A Pilot Randomized Control Trial Testing a Smartphone-Delivered Food Attention Retraining Program in Adolescent Girls with Overweight or Obesity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Smartphone Program
2.4. Outcome Measures
2.4.1. Laboratory Test Meal
2.4.2. Magnetoencephalography Scan
2.5. Other Measures
2.6. Sample Size Estimation
2.7. Randomization and Blinding
2.8. Analytic Plan
2.8.1. Data Pre-Processing
2.8.2. Hypothesis Testing
3. Results
3.1. Recruitment and Retention
3.2. AB Scores Outcomes
3.3. Energy Intake Outcomes
3.4. oscillatory power during Unconscious Attention Capture (0–250 ms)
3.5. oscillatory power during Attention Deployment (250–500 ms)
3.6. Adverse Events
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mathews, A.; MacLeod, C. Cognitive vulnerability to emotional disorders. Annu. Rev. Clin. Psychol. 2005, 1, 167–195. [Google Scholar] [CrossRef] [PubMed]
- Aspen, V.; Darcy, A.M.; Lock, J. A review of attention biases in women with eating disorders. Cogn. Emot. 2013, 27, 820–838. [Google Scholar] [CrossRef] [PubMed]
- Stojek, M.; Shank, L.M.; Vannucci, A.; Bongiorno, D.M.; Nelson, E.E.; Waters, A.J.; Engel, S.G.; Boutelle, K.N.; Pine, D.S.; Yanovski, J.A.; et al. A systematic review of attentional biases in disorders involving binge eating. Appetite 2018, 123, 367–389. [Google Scholar] [CrossRef]
- Werthmann, J.; Jansen, A.; Roefs, A. Worry or craving? A selective review of evidence for food-related attention biases in obese individuals, eating-disorder patients, restrained eaters and healthy samples. Proc. Nutr. Soc. 2015, 74, 99–114. [Google Scholar] [CrossRef]
- Brooks, S.; Prince, A.; Stahl, D.; Campbell, I.C.; Treasure, J. A systematic review and meta-analysis of cognitive bias to food stimuli in people with disordered eating behaviour. Clin. Psychol. Rev. 2011, 31, 37–51. [Google Scholar] [CrossRef]
- Stice, E.; Burger, K. Neural vulnerability factors for obesity. Clin. Psychol. Rev. 2019, 68, 38–53. [Google Scholar] [CrossRef]
- Michaud, A.; Vainik, U.; Garcia-Garcia, I.; Dagher, A. Overlapping Neural Endophenotypes in Addiction and Obesity. Front. Endocrinol. 2017, 8, 127. [Google Scholar] [CrossRef]
- Hendrikse, J.J.; Cachia, R.L.; Kothe, E.J.; McPhie, S.; Skouteris, H.; Hayden, M.J. Attentional biases for food cues in overweight and individuals with obesity: A systematic review of the literature. Obes. Rev. 2015, 16, 424–432. [Google Scholar] [CrossRef] [PubMed]
- Mehl, N.; Bergmann, S.; Klein, A.M.; Daum, M.; von Klitzing, K.; Horstmann, A. Cause or consequence? Investigating attention bias and self-regulation skills in children at risk for obesity. J. Exp. Child. Psychol. 2017, 155, 113–127. [Google Scholar] [CrossRef]
- Werthmann, J.; Jansen, A.; Vreugdenhil, A.C.; Nederkoorn, C.; Schyns, G.; Roefs, A. Food through the child’s eye: An eye-tracking study on attentional bias for food in healthy-weight children and children with obesity. Health Psychol. 2015, 34, 1123–1132. [Google Scholar] [CrossRef]
- Yokum, S.; Ng, J.; Stice, E. Attentional bias to food images associated with elevated weight and future weight gain: An fMRI study. Obesity 2011, 19, 1775–1783. [Google Scholar] [CrossRef] [PubMed]
- Brand, J.; Masterson, T.D.; Emond, J.A.; Lansigan, R.; Gilbert-Diamond, D. Measuring attentional bias to food cues in young children using a visual search task: An eye-tracking study. Appetite 2020, 148, 104610. [Google Scholar] [CrossRef] [PubMed]
- Hardman, C.A.; Jones, A.; Burton, S.; Duckworth, J.J.; McGale, L.S.; Mead, B.R.; Roberts, C.A.; Field, M.; Werthmann, J. Food-related attentional bias and its associations with appetitive motivation and body weight: A systematic review and meta-analysis. Appetite 2021, 157, 104986. [Google Scholar] [CrossRef] [PubMed]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; text rev.; American Psychiatric Association: Washington, DC, USA, 2022. [Google Scholar] [CrossRef]
- Shank, L.M.; Tanofsky-Kraff, M.; Nelson, E.E.; Shomaker, L.B.; Ranzenhofer, L.M.; Hannallah, L.M.; Field, S.E.; Vannucci, A.; Bongiorno, D.M.; Brady, S.M.; et al. Attentional bias to food cues in youth with loss of control eating. Appetite 2015, 87, 68–75. [Google Scholar] [CrossRef]
