The Development of a Resting Metabolic Rate Prediction Equation for Professional Male Rugby Union Players
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Anthropometric and Body Composition Assessment
2.4. RMR Assessment
2.5. Current Commonly Used Prediction Equations for RMR
2.6. Statistical Analyses
3. Results
3.1. Demographics, Body Composition, and RMR
3.2. Relationship between Predictor Variables and RMR
3.3. Measured RMR Compared to Current and Newly Developed Prediction Equations
3.4. Newly Developed Prediction Equation Compared to Measured RMR
3.5. Internal Validation of the Newly Developed Prediction Equations
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Posthumus, L.; Fairbairn, K.; Darry, K.; Driller, M.; Winwood, P.; Gill, N. Competition Nutrition Practices of Elite Male Professional Rugby Union Players. Int. J. Environ. Res. Public Health 2021, 18, 5398. [Google Scholar] [CrossRef] [PubMed]
- Posthumus, L.; Driller, M.; Darry, K.; Winwood, P.; Rollo, I.; Gill, N. Dietary Intakes of Elite Male Professional Rugby Union Players in Catered and Non-Catered Environments. Int. J. Environ. Res. Public Health 2022, 19, 16242. [Google Scholar] [CrossRef] [PubMed]
- Jenner, S.L.; Buckley, G.L.; Belski, R.; Devlin, B.L.; Forsyth, A.K. Dietary intakes of professional and semi-professional team sport athletes do not meet sport nutrition recommendations—A systematic literature review. Nutrients 2019, 11, 1160. [Google Scholar] [CrossRef] [PubMed]
- Posthumus, L.; Macgregor, C.; Winwood, P.; Darry, K.; Driller, M.; Gill, N. Physical and Fitness Characteristics of Elite Professional Rugby Union Players. Sports 2020, 8, 85. [Google Scholar] [CrossRef] [PubMed]
- Aragon, A.A.; Schoenfeld, B.J. Magnitude and composition of the energy surplus for maximizing muscle hypertrophy: Implications for bodybuilding and physique athletes. Strength Cond. J. 2020, 42, 79–86. [Google Scholar] [CrossRef]
- Slater, G.J.; Dieter, B.P.; Marsh, D.J.; Helms, E.R.; Shaw, G.; Iraki, J. Is an energy surplus required to maximize skeletal muscle hypertrophy associated with resistance training. Front. Nutr. 2019, 6, 131. [Google Scholar] [CrossRef]
- Trexler, E.T.; Smith-Ryan, A.E.; Norton, L.E. Metabolic adaptation to weight loss: Implications for the athlete. J. Int. Soc. Sports Nutr. 2014, 11, 7. [Google Scholar] [CrossRef]
- Hector, A.J.; Phillips, S.M. Protein recommendations for weight loss in elite athletes: A focus on body composition and performance. Int. J. Sport Nutr. Exerc. Metab. 2018, 28, 170–177. [Google Scholar] [CrossRef]
- Ruiz-Castellano, C.; Espinar, S.; Contreras, C.; Mata, F.; Aragon, A.A.; Martínez-Sanz, J.M. Achieving an optimal fat loss phase in resistance-trained athletes: A narrative review. Nutrients 2021, 13, 3255. [Google Scholar] [CrossRef]
- Schofield, K.; Thorpe, H.; Sims, S. Resting metabolic rate prediction equations and the validity to assess energy deficiency in the athlete population. Exp. Physiol. 2019, 104, 469–475. [Google Scholar] [CrossRef]
