.; Hoffmann-Sommergruber, K.; Roberts, G.; Beyer, K.; Bindslev-Jensen, C.; Cardona, V.; Dubois, A.; du Toit, G.; Eigenmann, P.; et al. EAACI food allergy and anaphylaxis guidelines: Diagnosis and management of food allergy. Allergy 2014, 69, 1008–1025. [Google Scholar] [CrossRef]
- Sampson, H.A.; Gerthvan, W.R.; Bindslev-Jensen, C.; Sicherer, S.; Teuber, S.S.; Burks, A.W. Standardizing double-blind, placebocontrolled oral food challenges: American Academy of Allergy, Asthma & Immunology-European Academy of Allergy and Clinical Immunology PRACTALL consensus report. J. Allergy Clin. Immunol. 2012, 130, 1260–1274. [Google Scholar]
- Nowak-Wegrzyn, A.; Assa’ad, A.H.; Bahna, S.L.; Bock, S.A.; Sicherer, S.H.; Teuber, S.S. Work group report: Oral food challengetesting. J. Allergy Clin. Immunol. 2009, 123, S365–S383. [Google Scholar] [CrossRef]
- Sampson, H.A.; Aceves, S.; Bock, S.A.; James, J.; Jones, S.; Lang, D. Food allergy: A practice parameter update—2014. J. Allergy Clin. Immunol. 2014, 134, 1016–1025. [Google Scholar] [CrossRef]
- Sturgeon, C.; Fasano, A. Zonulin, a regulator of epithelial and endothelial barrier functions, and its involvement in chronic inflammatory diseases. Tissue Barriers 2016, 4, e1251384. [Google Scholar] [CrossRef]
- Sheen, Y.H.; Jee, H.M.; Kim, D.H.; Ha, E.K.; Jeong, I.J.; Lee, S.J.; Baek, H.S.; Lee, S.W.; Lee, K.-J.; Lee, K.S.; et al. Serum is associated with presence and severity of atopic dermatitis in children, independent of total IgE and eosinophil. Clin. Exp. Allergy 2018, 48, 1059–1062. [Google Scholar] [CrossRef]
- Łoniewska, B.; Adamek, K.; Węgrzyn, D.; Kaczmarczyk, M.; Skonieczna-Żydecka, K.; Clark, J.; Adler, G.; Tousty, J.; Uzar, I.; Tousty, P.; et al. Analysis of Fecal Zonulin and Calpoprotectin Concentrations in Healthy Children during the First Two Years of Life. An Observational Prospective Cohort Study. J. Clin. Med. 2020, 9, 777. [Google Scholar] [CrossRef]
- Niewiem, M.; Grzybowska-Chlebowczyk, U. Assessment of Selected Intestinal Permeability Markers in Children with Food Allergy Depending on the Type and Severity of Clinical Symptoms. Nutrients 2022, 14, 4385. [Google Scholar] [CrossRef] [PubMed]
- Fasano, A. All disease begins in the (leaky) gut: Role of zonulin-mediated gut permeability in the pathogenesis of some chronić inflammatory diseases. F1000 Res. 2020, 9, 69. [Google Scholar] [CrossRef] [PubMed]
- Kort, S.; Keszthelyi, D.; Masclee, A.A. Leaky gut and diabetes mellitus. What is the link? Obes. Rev. 2011, 12, 449–458. [Google Scholar] [CrossRef]
- Küme, T.; Acar, S.; Tuhan, H.A. The relationship between serum zonulin level and clinical and laboratory parameters of childhood obesity. J. Clin. Res. Pediatr. Endocrinol. 2017, 9, 31–38. [Google Scholar] [CrossRef]
- Fasano, A.; Not, T.; Wang, W. Zonulin, a newly discovered modulator of intestinal permeability, and its expression in coeliac disease. Lancet 2000, 29, 1518–1519. [Google Scholar] [CrossRef]