- Werthmann, J.; Roefs, A.; Nederkoorn, C.; Mogg, K.; Bradley, B.P.; Jansen, A. Can(not) take my eyes off it: Attention bias for food in overweight participants. Health Psychol. 2011, 30, 561–569. [Google Scholar] [CrossRef]
- Woo, J.M.; Lee, G.E.; Lee, J.H. Attentional bias for high-calorie food cues by the level of hunger and satiety in individuals with binge eating behaviors. Front. Neurosci. 2023, 17, 1149864. [Google Scholar] [CrossRef]
- Stott, N.; Fox, J.R.E.; Williams, M.O. Attentional bias in eating disorders: A meta-review. Int. J. Eat. Disord. 2021, 54, 1377–1399. [Google Scholar] [CrossRef]
- Castellanos, E.H.; Charboneau, E.; Dietrich, M.S.; Park, S.; Bradley, B.P.; Mogg, K.; Cowan, R.L. Obese adults have visual attention bias for food cue images: Evidence for altered reward system function. Int. J. Obes. 2009, 33, 1063–1073. [Google Scholar] [CrossRef]
- Kaisari, P.; Kumar, S.; Hattersley, J.; Dourish, C.T.; Rotshtein, P.; Higgs, S. Top-down guidance of attention to food cues is enhanced in individuals with overweight/obesity and predicts change in weight at one-year follow up. Int. J. Obes. 2019, 43, 1849–1858. [Google Scholar] [CrossRef]
- Schienle, A.; Schäfer, A.; Hermann, A.; Vaitl, D. Binge-eating disorder: Reward sensitivity and brain activation to images of food. Biol. Psychiatry 2009, 65, 654–661. [Google Scholar] [CrossRef]
- Hagan, K.E.; Alasmar, A.; Exum, A.; Chinn, B.; Forbush, K.T. A systematic review and meta-analysis of attentional bias toward food in individuals with overweight and obesity. Appetite 2020, 151, 104710. [Google Scholar] [CrossRef] [PubMed]
- Corbetta, M.; Patel, G.; Shulman, G.L. The reorienting system of the human brain: From environment to theory of mind. Neuron 2008, 58, 306–324. [Google Scholar] [CrossRef]
- Martin, L.E.; Holsen, L.M.; Chambers, R.J.; Bruce, A.S.; Brooks, W.M.; Zarcone, J.R.; Butler, M.G.; Savage, C.R. Neural Mechanisms Associated With Food Motivation in Obese and Healthy Weight Adults. Obesity 2010, 18, 254–260. [Google Scholar] [CrossRef]
- Gearhardt, A.N.; Yokum, S.; Orr, P.T.; Stice, E.; Corbin, W.R.; Brownell, K.D. Neural correlates of food addiction. Arch. Gen. Psychiatry 2011, 68, 808–816. [Google Scholar] [CrossRef] [PubMed]
- Rothemund, Y.; Preuschhof, C.; Bohner, G.; Bauknecht, H.C.; Klingebiel, R.; Flor, H.; Klapp, B.F. Differential activation of the dorsal striatum by high-calorie visual food stimuli in obese individuals. Neuroimage 2007, 37, 410–421. [Google Scholar] [CrossRef]
- Stice, E.; Spoor, S.; Bohon, C.; Veldhuizen, M.G.; Small, D.M. Relation of reward from food intake and anticipated food intake to obesity: A functional magnetic resonance imaging study. J. Abnorm. Psychol. 2008, 117, 924–935. [Google Scholar] [CrossRef]
- Stice, E.; Yokum, S.; Burger, K.S.; Epstein, L.H.; Small, D.M. Youth at risk for obesity show greater activation of striatal and somatosensory regions to food. J. Neurosci. 2011, 31, 4360–4366. [Google Scholar] [CrossRef] [PubMed]
- Stice, E.; Yokum, S.; Blum, K.; Bohon, C. Weight gain is associated with reduced striatal response to palatable food. J. Neurosci. 2010, 30, 13105–13109. [Google Scholar] [CrossRef] [PubMed]
- Stoeckel, L.E.; Weller, R.E.; Cook, E.W., 3rd; Twieg, D.B.; Knowlton, R.C.; Cox, J.E. Widespread reward-system activation in obese women in response to pictures of high-calorie foods. Neuroimage 2008, 41, 636–647. [Google Scholar] [CrossRef]
- Geliebter, A.; Ladell, T.; Logan, M.; Schneider, T.; Sharafi, M.; Hirsch, J. Responsivity to food stimuli in obese and lean binge eaters using functional MRI. Appetite 2006, 46, 31–35. [Google Scholar] [CrossRef]
- Wang, G.J.; Geliebter, A.; Volkow, N.D.; Telang, F.W.; Logan, J.; Jayne, M.C.; Galanti, K.; Selig, P.A.; Han, H.; Zhu, W.; et al. Enhanced striatal dopamine release during food stimulation in binge eating disorder. Obesity 2011, 19, 1601–1608. [Google Scholar] [CrossRef] [PubMed]
- Heeren, A.; De Raedt, R.; Koster, E.H.; Philippot, P. The (neuro)cognitive mechanisms behind attention bias modification in anxiety: Proposals based on theoretical accounts of attentional bias. Front. Hum. Neurosci. 2013, 7, 119. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Shields, G.S.; Wu, Q.; Liu, Y.; Chen, H.; Guo, C. Cognitive training on eating behaviour and weight loss: A meta-analysis and systematic review. Obes. Rev. 2019, 20, 1628–1641. [Google Scholar] [CrossRef]