- Freire, R.; Alcantara, J.M.; Hausen, M.; Itaborahy, A. The estimation of the resting metabolic rate is affected by the method of gas exchange data selection in high-level athletes. Clin. Nutr. ESPEN 2021, 41, 234–241. [Google Scholar] [CrossRef] [PubMed]
- Fullmer, S.; Benson-Davies, S.; Earthman, C.P.; Frankenfield, D.C.; Gradwell, E.; Lee, P.S.; Piemonte, T.; Trabulsi, J. Evidence analysis library review of best practices for performing indirect calorimetry in healthy and non-critically ill individuals. J. Acad. Nutr. Diet. 2015, 115, 1417–1446.e2. [Google Scholar] [CrossRef] [PubMed]
- Compher, C.; Frankenfield, D.; Keim, N.; Roth-Yousey, L.; Group, E.A.W. Best practice methods to apply to measurement of resting metabolic rate in adults: A systematic review. J. Am. Diet. Assoc. 2006, 106, 881–903. [Google Scholar] [CrossRef] [PubMed]
- Tinsley, G.M.; Graybeal, A.J.; Moore, M.L. Resting metabolic rate in muscular physique athletes: Validity of existing methods and development of new prediction equations. Appl. Physiol. Nutr. Metab. 2019, 44, 397–406. [Google Scholar] [CrossRef] [PubMed]
- MacKenzie-Shalders, K.L.; Byrne, N.M.; King, N.A.; Slater, G. Are increases in skeletal muscle mass accompanied by changes to resting metabolic rate in rugby athletes over a pre-season training period? Eur. J. Sport Sci. 2019, 19, 885–892. [Google Scholar] [CrossRef] [PubMed]
- Morehen, J.C.; Bradley, W.J.; Clarke, J.; Twist, C.; Hambly, C.; Speakman, J.R.; Morton, J.P.; Close, G.L. The assessment of total energy expenditure during a 14-day in-season period of professional rugby league players using the doubly labelled water method. Int. J. Sport Nutr. Exerc. Metab. 2016, 26, 464–472. [Google Scholar] [CrossRef] [PubMed]
- Smith, D.R.; King, R.; Duckworth, L.; Sutton, L.; Preston, T.; O’Hara, J.; Jones, B. Energy expenditure of rugby players during a 14-day in-season period, measured using doubly labelled water. Eur. J. Appl. Physiol. 2018, 118, 647–656. [Google Scholar] [CrossRef]
- Jagim, A.R.; Camic, C.L.; Kisiolek, J.; Luedke, J.; Erickson, J.; Jones, M.T.; Oliver, J.M. Accuracy of resting metabolic rate prediction equations in athletes. J. Strength Cond. Res. 2018, 32, 1875–1881. [Google Scholar] [CrossRef]
- Kerksick, C.M.; Wilborn, C.D.; Roberts, M.D.; Smith-Ryan, A.; Kleiner, S.M.; Jäger, R.; Collins, R.; Cooke, M.; Davis, J.N.; Galvan, E. ISSN exercise & sports nutrition review update: Research & recommendations. J. Int. Soc. Sports Nutr. 2018, 15, 38. [Google Scholar]
- O’Neill, J.E.R.; Corish, C.A.; Horner, K. Accuracy of Resting Metabolic Rate Prediction Equations in Athletes: A Systematic Review with Meta-analysis. Sports Med. 2023, 53, 2373–2398. [Google Scholar] [CrossRef]