- Szymańska, E.; Wierzbicka, A.; Dadalski, M.; Kierkuś, J. Fecal Zonulin as a Noninvasive Biomarker of Intestinal Permeability in Pediatric Patients with Inflammatory Bowel Diseases—Correlation with Disease Activity and Fecal Calpoprotein. J. Clin. Med. 2021, 10, 3905. [Google Scholar] [CrossRef]
- Caviglia, G.P.; Dughera, F.; Ribaldone, D.G.; Rosso, C.; Abate, M.L.; Pellicano, R.; Bresso, F.; Smedile, A.; Sarracco, G.M.; Astegiana, M. Serum zonulin in patients with inflammatory bowel disease: A pilot study. Minerva Med. 2019, 110, 95–100. [Google Scholar] [CrossRef]
- Malíčková, K.; Francová, I.; Lukáš, M.; Kolář, M.; Králíková, E.; Bortlík, M.; Ďuricová, D.; Štěpánková, L.; Zvolská, K.; Pánková, A.; et al. Fecal zonulin is elevated in Crohn’s disease and in cigarette smokers. Pract. Lab. Med. 2017, 9, 39–44. [Google Scholar] [CrossRef]
- Szymanska, E.; Bierla, J.; Dadalski, M.; Wierzbicka, A.; Konopka, E.; Cukrowska, B.; Kierkus, J. New non-invasive biomarkers of intestinal inflammation and increased intestinal permeability in pediatric inflammatory bowel diseases and their correlation with fecal calprotectin: A pilot study. Minerva Gastroenterol. (Torino) 2022. [Google Scholar] [CrossRef]
- Esnafoglu, E.; Cırrık, S.; Ayyıldız, S.N.; Erdil, A.; Ertürk, E.Y.; Daglı, A.; Noyan, T. Increased Serum Zonulin Levels as an Intestinal Permeability Marker in Autistic Subjects. J. Pediatr. 2017, 188, 240–244. [Google Scholar] [CrossRef] [PubMed]
- Seethaler, B.; Basrai, M.; Neyrinck, A.M.; Nazare, J.-A.; Walter, J.; Delzenne, N.M.; Bischoff, S.C. Biomarkers for assessment of intestinal permeability in clinical practice. Am. J. Physiol. Gastrointest. Liver Physiol. 2021, 1, G11–G17. [Google Scholar] [CrossRef] [PubMed]
- Fagerhol, M.K.; Dale, I.; Anderson, T. Releae and quantition of a leucocyte derived protein (L1). Scand. J. Hematol. 1980, 24, 393–398. [Google Scholar] [CrossRef]
- Fagerhol, M.K. Nomenclature for proteins: Is calpoprotein a proper name for the elusive myelomonocytic protein? Clin. Mol. Pathol. 1996, 49, M74–M79. [Google Scholar] [CrossRef]
- Naess-Andresen, C.F.; Egelandsdal, B.; Fagerhol, M.K. Calcium binding and concomitant changes in the structureand heat stability of cal-protectin (L1 protectin). Clin. Mol. Pathol. 1995, 48, M278–M284. [Google Scholar] [CrossRef]
- Montalto, M.; Gallo, A.; Santoro, L.; Landolfi, R.; Gasbarrini, A. Role of fecal calpoprotectin in gastrointestinal disorders. Eur. Rev. Med. Pharmacol. Sci. 2013, 17, 1569–1582. [Google Scholar] [PubMed]
- Johne, B.; Fagerhol, M.K.; Lyberg, T.; Prydz, H.; Brandtzaeg, P.; Naess-Andresen, C.F.; Dale, I. Functonal and clinical aspects of the myelomonocyte protein calpoprotectin. Mol. Pathol. 1997, 50, 113–123. [Google Scholar] [CrossRef]
- Turner, D.; Ruemmele, F.M.; Orlanski-Meyer, E.; Griffiths, A.M.; de Carpi, J.M.; Bronsky, J.; Veres, G.; Aloi, M.; Strisciuglio, C.; Braegger, C.; et al. Management of Paediatric Ulcerative Colitis, Part 1: Ambulatory Care—An Evidence-based GuidelineFrom European Crohn’s and Colitis Organization and European Society of Paediatric Gastroenterology, Hepatology and Nutrition. J. Pediatr. Gastroenterol. Nutr. 2018, 2, 257–291. [Google Scholar] [CrossRef]
