Development and Pilot Study of myfood24 West Africa—An Online Tool for Dietary Assessment in Nigeria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Developing myfood24 West Africa Database
2.1.1. Identification of Relevant Food Composition Tables/Database
- The 2019 West Africa Food Composition Table (WAFCT): This contains 1028 food items commonly consumed in West African countries including Nigeria with their corresponding 56 components, including 44 nutrients [21].
- The 2017 Nigerian Food Composition Table (NFCT): This contains composition data for 282 foods consumed in Nigeria; data were sourced from chemical analysis and other food composition tables and contain up to 30 nutrients [22].
- Back-of-pack labels of packaged foods: We took pictures of back-of-pack labels of packaged foods from one major supermarket in Abia State, another major supermarket in Enugu State and a local food store in Abia State. All locations are in southeast Nigeria. We also searched for composition data from the manufacturers’ websites.
- Research articles: We searched the literature for the composition data of mixed foods and generic foods not present in the identified food composition tables above.
2.1.2. Identification and Selection of Foods
2.1.3. Data Processing and Cleaning
2.1.4. Creation of Mixed Dishes
2.1.5. Estimation and Allocation of Portion Sizes
2.1.6. Development of Food Accompaniments
2.1.7. Incorporation of the Database into the myfood24 System
2.2. Pilot Study, Feasibility and Usability Testing of myfood24
2.2.1. Recruitment
2.2.2. Dietary Assessment
2.2.3. Usability Testing
2.3. Data and Statistical Analysis
3. Results
3.1. myfood24 West Africa
3.2. Pilot of myfood24 West Africa
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eldridge, A.L.; Piernas, C.; Illner, A.-K.; Gibney, M.J.; Gurinović, M.A.; De Vries, J.H.M.; Cade, J.E. Evaluation of New Technology-Based Tools for Dietary Intake Assessment—An ILSI Europe Dietary Intake and Exposure Task Force Evaluation. Nutrients 2019, 11, 55. [Google Scholar] [CrossRef] [PubMed]
- Pisa, P.T.; Landais, E.; Margetts, B.; Vorster, H.H.; Friedenreich, C.M.; Huybrechts, I.; Martin-prevel, Y.; Branca, F.; Lee, W.T.K.; Leclercq, C.; et al. Inventory on the dietary assessment tools available and needed in Africa: A prerequisite for setting up a common methodological research infrastructure for nutritional surveillance, research, and prevention of diet-related non-communicable diseases. Crit. Rev. Food Sci. Nutr. 2018, 58, 37–61. [Google Scholar] [CrossRef] [PubMed]
- Coates, J.C.; Colaiezzi, B.A.; Bell, W.; Charrondiere, U.R.; Leclercq, C. Overcoming Dietary Assessment Challenges in Low-Income Countries: Technological Solutions Proposed by the International Dietary Data Expansion (INDDEX) Project. Nutrients 2017, 9, 289. [Google Scholar] [CrossRef] [PubMed]
- Nigeria. Country Nutrition Profiles. 2022 Global Nutrition Report: Stronger Commitments for Greater Action. Available online: https://globalnutritionreport.org/resources/nutrition-profiles/africa/western-africa/nigeria/#:~:text=Nigeria%20has%20shown%20limited%20progress,women%20and%209.2%25%20for%20men (accessed on 6 June 2024).
