Application of Bioelectrical Impedance Analysis in Weight Management of Children with Spina Bifida
Abstract
:1. Introduction
- Assess the prevalence of obesity in children with SB using both BMI and BIA.
- Explore the limitations of BMI in accurately reflecting the total body mass of SB patients.
- Evaluate the effectiveness of BIA as a more accurate, non-invasive method for assessing body composition in children with SB.
- Compare the body composition of pediatric patients with SB to the reference group.
2. Materials and Methods
2.1. Patients
2.2. Anthropometrics
2.3. BIA
2.4. Statistics
2.5. Ethical Issues
3. Results
3.1. The Agreement between BMI and Body Fat Percentage
3.2. Body Composition and Daily Physical Activity in SB Children
4. Discussion
5. Conclusions
- (i)
- Childhood obesity is a significant global concern, and children with SB are at an even higher risk due to altered body composition and physical limitations.
- (ii)
- Traditional BMI measurements may underestimate obesity in SB patients, as they do not account for the unique body composition seen in this population, particularly the imbalance between muscle mass and fat tissue.
- (iii)
- BIA offers a non-invasive and more accurate method for assessing body composition in SB patients, revealing higher obesity rates compared to BMI alone.
- (iv)
- Obesity in SB patients is associated with an increased risk of metabolic syndrome and bone disease, emphasizing the need for early intervention and the use of precise assessment methods to manage these risks effectively.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rocque, B.G.; Hopson, B.D.; Blount, J.P. Caring for the child with spina bifida. Pediatr. Clin. N. Am. 2021, 68, 915–927. [Google Scholar] [CrossRef] [PubMed]
- Gour-Provençal, G.; Costa, C. Metabolic syndrome in children with myelomeningocele and the role of physical activity: A narrative review of the literature. Top. Spinal Cord. Inj. Rehabil. 2022, 28, 15–40. [Google Scholar] [CrossRef] [PubMed]
- Oliveros, E.; Somers, V.K.; Sochor, O.; Goel, K.; Lopez-Jimenez, F. The concept of normal weight obesity. Prog. Cardiovasc. Dis. 2014, 56, 426–433. [Google Scholar] [CrossRef] [PubMed]
- Ward, L.C. Bioelectrical impedance analysis for body composition assessment: Reflections on accuracy, clinical utility, and standardisation. Eur. J. Clin. Nutr. 2019, 73, 194–199. [Google Scholar] [CrossRef] [PubMed]
- Lyons-Reid, J.; Derraik, J.G.B.; Ward, L.C.; Tint, M.T.; Kenealy, T.; Cutfield, W.S. Bioelectrical impedance analysis for assessment of body composition in infants and young children-A systematic literature review. Clin. Obes. 2021, 11, e12441. [Google Scholar] [CrossRef]
- Orsso, C.E.; Gonzalez, M.C.; Maisch, M.J.; Haqq, A.M.; Prado, C.M. Using bioelectrical impedance analysis in children and adolescents: Pressing issues. Eur. J. Clin. Nutr. 2022, 76, 659–665. [Google Scholar] [CrossRef]
- Kozioł-Kozakowska, A.; Wójcik, M.; Stochel-Gaudyn, A.; Szczudlik, E.; Suder, A.; Piórecka, B. The Severity of Obesity Promotes Greater Dehydration in Children: Preliminary Results. Nutrients 2022, 14, 5150. [Google Scholar] [CrossRef]
- Palamarchuk, O.S.; Leshko, M.M.; Klushyn, V.O.; Feketa, V.P. A differentiated approach to the diagnosis of overweight and obesity in children based on bioimpedance analysis of body composition. Wiad. Lek. 2024, 77, 402–408. [Google Scholar] [CrossRef]
- Schoenmakers, M.A.; Gulmans, V.A.; Gooskens, R.H.; Pruijs, J.E.; Helders, P.J. Spinal fusion in children with spina bifida: Influence on ambulation level and functional abilities. Eur. Spine J. 2005, 14, 415–422. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. CDC Extended BMI-for-Age Growth Charts 2022. Available online: https://www.cdc.gov/growthcharts/extended-bmi.htm (accessed on 15 December 2022).
- World Health Organization (WHO). Growth Chart for Children 5–19 Years 2024. Available online: https://www.who.int/tools/growth-reference-data-for-5to19-years/indicators/bmi-for-age (accessed on 3 February 2024).