- Torres, J.; Bonovas, S.; Doherty, G.; Kucharzik, T.; Gisbert, J.P.; Raine, T.; Adamina, M.; Armuzzi, A.; Bachmann, O.; Bager, P.; et al. ECCO Working Group. ECCO Guidelines on Therapeutic in Crohn’s Disease: Medical Treatment. J. Crohn’s Colitis 2020, 14, 4–22. [Google Scholar] [CrossRef]
- D’Angelo, F.; Felley, C.; Frossard, J.L. Calpoprotectin in Daily Practice: Where Do We Stand in 2017? Digestion 2017, 95, 293–301. [Google Scholar] [CrossRef]
- Roca, M.; Rodriguez, V.A.; Donat, E.; Cano, F.; Hervas, D.; Armisen, A.; Vaya, M.J.; Sjölander, A.; Ribes-Koninckx, C. Fecal Calprotectin and Eosinophil-derived Neurotoxin in Healthy Children between 0 and 12 Years. J. Pediatr. Gastroenterol. Nutr. 2017, 65, 394–398. [Google Scholar] [CrossRef]
- Oord, T.; Hornung, N. Fecal calpoprotectin in healthy children. Scand. J. Clin. Lab. Investig. 2014, 74, 254–258. [Google Scholar] [CrossRef]
- Ezri, J.; Nydegger, A. Pediatrics. Fecal calpoprotectinin children. Use an interpretation. Rev. Med. Suisse 2011, 7, 69–70. [Google Scholar] [PubMed]
- Olafsdottir, E.; Aksnes, E.; Fluge, G.; Berstad, A. Fecal calpoprotectin levels in infants with infantile colic, healthy infans, childrem with inflammatory bowel disease, children recurrent abdominal pain and healthy children. Acta Paediatr. 2002, 91, 45–50. [Google Scholar] [CrossRef]
- Hestvik, E.; Tumwine, J.K.; Tylleskar, T.; Granhquist, L.; Ndezzi, G.; Kaddu- Mulindwa, D.H.; Aksnes, L.; Olafsdottir, E. Faecal calprotectin concentrations in apparently healthy children aged 0–12 years in urban Kampala, Uganda: A community-based survey. BMC Pediatr. 2011, 7, 69–70. [Google Scholar] [CrossRef]
- Li, F.; Ma, J.; Geng, S.; Wang, J.; Liu, J.; Zhang, J.; Sheng, X. Fecal calpoprotectin concentrations in healthy children aged 1–18 months. PLoS ONE 2015, 10, e0119574. [Google Scholar] [CrossRef]
- Song, J.Y.; Lee, Y.M.; Choi, Y.J.; Jeong, S.J. Fecal calprotectin level in healthy children aged less than 4 years in South Korea. J. Clin. Lab. Anal. 2017, 31, e22113. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.M.; Min, C.Y.; Choi, Y.J.; Jeong, S.J. Delivery and feeding mode affects fecal calprotectin levels in infants <7 months old. Early Hum. Dev. 2017, 108, 45–48. [Google Scholar]
- Peura, S.; Fall, T.; Almqvist, C.; Andolf, E.; Hedman, A.; Pershagen, G.; Helmersson-Karlqvist, J.; Larsson, A. Normal values for calpoprotectin in stool samples of infants from the population –based longitudinal born into life study. Scand. J. Clin. Investig. 2018, 78, 120–124. [Google Scholar] [CrossRef]
- Łoniewska, B.; Węgrzyn, D.; Adamek, K.; Kaczmarczyk, M.; Skonieczna-Żydecka, K.; Adler, G.; Jankowska, A.; Uzar, I.; Kordek, A.; Celewicz, M.; et al. The influence of Maternal-Foetal Parameters on Concentrations of Zonulin and Calpoprotectin in the Blood and Stool of Healthy Newborns during the First Seven Days of Life. An Observational Prospective Cohort Study. J. Clin. Med. 2019, 8, 473. [Google Scholar] [CrossRef] [PubMed]