- Boutelle, K.N.; Monreal, T.; Strong, D.R.; Amir, N. An open trial evaluating an attention bias modification program for overweight adults who binge eat. J. Behav. Ther. Exp. Psychiatry 2016, 52, 138–146. [Google Scholar] [CrossRef]
- Fodor, L.-A.; Cosmoiu, A.; Podina, I. Cognitive bias modification interventions for attention to and approach of appetitive food stimuli: A meta-analysis. J. Evid.-Based Psychother. 2017, 17, 85. [Google Scholar] [CrossRef]
- Seage, C.H. A systematic review of the effectiveness of attentional bias modification to support weight management in individuals who are overweight or obese. Obes. Rev. 2024, 25, e13745. [Google Scholar] [CrossRef]
- Stice, E.; Yokum, S.; Veling, H.; Kemps, E.; Lawrence, N.S. Pilot test of a novel food response and attention training treatment for obesity: Brain imaging data suggest actions shape valuation. Behav. Res. Ther. 2017, 94, 60–70. [Google Scholar] [CrossRef]
- Mercado, D.; Werthmann, J.; Antunes-Duarte, T.; Campbell, I.C.; Schmidt, U. A randomised controlled feasibility study of food-related computerised attention training versus mindfulness training and waiting-list control for adults with overweight or obesity: The FOCUS study. J. Eat. Disord. 2023, 11, 61. [Google Scholar] [CrossRef] [PubMed]
- Donovan, J.J.; Radosevich, D.J. A meta-analytic review of the distribution of practice effect: Now you see it, now you don’t. J. Appl. Psychol. 1999, 84, 795. [Google Scholar] [CrossRef]
- Hakamata, Y.; Lissek, S.; Bar-Haim, Y.; Britton, J.C.; Fox, N.A.; Leibenluft, E.; Ernst, M.; Pine, D.S. Attention bias modification treatment: A meta-analysis toward the establishment of novel treatment for anxiety. Biol. Psychiatry 2010, 68, 982–990. [Google Scholar] [CrossRef]
- Beard, C.; Sawyer, A.T.; Hofmann, S.G. Efficacy of attention bias modification using threat and appetitive stimuli: A meta-analytic review. Behav. Ther. 2012, 43, 724–740. [Google Scholar] [CrossRef] [PubMed]
- Bouton, M.E. A learning theory perspective on lapse, relapse, and the maintenance of behavior change. Health Psychol. 2000, 19, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Taylor, P. Share of U.S. Teenagers with Smartphone Access 2023, by Gender. Available online: https://www.statista.com/statistics/256501/teen-cell-phone-and-smartphone-ownership-in-the-us-by-gender/ (accessed on 30 January 2024).
- Anon. Mobile Fact Sheet. Pew Research Center. Available online: https://www.pewresearch.org/internet/fact-sheet/mobile/ (accessed on 30 January 2024).
- Tanofsky-Kraff, M.; McDuffie, J.R.; Yanovski, S.Z.; Kozlosky, M.; Schvey, N.A.; Shomaker, L.B.; Salaita, C.; Yanovski, J.A. Laboratory assessment of the food intake of children and adolescents with loss of control eating. Am. J. Clin. Nutr. 2009, 89, 738–745. [Google Scholar] [CrossRef] [PubMed]
- Kuczmarski, R.J.; Ogden, C.L.; Grummer-Strawn, L.M.; Flegal, K.M.; Guo, S.S.; Wei, R.; Mei, Z.; Curtin, L.R.; Roche, A.F.; Johnson, C.L. CDC growth charts: United States. Adv. Data 2000, 314, 1–27. [Google Scholar]
- Kerst, W.F.; Waters, A.J. Attentional retraining administered in the field reduces smokers’ attentional bias and craving. Health Psychol. 2014, 33, 1232–1240. [Google Scholar] [CrossRef] [PubMed]
- Field, M.; Duka, T.; Eastwood, B.; Child, R.; Santarcangelo, M.; Gayton, M. Experimental manipulation of attentional biases in heavy drinkers: Do the effects generalise? Psychopharmacology 2007, 192, 593–608. [Google Scholar] [CrossRef]
- Walsh, B.T.; Boudreau, G. Laboratory studies of binge eating disorder. Int. J. Eat. Disord. 2003, 34 (Suppl. S1), S30–S38. [Google Scholar] [CrossRef]
- Haytowitz, D.B.; Ahuja, J.K.; Wu, X.; Somanchi, M.; Nickle, M.; Nguyen, Q.A.; Roseland, J.M.; Williams, J.R.; Patterson, K.Y.; Li, Y. USDA National Nutrient Database for Standard Reference, Legacy Release. 2019. Available online: https://agdatacommons.nal.usda.gov/articles/dataset/USDA_National_Nutrient_Database_for_Standard_Reference_Legacy_Release/24661818 (accessed on 14 June 2016).