- Plachta-Danielzik, S.; Gehrke, M.I.; Kehden, B.; Kromeyer-Hauschild, K.; Grillenberger, M.; Willhöft, C.; Bosy-Westphal, A.; Müller, M.J. Body fat percentiles for German children and adolescents. Obes. Facts 2015, 5, 77–90. [Google Scholar] [CrossRef]
- Macek, P.; Biskup, M.; Terek-Derszniak, M.; Stachura, M.; Krol, H.; Gozdz, S.; Zak, M. Optimal body fat percentage cut-off values in predicting the obesity-related cardiovascular risk factors: A cross-sectional cohort study. Diabetes Metab. Syndr. Obes. 2020, 12, 1587–1597. [Google Scholar] [CrossRef]
- Salton, N.; Kern, S.; Interator, H.; Lopez, A.; Moran-Lev, H.; Lebenthal, Y.; Brener, A. Muscle-to-fat ratio for predicting metabolic syndrome components in children with overweight and obesity. Child. Obes. 2022, 18, 132–142. [Google Scholar] [CrossRef]
- O’Neil, J.; Fuqua, J.S. Short stature and the effect of human growth hormone: Guidelines for the care of people with spina bifida. J. Pediatr. Rehabil. Med. 2020, 13, 549–555. [Google Scholar] [CrossRef]
- Simmonds, M.; Llewellyn, A.; Owen, C.G.; Woolacott, N. Predicting adult obesity from childhood obesity: A systematic review and meta-analysis. Obes. Rev. 2016, 17, 95–107. [Google Scholar] [CrossRef]
- McPherson, A.C.; Swift, J.A.; Yung, E.; Lyons, J.; Church, P. The assessment of weight status in children and young people attending a spina bifida outpatient clinic: A retrospective medical record review. Disabil. Rehabil. 2013, 35, 2123–2131. [Google Scholar] [CrossRef]
- Dosa, N.P.; Foley, J.T.; Eckrich, M.; Woodall-Ruff, D.; Liptak, G.S. Obesity across the lifespan among persons with spina bifida. Disabil. Rehabil. 2009, 31, 914–920. [Google Scholar] [CrossRef]
- Rendeli, C.; Kuczynska, E.; Giuliano, A.C.; Chiaretti, A.; Ausili, E. Dietary approach to prevent obesity risk in Spina Bifida patients. Childs Nerv. Syst. 2020, 36, 1515–1520. [Google Scholar] [CrossRef]
- Polfuss, M.; Liu, T.; Smith, K.; Huang, C.C.; Moosreiner, A.; Papanek, P.E.; Sawin, K.J.; Zvara, K.; Bandini, L. Weight status of children participating in the National Spina Bifida Patient Registry. Pediatrics 2022, 150, e2022057007. [Google Scholar] [CrossRef]
- Polfuss, M.; Forseth, B.; Schoeller, D.A.; Huang, C.C.; Moosreiner, A.; Papanek, P.E.; Sawin, K.J.; Zvara, K.; Bandini, L. Accuracy of body mass index in categorizing weight status in children with intellectual and developmental disabilities. J. Pediatr. Rehabil. Med. 2021, 14, 621–629. [Google Scholar] [CrossRef]
- Bray, G.A. Beyond BMI. Nutrients 2023, 15, 2254. [Google Scholar] [CrossRef]
- Liu, J.S.; Dong, C.; Vo, A.X.; Dickmeyer, L.J.; Leung, C.L.; Huang, R.A.; Kielb, S.J.; Mukherjee, S. Obesity and anthropometry in spina bifida: What is the best measure. J. Spinal Cord. Med. 2018, 41, 55–62. [Google Scholar] [CrossRef]
- Nelson, M.D.; Widman, L.M.; Abresch, R.T.; Stanhope, K.; Havel, P.J.; Styne, D.M.; McDonald, C.M. Metabolic syndrome in adolescents with spinal cord dysfunction. J. Spinal Cord. Med. 2007, 30 (Suppl. 1), S127–S139. [Google Scholar] [CrossRef]
- Zhang, J.X.; Li, W.; Tao, X.J.; Chen, C.; Wang, Q.A.; Liu, W.L.; Yang, C.; Wang, K.R.; Qiu, J.W.; Zhao, Y.; et al. Fat-to-muscle ratio as a predictor for dyslipidaemia in transitional-age youth. Lipids Health Dis. 2022, 21, 88. [Google Scholar] [CrossRef]
- Marreiros, H. Update on bone fragility in spina bifida. J. Pediatr. Rehabil. Med. 2018, 11, 265–281. [Google Scholar] [CrossRef]