- Park, J.S.; Cho, J.Y.; Chung, C.; Oh, S.H.; Do, H.-j.; Seo, J.-H.; Lim, J.Y.; Park, C.-H.; Woo, H.-O.; Youn, H.-S. Dynamic Changes of Fecal Calpoprotectin and Related Clinical Factors in Neonates. Front. Pediatr. 2020, 8, 326. [Google Scholar] [CrossRef]
- Rycyk, A.; Cudowska, B.; Lebensztejn, D.M. Eosinophil-Derived Neurotoxin, Tumor Necrosis Factor Alfa, and Calpoprotectin as Non-Invasive Biomarkers of Food Protein-Induced Allergic Proctocolitis in Infants. J. Clin. Med. 2020, 9, 3147. [Google Scholar] [CrossRef]
- Qiu, L.; Wang, J.; Ren, F.; Shen, L.; Li, F. Can fecal calpoprotectin levels be used to monitor infant milk protein allergies? Allergy Asthma Clin. Immunol. 2021, 17, 132. [Google Scholar] [CrossRef] [PubMed]
- Orivuori, L.; Mustonen, K.; de Goffau, M.; Hakala, S.; Paasela, M.; Roduit, C.; Dalphin, J.-C.; Genuneit, J.; Lauener, R.; Riedler, J.; et al. PASTURE Study Group. High level of fecal calpoprotectin at age 2 months as a marker of intestinal inflammation predicts atopic dermatitis and asthma by age 6. Clin. Exp. Allergy 2015, 45, 928–939. [Google Scholar] [CrossRef] [PubMed]
- Merras-Salmio, L.; Kolho, K.; Pelkonen, A.S.; Kuitunen, M.; Mäkelä, M.J.; Savilahti, E. Markers of gut mucosal inflammation and cow’s milk specific immunoglobulins in non-IgE cow’s milk allergy. Clin. Trans. Allergy 2014, 4, 8. [Google Scholar] [CrossRef]
- Fagerberg, U.L.; Lööf, L.; Merzoug, R.D.; Hansson, L.-O.; Finkel, Y. Fecal calpoprotectin levels in healthy children studied with an improved assay. J. Pediatr. Gastroenterol. Nutr. 2003, 37, 468–472. [Google Scholar]
- Savino, F.; Castagno, E.; Calabrese, R.; Viola, S.; Oggero, R.; Miniero, R. High fecal calpoprotectin levels in healthy, exclusively breast-fed infants. Neonatology 2010, 97, 29–304. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Ma, J.; Geng, S.; Wang, J.; Fang Ren, F.; Sheng, X. Comparison of the different kinds of feeding on the level of fecal calpoprotectin. Early. Hum. Dev. 2014, 90, 471–475. [Google Scholar] [CrossRef]
- Castanet, M.; Costalos, C.; Hajden, N.; Hascoet, J.-M.; Berger, B.; Sprenger, N.; Grathwolh, D.; Brüssow, H.; De Groot, N.; Steenhout, P.; et al. Early Effect of Supplemented Infant Formulae on Intestinal Biomarkers and microbiota: ARandomized Clinical Trial. Nutrients 2020, 12, 1481. [Google Scholar] [CrossRef]
- Vidova, V.; Benesova, E.; Klanova, J.; Thon, V.; Spacil, Z. Simultaneous Quantitative profiling of clinically relevant immune markers in neonatal stool swabs to reveal inflammation. Sci. Rep. 2021, 11, 10222. [Google Scholar] [CrossRef]
- Baldassarre, M.E.; Laforgia, N.; Fanelli, M.; Laneve, A.; Grosso, R.; Lifschitz, C. Lactobacillus GG improves recovery in infants with blood in the stools and presumptive allergic colitis compared with extensively hydrolyzed formula alone. J. Pediatr. 2010, 156, 397–401. [Google Scholar] [CrossRef]