- Britton, J.C.; Bar-Haim, Y.; Carver, F.W.; Holroyd, T.; Norcross, M.A.; Detloff, A.; Leibenluft, E.; Ernst, M.; Pine, D.S. Isolating neural components of threat bias in pediatric anxiety. J. Child Psychol. Psychiatry 2012, 53, 678–686. [Google Scholar] [CrossRef]
- Rich, B.A.; Carver, F.W.; Holroyd, T.; Rosen, H.R.; Mendoza, J.K.; Cornwell, B.R.; Fox, N.A.; Pine, D.S.; Coppola, R.; Leibenluft, E. Different neural pathways to negative affect in youth with pediatric bipolar disorder and severe mood dysregulation. J. Psychiatr. Res. 2011, 45, 1283–1294. [Google Scholar] [CrossRef]
- Hales, C.M.; Freedman, D.S.; Akinbami, L.; Wei, R.; Ogden, C.L. Evaluation of Alternative Body Mass Index (BMI) Metrics to Monitor Weight Status in Children and Adolescents With Extremely High BMI Using CDC BMI-for-age Growth Charts. Vital Health Stat. 2022, 1, 1–42. [Google Scholar]
- Bridge, P.; Pocock, N.A.; Nguyen, T.; Munns, C.; Cowell, C.T.; Forwood, N.; Thompson, M.W. Validation of longitudinal DXA changes in body composition from pre-to mid-adolescence using MRI as reference. J. Clin. Densitom. 2011, 14, 340–347. [Google Scholar] [CrossRef] [PubMed]
- Fairburn, C.G.; Cooper, Z.; O’Connor, M. The eating disorder examination. Int. J. Eat. Disord. 1993, 6, 1–8. [Google Scholar]
- Glasofer, D.R.; Tanofsky-Kraff, M.; Eddy, K.T.; Yanovski, S.Z.; Theim, K.R.; Mirch, M.C.; Ghorbani, S.; Ranzenhofer, L.M.; Haaga, D.; Yanovski, J.A. Binge eating in overweight treatment-seeking adolescents. J. Pediatr. Psychol. 2007, 32, 95–105. [Google Scholar] [CrossRef]
- Tanofsky-Kraff, M.; Yanovski, S.Z.; Wilfley, D.E.; Marmarosh, C.; Morgan, C.M.; Yanovski, J.A. Eating-disordered behaviors, body fat, and psychopathology in overweight and normal-weight children. J. Consult. Clin. Psychol. 2004, 72, 53–61. [Google Scholar] [CrossRef]
- Watkins, B.; Frampton, I.; Lask, B.; Bryant-Waugh, R. Reliability and validity of the child version of the Eating Disorder Examination: A preliminary investigation. Int. J. Eat. Disord. 2005, 38, 183–187. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Erlbaum: Hillsdale, NJ, USA, 1988. [Google Scholar]
- Rich, B.A.; Holroyd, T.; Carver, F.W.; Onelio, L.M.; Mendoza, J.K.; Cornwell, B.R.; Fox, N.A.; Pine, D.S.; Coppola, R.; Leibenluft, E. A preliminary study of the neural mechanisms of frustration in pediatric bipolar disorder using magnetoencephalography. Depress. Anxiety 2010, 27, 276–286. [Google Scholar] [CrossRef]
- Hari, R.; Parkkonen, L.; Nangini, C. The brain in time: Insights from neuromagnetic recordings. Ann. N. Y. Acad. Sci. 2010, 1191, 89–109. [Google Scholar] [CrossRef] [PubMed]
- Gramfort, A.; Luessi, M.; Larson, E.; Engemann, D.; Strohmeier, D.; Brodbeck, C.; Goj, R.; Jas, M.; Brooks, T.; Parkkonen, L.; et al. MEG and EEG data analysis with MNE-Python. Front. Neurosci. 2013, 7, 267. [Google Scholar] [CrossRef]
- Niso, G.; Gorgolewski, K.J.; Bock, E.; Brooks, T.L.; Flandin, G.; Gramfort, A.; Henson, R.N.; Jas, M.; Litvak, V.; Moreau, J.T.; et al. MEG-BIDS, the brain imaging data structure extended to magnetoencephalography. Sci. Data 2018, 5, 180110. [Google Scholar] [CrossRef]
- Appelhoff, S.; Sanderson, M.; Brooks, T.L.; van Vliet, M.; Quentin, R.; Holdgraf, C.; Chaumon, M.; Mikulan, E.; Tavabi, K.; Höchenberger, R.; et al. MNE-BIDS: Organizing electrophysiological data into the BIDS format and facilitating their analysis. J. Open Source Softw. 2019, 4, 1896. [Google Scholar] [CrossRef]
- Dale, A.M.; Fischl, B.; Sereno, M.I. Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage 1999, 9, 179–194. [Google Scholar] [CrossRef] [PubMed]
- Richard Höchenberger, E.L.; Gramfort, A.; Appelhoff, S.; Herbst, S.; Massich, J.; Jas, M.; Segerie, C.-R.; Mellot, A.; Engemann, D.A.; Mellot, A.; et al. mne-Tools/mne-bids-Pipeline, 1.9.0 (v1.9.0); Zenodo: 2024. Available online: https://github.com/mne-tools/mne-bids-pipeline (accessed on 12 September 2024).