- Merid, M.W.; Chilot, D.; Alem, A.Z.; Aragaw, F.M.; Asratie, M.H.; Belay, D.G.; Kibret, A.A. An unacceptably high burden of anaemia and its predictors among young women (15–24 years) in low- and middle-income countries; set back to SDG progress. BMC Public Health 2023, 23, 1292. [Google Scholar] [CrossRef] [PubMed]
- Alem, A.Z.; Yeshaw, Y.; Liyew, A.M.; Tessema, Z.T.; Worku, M.G.; Tesema, G.A.; Alamneh, T.S.; Teshale, A.B.; Chilot, D.; Ayalew, H.G. Double burden of malnutrition and its associated factors among women in low- and middle-income countries: Findings from 52 nationally representative data. BMC Public Health 2023, 23, 1479. [Google Scholar] [CrossRef]
- Victora, C.G.; Christian, P.; Vidaletti, L.P.; Gatica-Domínguez, G.; Menon, P.; Black, R.E. Revisiting maternal and child undernutrition in low-income and middle-income countries: Variable progress towards an unfinished agenda. Lancet 2021, 397, 1388–1399. [Google Scholar] [CrossRef]
- Greenfield, H.; Southgate, D. Food Composition Data: Production, Management and Use; Elsevier Science Publishers: Amsterdam, The Netherlands, 2003. [Google Scholar]
- Vila-Real, C.; Pimenta-Martins, A.; Gomes, A.M.; Pinto, E.; Maina, N.H. How dietary intake has been assessed in African countries? A systematic review. Crit. Rev. Food Sci. Nutr. 2018, 58, 1002–1022. [Google Scholar] [CrossRef]
- Wojtusiak, J.; Gewa, C.A.; Pawloskiet, L.R. Dietary assessment in Africa: Integration with innovative technology. Afr. J. Food Agric. Nutr. Dev. 2011; 11, 9930–9944. [Google Scholar] [CrossRef]
- Thompson, F.E.; Subar, A.F. Chapter 1—Dietary Assessment Methodology. In Nutrition in the Prevention and Treatment of Disease, 4th ed.; Coulston, A.M., Boushey, C.J., Ferruzzi, M.G., Delahanty, L.M., Eds.; Academic Press: Cambridge, MA, USA, 2017; pp. 5–48. [Google Scholar]
- Kristal, A.R.; Peters, U.; Potter, J.D. Is It Time to Abandon the Food Frequency Questionnaire? Cancer Epidemiol. Biomark. Prev. 2005, 14, 2826–2828. [Google Scholar] [CrossRef]
- The International Dietary Data Expansion (INDDEX) Project. INDDEX Mobile App. Available online: https://inddex.nutrition.tufts.edu/inddex24-mobile-app (accessed on 11 June 2023).
- Bradley, J.; Simpson, E.; Poliakov, I.; Matthews, J.N.S.; Olivier, P.; Adamson, A.J.; Foster, E. Comparison of INTAKE24 (an Online 24-h Dietary Recall Tool) with Interviewer-Led 24-h Recall in 11–24 Year-Old. Nutrients 2016, 8, 358. [Google Scholar] [CrossRef]
- Albar, S.A.; Alwan, N.A.; Evans, C.E.L.; Greenwood, D.C.; Cade, J.E. Agreement between an online dietary assessment tool (myfood24) and an interviewer-administered 24-h dietary recall in British adolescents aged 11–18 years. Br. J. Nutr. 2016, 115, 1678–1686. [Google Scholar] [CrossRef]
- World Bank. Individuals Using the Internet (% of Population)—Nigeria. Available online: https://data.worldbank.org/indicator/IT.NET.USER.ZS?locations=NG (accessed on 11 July 2023).
- Carter, M.C.; Albar, S.A.; Morris, M.A.; Mulla, U.Z.; Hancock, N.; Evans, C.E.; Alwan, N.A.; Greenwood, D.C.; Hardie, L.J.; Frost, G.S.; et al. Development of a UK Online 24-h Dietary Assessment Tool: myfood24. Nutrients 2015, 7, 4016–4032. [Google Scholar] [CrossRef] [PubMed]
- Albar, S.A.; Carter, M.C.; Alwan, N.A.; Evans, C.E.L.; Cade, J.E.; on behalf of the myfood24 consortium group. Formative evaluation of the usability and acceptability of myfood24 among adolescents: A UK online dietary assessments tool. BMC Nutr. 2015, 1, 29. [Google Scholar] [CrossRef]