- Trinh, A.; Wong, P.; Sakthivel, A.; Fahey, M.C.; Hennel, S.; Brown, J.; Strauss, B.J.; Ebeling, P.R.; Fuller, P.J.; Milat, F. Fat-bone interactions in adults with spina bifida. J. Endocr. Soc. 2017, 1, 1301–1311. [Google Scholar] [CrossRef]
Variables | SB Patients | Reference Group | p Value |
---|---|---|---|
n = 57 | n = 28 | ||
Anthropometric parameters (median, min.–max.) | |||
Height (cm) | 132 (70–174) | 154 (108–181) | 0.02 * |
Weight (kg) | 33 (8.5–95) | 42.6 (17.5–77.5) | 0.19 |
BMI (kg/m2) | 17.8 (10.4–35.3) | 17.9 (13.1–23.6) | 0.68 |
BMI (centiles) | 52.6 (0–100) | 52.7 (1.6–76.7) | 0.79 |
Z-BMI | 0.06 (-8–3.5) | 0.06 (-2.1–0.7) | 0.85 |
BSA (m2) | 1.1 (0.3–2) | 1.36 (0.72–2) | 0.1 |
BIA and body composition (median, min.–max.) | |||
FFM (kg) | 22.3 (6.7–50.7) | 35.6 (14.2–64.8) | 0.03 * |
(a) body cell mass (kg) | 11.4 (2.6–32.5) | 18.4 (6.5–33.7) | 0.04 * |
(b) extracellular solids (kg) | 10.3 (4.1–25.9) | 15.7 (7.5–31.1) | <0.001 * |
FFM (%) | 76.7 (47.6–96.9) | 80.9 (69–95.9) | 0.01 * |
Fat mass (kg) | 8 (0.69–45.6) | 5.9 (1.4–17.6) | 0.65 |
Fat mass (%) | 23.7 (3–52.4) | 19.1 (4–30.9) | <0.001 * |
Fat mass (percentiles) | 50 (3–97) | 25 (3–75) | <0.001 * |
Muscle mass (kg) | 8.8 (1.9–25.4) | 15.1 (4.8–32.3) | 0.04 * |
Muscle mass (%) | 29.2 (21.2–42) | 32.5 (27–41.7) | <0.001 * |
FMR | 0.81 (0.1–2.4) | 0.55 (0.1–1.03) | 0.002 * |
TBW (lt) | 17.9 (5.3–42.6) | 25.6 (10.9–52.2) | 0.04 * |
(a) ICW (lt) | 9.4 (2.1–28.9) | 15.1 (5.9–27.3) | 0.02 * |
(b) ECW (lt) | 7.4 (3.2–18.4) | 10.2 (4.7–24.8) | 0.12 |
TBW (%) | 57.3 (39.1–79.7) | 59.7 (48–82) | 0.22 |
(a) ICW (%) | 55.7 (21.3–69.5) | 57.9 (52.4–66.4) | 0.07 |
(b) ECW (%) | 44.5 (30.5–78.7) | 42.1 (33.6–47.6) | 0.06 |
Protein mass (kg) | 3.2 (0.91–13.5) | 6.2 (2.3–16.6) | <0.001 * |
Mineral mass (kg) | 1.2 (0.31–4.7) | 2.4 (0.9–5.8) | <0.001 * |
Total body calcium (g) | 363 (107–1116) | 598 (231–1220) | 0.06 |
Total body potassium (g) | 54.3 (12.5–154.4) | 85 (30.6–160.7) | 0.04 * |
Body Fat Mass Category | ||||
---|---|---|---|---|
n (%) | Low <10 pc | Normal 10–90 pc | High >90 pc | Total |
SB patients | ||||
BMI category underweight < 5 pc | 3 (6) | 5 (9) | 3 (6) | 11 (21) |
normal weight 5–85 pc | 7 (13) | 5 (9) | 12 (23) | 24 (45) |
overweight and obese > 85 pc | 1 (2) | 2(4) | 15 (28) | 18 (34) |
Total | 11 (21) | 12 (23) | 30 (56) | 53 (100) |
Reference group | ||||
BMI category underweight < 5 pc | 0 | 2 (7) | 0 | 2 (7) |
normal weight 5–85 pc | 8 (29) | 18 (64) | 0 | 26 (93) |
overweight and obese > 85 pc | 0 | 0 | 0 | 0 |
Total | 8 (29) | 20 (71) | 0 | 28 (100) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bagińska-Chyży, J.; Korzeniecka-Kozerska, A. Application of Bioelectrical Impedance Analysis in Weight Management of Children with Spina Bifida. Nutrients 2024, 16, 3222. https://doi.org/10.3390/nu16183222
Bagińska-Chyży J, Korzeniecka-Kozerska A. Application of Bioelectrical Impedance Analysis in Weight Management of Children with Spina Bifida. Nutrients. 2024; 16(18):3222. https://doi.org/10.3390/nu16183222
Chicago/Turabian StyleBagińska-Chyży, Joanna, and Agata Korzeniecka-Kozerska. 2024. "Application of Bioelectrical Impedance Analysis in Weight Management of Children with Spina Bifida" Nutrients 16, no. 18: 3222. https://doi.org/10.3390/nu16183222
APA StyleBagińska-Chyży, J., & Korzeniecka-Kozerska, A. (2024). Application of Bioelectrical Impedance Analysis in Weight Management of Children with Spina Bifida. Nutrients, 16(18), 3222. https://doi.org/10.3390/nu16183222