- Balci, A.; Badem, E.A.; Yılmaz, A.E.; Devrim-Lanpir, A.; Akınoğlu, B.; Kocahan, T.; Hasanoğlu, A.; Hill, L.; Rosemann, T.; Knechtle, B. Current Predictive Resting Metabolic Rate Equations Are Not Sufficient to Determine Proper Resting Energy Expenditure in Olympic Young Adult National Team Athletes. Front. Physiol. 2021, 12, 625370. [Google Scholar] [CrossRef] [PubMed]
- Fields, J.B.; Magee, M.K.; Jones, M.T.; Askow, A.T.; Camic, C.L.; Luedke, J.; Jagim, A.R. The accuracy of ten common resting metabolic rate prediction equations in men and women collegiate athletes. Eur. J. Sport Sci. 2023, 23, 1973–1982. [Google Scholar] [CrossRef] [PubMed]
- ten Haaf, T.; Weijs, P.J. Resting energy expenditure prediction in recreational athletes of 18–35 years: Confirmation of Cunningham equation and an improved weight-based alternative. PLoS ONE 2014, 9, e108460. [Google Scholar] [CrossRef] [PubMed]
- McKay, A.K.; Stellingwerff, T.; Smith, E.S.; Martin, D.T.; Mujika, I.; Goosey-Tolfrey, V.L.; Sheppard, J.; Burke, L.M. Defining training and performance caliber: A participant classification framework. Int. J. Sports Physiol. Perform. 2021, 17, 317–331. [Google Scholar] [CrossRef] [PubMed]
- Nana, A.; Slater, G.J.; Hopkins, W.G.; Halson, S.L.; Martin, D.T.; West, N.P.; Burke, L.M. Importance of standardized DXA protocol for assessing physique changes in athletes. Int. J. Sport Nutr. Exerc. Metab. 2016, 26, 259–267. [Google Scholar] [CrossRef]
- Van Hooren, B.; Souren, T.; Bongers, B.C. Accuracy of respiratory gas variables, substrate, and energy use from 15 CPET systems during simulated and human exercise. Scand. J. Med. Sci. Sports 2023, 34, e14490. [Google Scholar] [CrossRef]
- de V. Weir, J.B. New methods for calculating metabolic rate with special reference to protein metabolism. J. Physiol. 1949, 109, 1–9. [Google Scholar] [CrossRef]
- Harris, J.A.; Benedict, F.G. A biometric study of human basal metabolism. Proc. Natl. Acad. Sci. USA 1918, 4, 370–373. [Google Scholar] [CrossRef]
- Cunningham, J.J. A reanalysis of the factors influencing basal metabolic rate in normal adults. Am. J. Clin. Nutr. 1980, 33, 2372–2374. [Google Scholar] [CrossRef]
- Jagim, A.R.; Camic, C.L.; Askow, A.; Luedke, J.; Erickson, J.; Kerksick, C.M.; Jones, M.T.; Oliver, J.M. Sex differences in resting metabolic rate among athletes. J. Strength Cond. Res. 2019, 33, 3008–3014. [Google Scholar] [CrossRef]
- Hopkins, W.G. A scale of magnitudes for effect statistics. A New View Stat. 2002, 502, 411. [Google Scholar]
- Cohen, J. Statistical Power Analysis for the Behavioural Sciences, 2nd ed.; Lawrence Earlbaum Associates: Hillside, NJ, USA, 1988. [Google Scholar]
- Ivanescu, A.E.; Li, P.; George, B.; Brown, A.W.; Keith, S.W.; Raju, D.; Allison, D.B. The importance of prediction model validation and assessment in obesity and nutrition research. Int. J. Obes. 2016, 40, 887–894. [Google Scholar] [CrossRef] [PubMed]
- Steyerberg, E.W.; Harrell, F.E., Jr.; Borsboom, G.J.; Eijkemans, M.; Vergouwe, Y.; Habbema, J.D.F. Internal validation of predictive models: Efficiency of some procedures for logistic regression analysis. J. Clin. Epidemiol. 2001, 54, 774–781. [Google Scholar] [CrossRef] [PubMed]