- Koch, S.A.J.; Conrad, J.; Hierath, L.; Hancock, N.; Beer, S.; Cade, J.E.; Nöthlings, U. Adaptation and Evaluation of Myfood24-Germany: A Web-Based Self-Administered 24-h Dietary Recall for the German Adult Population. Nutrients 2020, 12, 160. [Google Scholar] [CrossRef]
- FAO/INFOODS. FAO/INFOODS Guidelines for Checking Food Composition Data Prior to the Publication of a User Table/Database; Version 1.0; FAO: Rome, Italy, 2012. [Google Scholar]
- Vincent, A.; Grande, F.; Comparé, E.; Amponsah, A.G.; Addy, P.A.; Aburime, L.C.; Ahmed, D.; Bih Loh, A.M.; Dahdouh Cabia, S.; Deflache, N.D.F.M.; et al. FAO/INFOODS Foos Composition Table for Western Africa (2019) User Guide & Condensed Food Composition Table; FAO: Rome, Italy, 2020. [Google Scholar]
- Sanusi, R.A.; Akinyele, I.O.; Ene-Obong, H.N.; Enujigha, V.N. Nigeria Food Composition Table; Version 1.0; University of Ibadan: Ibadan, Nigeria, 2017. [Google Scholar]
- Ene-Obong, H.N.; Sanusi, R.A.; Udenta, E.A.; Williams, I.O.; Anigo, K.M.; Chibuzo, E.C.; Aliyu, H.M.; Ekpe, O.O.; Davidson, G.I. Data collection and assessment of commonly consumed foods and recipes in six geo-political zones in Nigeria: Important for the development of a National Food Composition Database and Dietary Assessment. Food Chem. 2013, 140, 539–546. [Google Scholar] [CrossRef] [PubMed]
- Okeke, E.C.; Eneobong, H.N.; Uzuegbunam, A.; Ozioko, A.; Kuhnlein, H. Igbo Traditional Food System: Documentation, Uses and Research Needs. Pak. J. Nutr. 2008, 7, 365–376. [Google Scholar] [CrossRef]
- Sanusi, R.A.; Odukoya, G.M.; Ejoh, S.I. Cooked yield and true nutrient retention values of selected commonly consumed staple foods in South-West Nigeria. Afr. J. Biomed. Res. 2018, 21, 147–151. [Google Scholar]
- Finglas, P.M.; Roe, M.A.; Pinchen, H.M.; Berry, R.; Church, S.M.; Dodhia, S.K.; Farron-Wilson, M.; Swan, G.; McCance, R.A.; Widdowson, E.M. McCance and Widdowson’s Composition of Foods, 7th ed.; Royal Society of Chemistry: Cambridge, UK, 2015. [Google Scholar]
- Charrondiere, U.R. Recipe and Other Calculations; FAO: Rome, Italy, 2021. [Google Scholar]
- Nwanna-Nzewunwa, O.P.; Home Economics Teachers’ Association of Nigeria, O.P. Nwanna-Nzewunwa. HETAN Recipe Book: A Professional Handbook for Nigerian Home Economics Teachers and Students; Pam Unique Publishing: Kaduna, Nigeria, 1996. [Google Scholar]
- Better Life Programme for the Rural Women. Better Life Cook Book: Nigerian Dishes, Snacks, Herbs, Spices & Drinks; The Better Life Programme for the Rural Women: Ikeja, Nigeria, 1992. [Google Scholar]
- Sanusi, R.A.; Olurin, A. Portion and serving sizes of commonly consumed foods, in Ibadan, Southwestern Nigeria. Afr. J. Biomed. Res. 2012, 15, 149–158. [Google Scholar]
- Foster, E.; Hawkins, A.; Adamson, A. Young Person’s Food Atlas: Secondary; Food Standards Agency: London, UK, 2010. [Google Scholar]
- Lancaster, G.A.; Dodd, S.; Williamson, P.R. Design and analysis of pilot studies: Recommendations for good practice. J. Eval. Clin. Pract. 2004, 10, 307–312. [Google Scholar] [CrossRef]
- Brooke, J. (Ed.) SUS—A Quick and Dirty Usability Scale; Tailor and Francis: London, UK, 1996. [Google Scholar]
- Rand, W.M.; Pennington, J.A.T.; Murphy, S.P.; Klensin, J.C. Compiling Data for Food Composition Databases; United Nations University Press: Tokyo, Japan, 1991. [Google Scholar]