- Lendvai-Emmert, D.; Emmert, V.; Makai, A.; Fusz, K.; Prémusz, V.; Eklics, K.; Sarlós, P.; Tóth, P.; Amrein, K.; Tóth, G. Fecal calprotectin levels in pediatric cow’s milk protein allergy. Front. Pediatr. 2022, 10, 945212. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.-H.; Wang, W.; Zhang, X.-H.; Pan, J.; Chen, X. Fecal Calprotectin in Children with Cow’s Milk Protein Allergy: A Systematic Review and Meta-Analysis. Int. Arch. Allergy Immunol. 2022, 183, 1189–1197. [Google Scholar] [CrossRef]
- Beşer, Ö.F.; Sancak, S.; Erkan, T.; Kutlu, T.; Cokuğraş, H.; Cokuğraş, F.C. Can fecal calpoprotectin level be used as a markers of inflammation in the diagnosis and follow-up of cow’s milk protein allergy? Allergy Asthma Immunol. Res. 2014, 6, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Belizón, T.C.; Paez, O.E.; Claros, A.F.M.; Sanchez, I.R.; Gonzales, A.R.; Medialdea, R.V.; Salguero, J.M.R. Fecal calpoprotectin as an aid to the diagnosis of non-IgE mediated cow’s milk protein Allergy. Ann. Pediatr. 2016, 84, 318–323. [Google Scholar]
- Roca, M.; Donat, E.; Varela, A.R.; Carjaval, E.; Cano, F.; Armisen, A.; Ekoff, H.; Canada-Martinez, A.J.; Rydell, N.; Ribes-Koninckx, C. Fecal Calpoprotectin and Eosinophil-Derived Neurotoxin in Children with Non-IgE-Mediated Cow’s Milk Protein. Allergy J. Clin. Med. 2021, 10, 1595. [Google Scholar] [CrossRef]
- Xiong, L.-J.; Xie, X.-L.; Deng, X.-Z. Current status of fecal calpoprotectin as a diagnostic or monitoring biomarker for cow’s milk protein allergy in children: A scoping review. World J. Pediatr. 2021, 17, 63–70. [Google Scholar] [CrossRef]
- Galip, N.; Yuruker, O.; Babayigit, A. Characteristics of allergic proctocolitis in early infancy; accuracy of diagnostic tools and factors related to tolerance development. Asian Pac. J. Allergy Immunol. 2021. [Google Scholar] [CrossRef]
Parameter | Study Group MPIAP0 n = 86 | Control Group * n = 30 | p |
---|---|---|---|
Age median (mo) | 2 (1–3) | 2 (1–3) | ns ** |
Males (n, %) | 62 (72.1%) | 24 (80%) | ns *** |
Body mass median (centiles) | 25 (10–97) | 50 (10–97) | ns ** |
Height median (centiles) | 50 (10–97) | 50 (10–97) | ns ** |
Feeding at the time of diagnosis (n/%) | |||
breast | 79 (91.9%) | 27 (90.0%) | |
breast + infants’ milk | 5 (5.8%) | 2 (6.7%) | ns *** |
only infants’ milk | 2 (2.3%) | 1 (3.3%) | |
Allergies in family (n/%) | 47 (54.6%) | 13 (43.3%) | |
father | 34 (39.5%) | 9 (30.0%) | |
mother | 30 (34.9%) | 7 (23.3%) | ns *** |
siblings | 61 (71.7%) | 14 (46.7%) | |
Symptoms (n/%) | |||
MPIAP **** | 64 (74.4%) | - | |
MPIAP + atopic dermatitis | 22 (25.6%) | - | |
General symptoms (n/%) | |||
anxiety | 30 (34.9%) | 5 (17.0%) | |
anemia | 8 (9.3%) | 6 (20.0%) | <0.05 *** |
eosinophilia | 18 (60.0%) | 0 (0.0%) | |
Milk-free diet during treatment (n/%) | |||
breast | 78 (90.8%) | ||
breast + eHf ***** | 6 (6.9%) | ||
only eHf ***** | 2 (2.3%) |
Parameter | Control Group n = 30 | Study Group MPIAP0 n = 86 | Study Group MPIAP1 n = 86 | p *** |
---|---|---|---|---|