- Hudson, J.F.; Cole, M.; Morton, J.P.; Stewart, C.E.; Close, G.L. Daily Changes of Resting Metabolic Rate in Elite Rugby Union Players. Med. Sci. Sports Exerc. 2020, 52, 637–644. [Google Scholar] [CrossRef] [PubMed]
- Costello, N.; Deighton, K.; Preston, T.; Matu, J.; Rowe, J.; Sawczuk, T.; Halkier, M.; Read, D.B.; Weaving, D.; Jones, B. Collision activity during training increases total energy expenditure measured via doubly labelled water. Eur. J. Appl. Physiol. 2018, 118, 1169–1177. [Google Scholar] [CrossRef]
- Costello, N.; Deighton, K.; Preston, T.; Matu, J.; Rowe, J.; Jones, B. Are professional young rugby league players eating enough? Energy intake, expenditure and balance during a pre-season. Eur. J. Sport Sci. 2019, 19, 123–132. [Google Scholar] [CrossRef]
- MacKenzie-Shalders, K.; Kelly, J.T.; So, D.; Coffey, V.G.; Byrne, N.M. The effect of exercise interventions on resting metabolic rate: A systematic review and meta-analysis. J. Sports Sci. 2020, 38, 1635–1649. [Google Scholar] [CrossRef]
- Smart, D.J.; Hopkins, W.G.; Gill, N.D. Differences and changes in the physical characteristics of professional and amateur rugby union players. J. Strength Cond. Res. 2013, 27, 3033–3044. [Google Scholar] [CrossRef]
- Duthie, G.; Pyne, D.; Hooper, S. Applied physiology and game analysis of rugby union. Sports Med. 2003, 33, 973–991. [Google Scholar] [CrossRef]
- Duthie, G.; Pyne, D.; Marsh, D.; Hooper, S. Sprint patterns in rugby union players during competition. J. Strength Cond. Res. 2006, 20, 208–214. [Google Scholar]
- Costello, N.; Deighton, K.; Dalton-Barron, N.; Whitehead, S.; McLaren, S.; Jones, B. Three-day changes in resting metabolism after a professional young rugby league match. Sport Perform. Sci. Rep. 2019, 49, 1–3. Available online: https://sportperfsci.com/three-day-changes-in-resting-metabolism-after-a-professional-young-rugby-league-match (accessed on 20 November 2023).
Study | Sample | RMR Prediction Equation (kcal·day−1) |
---|---|---|
Commonly Used Equations | ||
Harris–Benedict [28] | M = 136 F = 103 | M: 66.47 + (13.75 × BM) + (5.00 × H) − (6.75 − age) |
Cunningham [29] | M = 120 F = 103 | 500 + (22 × FFM) |
ten Haaf FFM [23] | M = 53 F = 37 | 484.26 + (22.77 × FFM) |
ten Haaf BM [23] | M = 53 F = 37 | 29.28 + (11.94 × BM) + (5.88 × H) − (8.13 × age) + (191.03 × sex (M = 1, F = 0)) |
Jagim [30] | M = 68 | M: 775.33 + (19.46 × BM) |
Tinsley FFM [14] | M = 17 F = 10 | 284 + (25.9 × FFM) |
Tinsley BM [14] | M = 17 F = 10 | 10 + (24.7 × BM) |
RU Specific Equations | ||
Mackenzie-Shalders LBM [15] | M = 18 | 24.56 − (29.71 × FFM) |
Mackenzie-Shalders BM [15] | M = 18 | 775.32 + (15.95 × BM) |
Newly Developed Equations | ||
Posthumus (FFM equation) | M = 108 | M: 1351.74 + (14.53 × FFM in kg) |
Posthumus (BM equation) | M = 108 | M: 1489.93 + (10.63 × BM in kg) |