- Cox, R.W. AFNI: Software for analysis and visualization of functional magnetic resonance neuroimages. Comput. Biomed. Res. 1996, 29, 162–173. [Google Scholar] [CrossRef] [PubMed]
- Fischl, B.; Salat, D.H.; Busa, E.; Albert, M.; Dieterich, M.; Haselgrove, C.; van der Kouwe, A.; Killiany, R.; Kennedy, D.; Klaveness, S.; et al. Whole brain segmentation: Automated labeling of neuroanatomical structures in the human brain. Neuron 2002, 33, 341–355. [Google Scholar] [CrossRef]
- Desikan, R.S.; Ségonne, F.; Fischl, B.; Quinn, B.T.; Dickerson, B.C.; Blacker, D.; Buckner, R.L.; Dale, A.M.; Maguire, R.P.; Hyman, B.T.; et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 2006, 31, 968–980. [Google Scholar] [CrossRef]
- Zumer, J.M.; Brookes, M.J.; Stevenson, C.M.; Francis, S.T.; Morris, P.G. Relating BOLD fMRI and neural oscillations through convolution and optimal linear weighting. NeuroImage 2010, 49, 1479–1489. [Google Scholar] [CrossRef]
- Martinelli, A.; Grüll, J.; Baum, C. Attention and interpretation cognitive bias change: A systematic review and meta-analysis of bias modification paradigms. Behav. Res. Ther. 2022, 157, 104180. [Google Scholar] [CrossRef]
- Gao, X.; Wang, Q.; Jackson, T.; Zhao, G.; Liang, Y.; Chen, H. Biases in orienting and maintenance of attention among weight dissatisfied women: An eye-movement study. Behav. Res. Ther. 2011, 49, 252–259. [Google Scholar] [CrossRef] [PubMed]
- Jiang, M.Y.w.; Vartanian, L.R. A review of existing measures of attentional biases in body image and eating disorders research. Aust. J. Psychol. 2018, 70, 3–17. [Google Scholar] [CrossRef]
- Franja, S.; McCrae, A.E.; Jahnel, T.; Gearhardt, A.N.; Ferguson, S.G. Measuring Food-Related Attentional Bias. Front. Psychol. 2021, 12, 629115. [Google Scholar] [CrossRef]
- Xu, I.; Passell, E.; Strong, R.W.; Grinspoon, E.; Jung, L.; Wilmer, J.B.; Germine, L.T. No Evidence of Reliability Across 36 Variations of the Emotional Dot-Probe Task in 9,600 Participants. Clin. Psychol. Sci. 2024, in press. [Google Scholar] [CrossRef]
- Price, R.B.; Brown, V.; Siegle, G.J. Computational Modeling Applied to the Dot-Probe Task Yields Improved Reliability and Mechanistic Insights. Biol. Psychiatry 2019, 85, 606–612. [Google Scholar] [CrossRef] [PubMed]
- Theim, K.R.; Tanofsky-Kraff, M.; Salaita, C.G.; Haynos, A.F.; Mirch, M.C.; Ranzenhofer, L.M.; Yanovski, S.Z.; Wilfley, D.E.; Yanovski, J.A. Children’s descriptions of the foods consumed during loss of control eating episodes. Eat. Behav. 2007, 8, 258–265. [Google Scholar] [CrossRef] [PubMed]
- Haruno, M.; Kawato, M. Different Neural Correlates of Reward Expectation and Reward Expectation Error in the Putamen and Caudate Nucleus During Stimulus-Action-Reward Association Learning. J. Neurophysiol. 2006, 95, 948–959. [Google Scholar] [CrossRef] [PubMed]
- Botvinick, M.M.; Cohen, J.D.; Carter, C.S. Conflict monitoring and anterior cingulate cortex: An update. Trends Cogn. Sci. 2004, 8, 539–546. [Google Scholar] [CrossRef]
- Golchert, J.; Smallwood, J.; Jefferies, E.; Liem, F.; Huntenburg, J.M.; Falkiewicz, M.; Lauckner, M.E.; Oligschläger, S.; Villringer, A.; Margulies, D.S. In need of constraint: Understanding the role of the cingulate cortex in the impulsive mind. NeuroImage 2017, 146, 804–813. [Google Scholar] [CrossRef]
- Krug, M.K.; Carter, C.S. Anterior Cingulate Cortex Contributions to Cognitive and Emotional Processing: A General Purpose Mechanism for Cognitive Control and Self-Control. In Self Control in Society, Mind, and Brain; Hassin, R., Ochsner, K., Trope, Y., Eds.; Oxford University Press: Oxford, UK, 2010. [Google Scholar] [CrossRef]
- Rolls, E.T.; Cheng, W.; Feng, J. The orbitofrontal cortex: Reward, emotion and depression. Brain Commun. 2020, 2, fcaa196. [Google Scholar] [CrossRef]
- Rolls, E.T. The functions of the orbitofrontal cortex. Brain Cogn. 2004, 55, 11–29. [Google Scholar] [CrossRef]
- Sakagami, M.; Pan, X. Functional role of the ventrolateral prefrontal cortex in decision making. Curr. Opin. Neurobiol. 2007, 17, 228–233. [Google Scholar] [CrossRef]