- Petrikova, I.; Bhattacharjee, R.; Fraser, P.D. The ‘Nigerian Diet’ and Its Evolution: Review of the Existing Literature and Household Survey Data. Foods 2023, 12, 443. [Google Scholar] [CrossRef]
- Pravst, I.; Hribar, M.; Žmitek, K.; Blažica, B.; Koroušić Seljak, B.; Kušar, A. Branded Foods Databases as a Tool to Support Nutrition Research and Monitoring of the Food Supply: Insights from the Slovenian Composition and Labeling Information System. Front. Nutr. 2021, 8, 798576. [Google Scholar] [CrossRef]
- Kapsokefalou, M.; Roe, M.; Turrini, A.; Costa, H.S.; Martinez-Victoria, E.; Marletta, L.; Berry, R.; Finglas, P. Food Composition at Present: New Challenges. Nutrients 2019, 11, 1714. [Google Scholar] [CrossRef] [PubMed]
- Marconi, S.; Durazzo, A.; Camilli, E.; Lisciani, S.; Gabrielli, P.; Aguzzi, A.; Gambelli, L.; Lucarini, M.; Marletta, L. Food Composition Databases: Considerations about Complex Food Matrices. Foods 2018, 7, 2. [Google Scholar] [CrossRef] [PubMed]
- Vasilopoulou, E.; Georga, K.; Grilli, E.; Linardou, A.; Vithoulka, M.; Trichopoulou, A. Compatibility of computed and chemically determined macronutrients and energy content of traditional Greek recipes. J. Food Compos. Anal. 2003, 16, 707–719. [Google Scholar] [CrossRef]
- Almiron-Roig, E.; Aitken, A.; Galloway, C.; Ellahi, B. Dietary assessment in minority ethnic groups: A systematic review of instruments for portion-size estimation in the United Kingdom. Nutr. Rev. 2017, 75, 188–213. [Google Scholar] [CrossRef]
- Ojo, A.S.; Nnyanzi, L.A.; Giles, E.L.; Ells, L.; Okeke, S.R.; Ajayi, K.V.; Bolarinwa, O.A. “I am not really into the government telling me what I need to eat”: Exploring dietary beliefs, knowledge, and practices among ethnically diverse communities in England. BMC Public Health 2023, 23, 800. [Google Scholar] [CrossRef] [PubMed]
- Maliu, S.K.; Adem, A.; Mbugua, D.K.; Gathuka, P.; Mwogoi, T. Response rate, incentives and timing of online surveys: A study of Agricultural Researchers in Kenya. Tanzan. J. Agric. Sci. 2021, 2, 82–93. [Google Scholar]
- Eldh, A.C.; Årestedt, L.; Berterö, C. Quotations in Qualitative Studies: Reflections on Constituents, Custom, and Purpose. Int. J. Qual. Methods 2020, 19, 1609406920969268. [Google Scholar] [CrossRef]
Components | Food Name | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Beef Pastry 1 | Vegetable Soup 2 | Okra Dish 3 | Fried Rice 4 | Rice and Beans Dish 5 | Rice Dish 6 | Tomato Sauce 7 | ||||||||
WA | UK | WA | UK | WA | UK | WA | UK | WA | UK | WA | UK | WA | UK | |
Energy (kcal) | 213 | 292 | 101 | 55 | 34 | 98 | 173 | 169 | 137 | 170 | 137 | 147 | 196 | 89 |
Protein (g) | 5.1 | 9.2 | 5.0 | 1.0 | 1.7 | 3.0 | 2.6 | 3.9 | 3.0 | 5.6 | 2.0 | 2.9 | 1.0 | 2.2 |
Fat (g) | 11.3 | 17.7 | 6.8 | 4.2 | 2.7 | 7.7 | 3.4 | 5.3 | 7.0 | 2.2 | 6.2 | 2.6 | 18.9 | 5.5 |
Carbohydrates(g) | 24.4 | 25.5 | 3.8 | 3.7 | 0.7 | 4.7 | 32.6 | 28.1 | 17.0 | 34.1 | 19.1 | 27.9 | 5.2 | 8.6 |
Fibre (g) | 1.3 | 2.1 | 1.9 | N | 0.6 | N | 1.1 | 2.8 | 0.3 | N | 0.6 | 0.7 | 1.6 | - |
Sodium (mg) | 308.6 | 332.0 | 357.6 | 315.0 | 176.3 | 25.0 | 5.7 | 409.0 | 0.0 | 15.0 | 348.0 | 326.0 | 498.0 | 340.0 |
Calcium (mg) | 44.0 | 41.0 | 229.8 | 14.0 | 87.0 | 158.0 | 3.5 | 28.0 | 0.0 | 19.0 | 16.5 | 8.0 | 15.0 | 19.0 |
Iron (mg) | 0.9 | 1.1 | 6.3 | 0.3 | 0.7 | 1.4 | 1.4 | 0.4 | 0.8 | 1.3 | 0.1 | 0.7 | 0.3 | 0.6 |