All Players (n = 108) | Forwards (n = 54) | Backs (n = 54) | |
---|---|---|---|
Age (y) | 25.7 ± 4.1 | 26.1 ± 3.7 | 25.3 ± 4.4 |
Height (cm) | 185.8 ± 6.8 | 189.0 ± 6.3 * | 182.6 ± 5.7 |
BM (kg) | 102.9 ± 13.3 | 113.0 ± 9.2 * | 92.8 ± 8.1 |
FFM (kg) | 84.8 ± 10.2 | 92.0 ± 6.6 * | 77.6 ± 7.6 |
FM (kg) | 18.0 ± 4.6 | 20.9 ± 4.1 * | 15.0 ± 3.0 |
Fat% (%) | 17.3 ± 3.0 | 18.4 ± 2.6 * | 16.3 ± 3.0 |
RMR (kcal·day−1) | 2585 ± 176 | 2706 ± 94 * | 2465 ± 156 |
Age | Height | BM | FFM | FM | Fat% | RMR | |
---|---|---|---|---|---|---|---|
Age | 1.00 | ||||||
Height | 0.17 | 1.00 | |||||
BM | 0.18 | 0.56 ** | 1.00 | ||||
FFM | 0.24 * | 0.61 ** | 0.96 ** | 1.00 | |||
FM | −0.00 | 0.30 ** | 0.79 ** | 0.59 ** | 1.00 | ||
Fat% | −0.14 * | 0.04 | 0.40 ** | 0.12 | 0.87 ** | 1.00 | |
RMR | 0.14 | 0.54 ** | 0.81 ** | 0.84 ** | 0.49 ** | 0.10 | 1.00 |
RMR Method | RMR (kcal·day−1) | Mean Difference (mean ± SD) | 95% CI of MD | Effect Size (d) | Sig (p) | RMSE (kcal·day−1) |
---|---|---|---|---|---|---|
Measured (IC) | 2584 ± 176 | |||||
Harris–Benedict [28] | 2238 ± 201 | −346 ± 120 | −323 to −369 | −2.89 | <0.001 | 366 |
Cunningham [29] | 2330 ± 211 | −254 ± 133 | −228 to −279 | −1.91 | <0.001 | 286 |
ten Haaf FFM [23] | 2378 ± 219 | −206 ± 137 | −179 to −232 | −1.50 | <0.001 | 247 |
ten Haaf BM [23] | 2332 ± 181 | −252 ± 113 | −230 to −273 | −2.23 | <0.001 | 276 |
Jagim [30] | 2778 ± 259 | 194 ± 157 | 164 to 224 | 1.23 | <0.001 | 249 |
Mackenzie-Shalders LBM [15] | 2447 ± 285 | −137 ± 185 | −102 to −172 | −0.74 | <0.001 | 229 |
Mackenzie-Shalders BM [15] | 2417 ± 213 | −167 ± 126 | −143 to −191 | −1.32 | <0.001 | 209 |
Tinsley FFM [14] | 2480 ± 263 | −104 ± 150 | −75 to −132 | −0.69 | <0.001 | 182 |
Tinsley BM [14] | 2562 ± 331 | −22 ± 216 | 19 to −63 | −0.10 | 0.295 | 216 |
Newly Developed Equations | ||||||
Posthumus FFM | 2585 ± 146 | 1.6 ± 96 | −20 to 17 | 0.02 | 0.861 | 96 |
Posthumus BM | 2585 ± 140 | 1.6 ± 105 | −22 to 18 | 0.02 | 0.875 | 104 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Posthumus, L.; Driller, M.; Winwood, P.; Gill, N. The Development of a Resting Metabolic Rate Prediction Equation for Professional Male Rugby Union Players. Nutrients 2024, 16, 271. https://doi.org/10.3390/nu16020271
Posthumus L, Driller M, Winwood P, Gill N. The Development of a Resting Metabolic Rate Prediction Equation for Professional Male Rugby Union Players. Nutrients. 2024; 16(2):271. https://doi.org/10.3390/nu16020271
Chicago/Turabian StylePosthumus, Logan, Matthew Driller, Paul Winwood, and Nicholas Gill. 2024. "The Development of a Resting Metabolic Rate Prediction Equation for Professional Male Rugby Union Players" Nutrients 16, no. 2: 271. https://doi.org/10.3390/nu16020271
APA StylePosthumus, L., Driller, M., Winwood, P., & Gill, N. (2024). The Development of a Resting Metabolic Rate Prediction Equation for Professional Male Rugby Union Players. Nutrients, 16(2), 271. https://doi.org/10.3390/nu16020271