- Jung, J.; Lambon Ralph, M.A.; Jackson, R.L. Subregions of DLPFC Display Graded yet Distinct Structural and Functional Connectivity. J. Neurosci. 2022, 42, 3241–3252. [Google Scholar] [CrossRef]
- Shulman, G.L.; Pope, D.L.; Astafiev, S.V.; McAvoy, M.P.; Snyder, A.Z.; Corbetta, M. Right hemisphere dominance during spatial selective attention and target detection occurs outside the dorsal frontoparietal network. J. Neurosci. 2010, 30, 3640–3651. [Google Scholar] [CrossRef]
- Hartikainen, K.M. Emotion-Attention Interaction in the Right Hemisphere. Brain Sci. 2021, 11, 1006. [Google Scholar] [CrossRef] [PubMed]
- Weidner, R.; Krummenacher, J.; Reimann, B.; Müller, H.J.; Fink, G.R. Sources of Top–Down Control in Visual Search. J. Cogn. Neurosci. 2009, 21, 2100–2113. [Google Scholar] [CrossRef]
- Orlandi, A.; Proverbio, A.M. Left-Hemispheric Asymmetry for Object-Based Attention: An ERP Study. Brain Sci. 2019, 9, 315. [Google Scholar] [CrossRef] [PubMed]
- Grahn, J.A.; Parkinson, J.A.; Owen, A.M. The cognitive functions of the caudate nucleus. Prog. Neurobiol. 2008, 86, 141–155. [Google Scholar] [CrossRef]
- Cox, J.; Witten, I.B. Striatal circuits for reward learning and decision-making. Nat. Rev. Neurosci. 2019, 20, 482–494. [Google Scholar] [CrossRef]
- Barredo, J.; Verstynen, T.D.; Badre, D. Organization of cortico-cortical pathways supporting memory retrieval across subregions of the left ventrolateral prefrontal cortex. J. Neurophysiol. 2016, 116, 920–937. [Google Scholar] [CrossRef]
- Molnar-Szakacs, I.; Iacoboni, M.; Koski, L.; Mazziotta, J.C. Functional Segregation within Pars Opercularis of the Inferior Frontal Gyrus: Evidence from fMRI Studies of Imitation and Action Observation. Cerebral Cortex 2004, 15, 986–994. [Google Scholar] [CrossRef]
- Liakakis, G.; Nickel, J.; Seitz, R.J. Diversity of the inferior frontal gyrus—A meta-analysis of neuroimaging studies. Behav. Brain Res. 2011, 225, 341–347. [Google Scholar] [CrossRef] [PubMed]
- Lev-Ari, L.; Kreiner, H.; Avni, O. Food Attention Bias: Appetite comes with eating. J. Eat. Disord. 2021, 9, 133. [Google Scholar] [CrossRef]
- Kennedy, A.P.; Shea, J.L.; Sun, G. Comparison of the classification of obesity by BMI vs. dual-energy X-ray absorptiometry in the Newfoundland population. Obesity 2009, 17, 2094–2099. [Google Scholar] [CrossRef]
- Dale, A.M.; Halgren, E. Spatiotemporal mapping of brain activity by integration of multiple imaging modalities. Curr. Opin. Neurobiol. 2001, 11, 202–208. [Google Scholar] [CrossRef] [PubMed]
- Huotilainen, M. Magnetoencephalography in Studies of Infants and Children. In International Review of Neurobiology; Academic Press: Cambridge, MA, USA, 2005; Volume 68, pp. 25–50. [Google Scholar]
- Pang, E.W. Practical aspects of running developmental studies in the MEG. Brain Topogr. 2011, 24, 253–260. [Google Scholar] [CrossRef] [PubMed]
Characteristic | Total Sample (N = 68) | Control Program (n = 36) | AR Program (n = 32) | Comparisons |
---|---|---|---|---|
t, p | ||||
Age (year) 1 | 14.93 ± 1.64 | 14.88 ± 1.70 | 15.00 ± 1.61 | −0.31, 0.76 |
BMIz 1 | 1.84 ± 0.60 | 1.88 ± 0.64 | 1.80 ± 0.55 | 0.54, 0.59 |
Fat mass (kg) 1 | 33.71 ± 10.79 | 33.64 ± 11.31 | 33.79 ± 10.36 | −0.06, 0.95 |
Height (cm) 1 | 161.89 ± 6.46 | 161.29 ± 6.58 | 162.58 ± 6.35 | −0.82, 0.42 |
χ2, p | ||||
Recent LOC-eating 2 | 20 (29.41) | 11 (30.56) | 9 (28.13) | 0.05, 0.83 |
Race 2 | 3.18, 0.37 | |||
Asian | 1 (1.5) | 1 (2.8) | 0 (0) | |
Black | 37 (54.4) | 19 (52.8) | 18 (56.3) | |
Multiracial | 7 (10.3) | 2 (5.5) | 5 (15.6) | |
White | 23 (33.8) | 14 (38.9) | 9 (28.1) | |
Ethnicity 2 | 0.97, 0.62 | |||
Hispanic | 9 (13.2) | 6 (16.7) | 3 (9.4) | |
Non-Hispanic | 54 (79.4) | 27 (75.0) | 27 (84.4) | |
Unreported | 5 (7.4) | 3 (8.3) | 2 (6.2) |
Effect of Condition | Control (n = 26) | AR (n = 22) | Effect Size | |
---|---|---|---|---|
β [95%CI] | EMM [95%CI] | EMM [95%CI] | Cohen’s d | |
Total Calories (kcal) | 66.322 [−133.345–265.988] | 1017.024 [923.141–1110.906] | 1088.188 [986.126–1190.249] | 0.291 * |