Calprotectin * (mg/L) | ||||
median | 113.2 | 382.9 | 208.4 | 0.0000 **** |
range | 13.9–219.9 | 103.5–822.8 | 67.9–484.4 | |
Zonulin ** (ng/mL) | ||||
median | 54.1 | 103.6 | 62.9 | 0.0000 **** |
range | 36.6–101.9 | 67.1–378.7 | 13.3–143.3 |
Parameter | Control Group n = 30 n (%) | Study Group Diagnosis MPIAP0 n (%) | Study Group After 1 mo of Milk-Free Diet MPIAP1 n (%) | p *** Control/MPIAP0 MPIAP0/MPIAP1 | p *** Control/ MPIAP1 |
---|---|---|---|---|---|
Calprotectin * (n) mg/L | n = 30 **** | n = 86 **** | n = 86 **** | 0.0000 | |
<193.75 | 29 (96.7%) | 7 (8.1%) | 33 (38.4%) | ||
>193.75 | 1 (3.3%) | 79 (91.9%) | 53 (61.6%) | 0.0000 | 0.0000 |
Zonulin ** (n) ng/mL | n = 30 **** | n = 70 **** | n = 70 **** | 0.0000 | |
<66.28 | 25 (83.3%) | 31 (54.4%) | |||
>66.28 | 5 (16.75) | 70 (100%) | 26 (45.6%) | 0.0074 | 0.0000 |
Reference | No. of Subjects | Age | FC Median/ Average (µg/g) | Range FC (µg/g) |
---|---|---|---|---|
Olafsdottir et al. [55] | 27 | 0–12 mo | <350 | |
Ezri and Nydegger [54] | 0–12 mo | 277 ± 109 | <350 | |
Hestvik et al. [56] | 54 | 0–12 mo | 249.0 | |
Oord and Hornung [53] | 75 | 1–6 mo | 538 | |
Lie et al. [57] | 1–3 mo | 375.2 | ||
3–6 mo | 219.7 | |||
6–9 mo | 123.5 | |||
9–12 mo | 109.5 | |||
Song et al. [58] | 46 | 7–12 mo | 135.0 | |
Roca et al. [52] | 67 | 0–12 mo | 910.3 | |
Lee et al. [59] | all 133 | 0–2 mo | 322.0 | |
2–4 mo | 197.0 | |||
4–6 mo | 111.0 | |||
Peura et al. [60] | 72 | 0 mo | 324.0 | 274–381 |
63 | 6 mo | 615.0 | 189–1057 | |
60 | 12 mo | 136.0 | 119–179 | |
Łoniewska et al. [61] | 72 | 7 days | 139.1 | 12–627 |
Łoniewska et al. [32] | 74 | 1 mo | 149.3 | |
70 | 6 mo | 109.3 | ||
Park et al. [62] | 134 | 1 week | 418.1 ± 864.9 | |
67 | 2 week | 243.1 ± 328.8 | ||
41 | 3–4 weeks | 259.6 ± 368.2 | ||
Rycyk et al. [63] | 25 | 1–12 mo | 332.0 | 74–759 |
Qiu et al. [64] | 90 | 0–9 mo | 410.0 | 168–1739 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Czaja-Bulsa, G.; Bulsa, K.; Łokieć, M.; Drozd, A. Can Faecal Zonulin and Calprotectin Levels Be Used in the Diagnosis and Follow-Up in Infants with Milk Protein-Induced Allergic Proctocolitis? Nutrients 2024, 16, 2949. https://doi.org/10.3390/nu16172949
Czaja-Bulsa G, Bulsa K, Łokieć M, Drozd A. Can Faecal Zonulin and Calprotectin Levels Be Used in the Diagnosis and Follow-Up in Infants with Milk Protein-Induced Allergic Proctocolitis? Nutrients. 2024; 16(17):2949. https://doi.org/10.3390/nu16172949
Chicago/Turabian StyleCzaja-Bulsa, Grażyna, Karolina Bulsa, Monika Łokieć, and Arleta Drozd. 2024. "Can Faecal Zonulin and Calprotectin Levels Be Used in the Diagnosis and Follow-Up in Infants with Milk Protein-Induced Allergic Proctocolitis?" Nutrients 16, no. 17: 2949. https://doi.org/10.3390/nu16172949
APA StyleCzaja-Bulsa, G., Bulsa, K., Łokieć, M., & Drozd, A. (2024). Can Faecal Zonulin and Calprotectin Levels Be Used in the Diagnosis and Follow-Up in Infants with Milk Protein-Induced Allergic Proctocolitis? Nutrients, 16(17), 2949. https://doi.org/10.3390/nu16172949