Carbohydrate (%) | −0.021 [−0.064–0.023] | 78.3 [76.3–80.4] | 75.4 [73.2–77.6] | −0.544 ** |
Fat (%) | 0.024 [−0.008–0.057] | 65.0 [63.5–66.5] | 67.4 [65.8–69.1] | 0.615 ** |
Protein (%) | −0.006 [−0.032–0.020] | 37.3 [36.1–38.6] | 38.0 [36.7–39.4] | 0.216 * |
Effect of Condition × LOC | Control No LOC (n = 16) | Control LOC (n = 10) | Control No LOC–LOC | AR No LOC (n = 15) | AR LOC (n = 7) | AR No LOC–LOC | |
---|---|---|---|---|---|---|---|
β [95%CI] | EMM [95%CI] | EMM [95%CI] | d | EMM [95%CI] | EMM [95%CI] | Cohen’s d | |
Total Calories (kcal) | 9.684 [−335.492–354.860] | 1029.919 [907.552–1152.286] | 1004.128 [849.345–1158.912] | 0.101 | 1096.241 [969.861–1222.621] | 1080.134 [895.132–1265.136] | 0.067 |
Carbohydrate (%) | −0.017 [−0.092–0.058] | 77.6 [74.9–80.3] | 79.0 [75.6–82.4] | −0.288 * | 75.5 [72.8–78.3] | 75.3 [71.2–79.3] | 0.046 |
Fat (%) | −0.001 [−0.056–0.055] | 65.0 [66.9–63] | 65.1 [67.5–62.6] | −0.023 | 67.4 [69.5–65.4] | 67.4 [70.4–64.5] | −0.005 |
Protein (%) | 0.026 [−0.019–0.071] | 38.5 [36.9–40.1] | 36.2 [34.1–38.2] | 0.705 ** | 37.9 [36.2–39.5] | 38.2 [35.7–40.6] | −0.095 |
Effect of Condition | Control (n = 12) | AR (n = 14) | Effect Size | |
---|---|---|---|---|
ROI Sub-Regions | β [95%CI] | EMM [95%CI] a,b | EMM [95%CI] a,b | Cohen’s d |
Striatum | ||||
Caudate-lh | 0.047 [−0.025–0.119] | 0.010 [−0.027–0.048] | 0.021 [−0.014–0.056] | 0.093 |
Caudate-rh | −0.002 [−0.085–0.082] | 0.032 [−0.011–0.075] | 0.023 [−0.017–0.063] | −0.066 |
Pallidum-lh | 0.08 [−0.022–0.182] | −0.007 [−0.055–0.041] | 0.038 [−0.006–0.083] | 0.307 * |
Pallidum-rh | 0.013 [−0.086–0.113] | 0.028 [−0.022–0.078] | 0.009 [−0.037–0.056] | −0.121 |
Putamen-lh | 0.083 [−0.001–0.167] | −0.013 [−0.056–0.03] | 0.046 [0.006–0.086] | 0.447 * |
Putamen-rh | 0.031 [−0.059–0.121] | 0.017 [−0.029–0.063] | 0.02 [−0.022–0.063] | 0.020 |
ACC | ||||
Caudal-lh | −0.042 [−0.149–0.065] | 0.035 [−0.009–0.078] | −0.041 [−0.081–−0.001] | −0.569 ** |
Caudal-rh | −0.034 [−0.122–0.053] | 0.053 [0.011–0.095] | 0.002 [−0.037–0.041] | −0.397 * |
Rostral-lh | 0.042 [−0.041–0.126] | 0.012 [−0.03–0.055] | 0.012 [−0.027–0.051] | −0.003 |
Rostral-rh | 0.021 [−0.06–0.102] | 0.002 [−0.034–0.039] | −0.024 [−0.058–0.01] | −0.235 * |
OFC | ||||
Lateral-lh | 0.107 [0.03–0.185] | −0.010 [−0.050–0.030] | 0.026 [−0.011–0.063] | 0.291 * |
Lateral-rh | 0.092 [0.01–0.175] | −0.026 [−0.065–0.014] | −0.001 [−0.037–0.036] | 0.207 * |
Medial-lh | 0.046 [−0.032–0.123] | −0.010 [−0.048–0.029] | 0.018 [−0.017–0.054] | 0.237 * |
Medial-rh | 0.041 [−0.03–0.112] | −0.018 [−0.053–0.018] | −0.011 [−0.044–0.022] | 0.062 |
dlPFC | ||||
Caudal-lh | −0.037 [−0.125–0.052] | 0.026 [−0.006–0.058] | 0.02 [−0.01–0.049] | −0.068 |
Caudal-rh | 0.001 [−0.091–0.093] | 0.027 [−0.010–0.065] | 0.031 [−0.003–0.066] | 0.037 |
Rostral-lh | 0.065 [−0.001–0.132] | −0.006 [−0.040–0.029] | 0.033 [0.001–0.066] | 0.365 * |
Rostral-rh | 0.023 [−0.055–0.101] | 0.014 [−0.018–0.046] | 0.008 [−0.021–0.038] | −0.061 |
Superior-lh | −0.032 [−0.116–0.051] | 0.021 [−0.004–0.046] | −0.013 [−0.036–0.01] | −0.438 * |
Superior-rh | −0.012 [−0.078–0.053] | 0.041 [0.017–0.064] | 0.019 [−0.002–0.041] | −0.294 * |
vlPFC | ||||
Pars opercularis-lh | 0.089 [0.004–0.174] | −0.010 [−0.048–0.029] | 0.069 [0.034–0.105] | 0.672 ** |
Pars opercularis-rh | −0.016 [−0.113–0.081] | 0.037 [−0.007–0.08] | 0.031 [−0.009–0.071] | −0.045 |
Pars orbitalis-lh | 0.129 [0.049–0.209] | −0.019 [−0.060–0.023] | 0.019 [−0.019–0.058] | 0.299 * |
Pars orbitalis-rh | 0.126 [0.045–0.207] | −0.011 [−0.053–0.030] | 0.016 [−0.023–0.055] | 0.214 * |
Pars triangularis-lh | 0.115 [0.027–0.203] | −0.015 [−0.059–0.029] | 0.064 [0.024–0.105] | 0.589 ** |
Pars triangularis-rh | 0.037 [−0.053–0.127] | 0.022 [−0.020–0.063] | 0.016 [−0.023–0.054] | −0.047 |
Effect of Condition | Control (n = 12) | AR (n = 14) | Effect Size | |
---|---|---|---|---|
ROI Sub-Regions | β [95%CI] | EMM [95%CI] a,b | EMM [95%CI] a,b | Cohen’s d |
Striatum | ||||
Caudate-lh | −0.021 [−0.092–0.05] | 0.012 [−0.025–0.049] | −0.052 [−0.086–−0.017] | −0.561 ** |
Caudate-rh | −0.013 [−0.095–0.069] | 0.030 [−0.013–0.073] | −0.031 [−0.07- 0.009] | −0.464 * |
Pallidum-lh | −0.005 [−0.103–0.092] | −0.011 [−0.058–0.036] | −0.051 [−0.095–−0.008] | −0.281 * |
Pallidum-rh | 0.02 [−0.069–0.109] | 0.037 [−0.009–0.084] | −0.026 [−0.069–0.017] | −0.445 * |
Putamen-lh | −0.01 [−0.099–0.08] | <0.001 [−0.040–0.041] | −0.062 [−0.10–−0.025] | −0.505 ** |
Putamen-rh | 0.013 [−0.069–0.095] | 0.018 [−0.024–0.061] | −0.031 [−0.07–0.009] | −0.375 * |
ACC | ||||
Caudal-lh | −0.041 [−0.123–0.041] | 0.026 [−0.012–0.064] | −0.069 [−0.104–−0.033] | −0.817 *** |
Caudal-rh | −0.038 [−0.142–0.066] | 0.058 [0.011–0.105] | −0.028 [−0.072–0.016] | −0.594 ** |
Rostral-lh | −0.023 [−0.105–0.059] | −0.005 [−0.048–0.038] | −0.03 [−0.07–0.01] | −0.189 |
Rostral-rh | −0.057 [−0.14–0.027] | 0.032 [−0.010–0.074] | −0.012 [−0.051–0.027] | −0.341 * |
OFC | ||||
Lateral-lh | 0 [−0.091–0.091] | 0.021 [−0.022–0.063] | −0.062 [−0.102–−0.023] | −0.641 ** |
Lateral-rh | −0.01 [−0.092–0.071] | 0.012 [−0.029–0.052] | 0.002 [−0.035–0.04] | −0.075 |
Medial-lh | −0.013 [−0.101–0.076] | 0.018 [−0.023–0.058] | −0.038 [−0.076–−0.001] | −0.454 * |
Medial-rh | −0.033 [−0.11–0.043] | 0.041 [0.001–0.080] | −0.009 [−0.046–0.028] | −0.404 * |
dlPFC | ||||
Caudal-lh | 0.011 [−0.069–0.091] | 0.016 [−0.024–0.056] | −0.012 [−0.049–0.025] | −0.228 * |
Caudal-rh | 0.054 [−0.037–0.146] | 0.005 [−0.041–0.050] | 0.006 [−0.036–0.048] | 0.008 |
Rostral-lh | 0.002 [−0.061–0.065] | 0.015 [−0.017–0.047] | −0.031 [−0.061–−0.002] | −0.472 * |
Rostral-rh | 0.032 [−0.05–0.115] | 0.010 [−0.024–0.044] | −0.006 [−0.037–0.026] | −0.149 |
Superior-lh | −0.016 [−0.075–0.042] | 0.004 [−0.025–0.033] | −0.022 [−0.049–0.005] | −0.286 * |
Superior-rh | 0.03 [−0.039–0.099] | 0.023 [−0.009–0.055] | 0.01 [−0.02–0.039] | −0.138 |
vlPFC | ||||
Pars opercularis-lh | −0.016 [−0.097–0.066] | 0.043 [0.003–0.082] | −0.054 [−0.09–−0.017] | −0.802 *** |
Pars opercularis-rh | 0.053 [−0.051–0.156] | 0.001 [−0.037–0.039] | −0.018 [−0.053–0.017] | −0.163 |
Pars orbitalis-lh | 0.015 [−0.061–0.091] | 0.013 [−0.026–0.053] | −0.052 [−0.089–−0.016] | −0.545 ** |
Pars orbitalis-rh | 0.036 [−0.047–0.119] | −0.027 [−0.067–0.012] | 0.023 [−0.014–0.06] | 0.412 * |
Pars triangularis-lh | −0.017 [−0.092–0.057] | 0.023 [−0.015–0.062] | −0.071 [−0.107–−0.036] | −0.805 *** |
Pars triangularis-rh | 0.07 [−0.019–0.159] | −0.009 [−0.055–0.037] | 0.013 [−0.03–0.056] | 0.156 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parker, M.N.; Bloomer, B.F.; Stout, J.D.; Byrne, M.E.; Schvey, N.A.; Brady, S.M.; Chen, K.Y.; Nugent, A.C.; Turner, S.A.; Yang, S.B.; et al. A Pilot Randomized Control Trial Testing a Smartphone-Delivered Food Attention Retraining Program in Adolescent Girls with Overweight or Obesity. Nutrients 2024, 16, 3456. https://doi.org/10.3390/nu16203456
Parker MN, Bloomer BF, Stout JD, Byrne ME, Schvey NA, Brady SM, Chen KY, Nugent AC, Turner SA, Yang SB, et al. A Pilot Randomized Control Trial Testing a Smartphone-Delivered Food Attention Retraining Program in Adolescent Girls with Overweight or Obesity. Nutrients. 2024; 16(20):3456. https://doi.org/10.3390/nu16203456
Chicago/Turabian StyleParker, Megan N., Bess F. Bloomer, Jeffrey D. Stout, Meghan E. Byrne, Natasha A. Schvey, Sheila M. Brady, Kong Y. Chen, Allison C. Nugent, Sara A. Turner, Shanna B. Yang, and et al. 2024. "A Pilot Randomized Control Trial Testing a Smartphone-Delivered Food Attention Retraining Program in Adolescent Girls with Overweight or Obesity" Nutrients 16, no. 20: 3456. https://doi.org/10.3390/nu16203456
APA StyleParker, M. N., Bloomer, B. F., Stout, J. D., Byrne, M. E., Schvey, N. A., Brady, S. M., Chen, K. Y., Nugent, A. C., Turner, S. A., Yang, S. B., Stojek, M. M., Waters, A. J., Tanofsky-Kraff, M., & Yanovski, J. A. (2024). A Pilot Randomized Control Trial Testing a Smartphone-Delivered Food Attention Retraining Program in Adolescent Girls with Overweight or Obesity. Nutrients, 16(20), 3456. https://doi.org/10.3390/nu16203456