Vitamin A (µg) * | 104.3 | N | 143.9 | 245.0 | 10.6 | 109.0 | 22.0 | 4.0 | 0.0 | N | 16.3 | 9.0 | 86.1 | 204.0 |
Folate (µg) | 8.6 | 2.0 | 11.5 | 6.0 | 13.2 | 45.0 | 6.0 | 8.0 | 0.0 | 50.0 | 9.8 | 6.0 | 15.7 | 9.0 |
Vitamin C (mg) | 0.4 | N | 86.6 | 2.0 | 3.9 | 13.0 | 0.0 | tr | 0.0 | tr | 4.1 | 3.0 | 12.4 | 8.0 |
% difference | 7–125% | 3–182% | 55–165% | 2–194% | 0–104% | 7–150% | 24–110% |
Characteristics | All Participants (n = 179) | Self-Administered myfood24, n = 53 (30%) | Interviewer-Administered myfood24, n = 126 (70%) |
---|---|---|---|
Age, years (mean (SD)) | 41.2 (9.2) | 38.5 (8.7) | 42.7 (9.2) |
n (%) | n (%) | n (%) | |
Age, years | |||
20–29 | 15 (8) | 8 (15) | 7 (6) |
30–39 | 62 (35) | 21 (40) | 41 (33) |
40–49 | 69 (39) | 20 (38) | 49 (39) |
50–59 | 27 (15) | 3 (6) | 24 (19) |
60–69 | 6 (3) | 1 (1) | 5 (4) |
Gender | |||
Male | 85 (47) | 25 (47) | 60 (48) |
Female | 95 (53) | 28 (53) | 66 (52) |
Marital status | |||
Currently single | 57 (32) | 20 (38) | 37 (29) |
Married | 122 (68) | 33 (62) | 89 (71) |
Place of residence | |||
Rural | 63 (35) | 15 (23) | 48 (38) |
Urban | 116 (65) | 38 (33) | 78 (62) |
Job rank | |||
Junior non-teaching | 28 (16) | 6 (11) | 22 (17) |
Senior non-teaching | 104 (58) | 23 (44) | 81 (65) |
Teaching | 47 (26) | 24 (45) | 23 (18) |
Educational level | |||
Secondary or less | 15 (8) | 3 (6) | 12 (10) |
Post-secondary | 13 (7) | 2 (4) | 11 (9) |
Graduate/Postgraduate | 151 (85) | 48 (90) | 103 (81) |
Profession | |||
Non-nutritionists (%) | 167 (93) | 41 (77) | 126 (100) |
Nutritionists (%) | 12 (7) | 12 (23) | 0 (0) |
Religion | |||
Christianity | 177 (98) | 53 (100) | 124 (98) |
Islam | 1 (1) | 0 (0) | 1 (1) |
Others | 1 (1) | 0 (0) | 1 (1) |
Smoking status | |||
Current smoker | 1 (1) | 0 (0) | 1 (1) |
Non-smoker | 178 (99) | 53 (100) | 125 (99) |
Alcohol intake | |||
Current drinker | 113 (63) | 37 (70) | 76 (60) |
Non-drinker | 66 (37) | 16 (30) | 50 (40) |
Body mass index | |||
Underweight | 5 (3) | 1 (2) | 4 (3) |
Normal | 59 (33) | 17 (32) | 42 (33) |
Overweight | 62 (35) | 19 (36) | 43 (34) |
Obese | 53 (29) | 16 (30) | 37 (30) |
Nutrients | Food Groups | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Bread (5/38) | Snacks (34/116) | Cereals (106/64) | Spices (37/13) | Fats (25/40) | Fish (61/83) | Fizzy Drinks (2/7) | Fruits (44/95) | Pulses (89/44) | Meat (112/227) | Milk (41/132) | Nuts (45/25) | Soups (35/58) | Roots/ Tubers (95/32) | Sugar (20/72) | Veg (135/125) | Total (95% CI) | |
Energy | 0 | 4 | 14 | 0 | 1 | 1 | 1 | 1 | 6 | 1 | 2 | 3 | 12 | 30 | 1 | 0 | 78 (66,80) |
Protein | 0 | 3 | 13 | 0 | 0 | 5 | 0 | 1 | 11 | 6 | 3 | 4 | 15 | 11 | 1 | 0 | 73 (66,80) |
Fat | 0 | 5 | 12 | 0 | 3 | 2 | 0 | 1 | 8 | 2 | 3 | 5 | 32 | 8 | 1 | 0 | 82 (78,87) |
Carbohydrate | 0 | 4 | 16 | 0 | 0 | 0 | 2 | 2 | 5 | 0 | 1 | 1 | 3 | 40 | 2 | 0 | 76 (69,82) |
Fibre | 0 | 4 | 9 | 0 | 0 | 0 | 0 | 2 | 6 | 0 | 0 | 2 | 18 | 26 | 1 | 1 | 70 (63,76) |
Sodium | 0 | 5 | 6 | 0 | 0 | 2 | 1 | 0 | 3 | 1 | 1 | 0 | 42 | 13 | 0 | 0 | 74 (67,80) |
Iron | 0 | 2 | 14 | 0 | 0 | 2 | 0 | 1 | 7 | 4 | 1 | 1 | 16 | 29 | 3 | 1 | 81 (74,86) |
Vitamin A | 0 | 8 | 4 | 0 | 5 | 2 | 0 | 3 | 2 | 3 | 8 | 0 | 30 | 4 | 1 | 1 | 71 (64,77) |
Folate | 2 | 4 | 7 | 0 | 0 | 2 | 3 | 1 | 5 | 1 | 3 | 1 | 20 | 12 | 1 | 0 | 60 (52,67) |
Vitamin C | 0 | 1 | 3 | 0 | 0 | 0 | 0 | 2 | 3 | 2 | 2 | 0 | 34 | 17 | 4 | 2 | 70 (63,76) |
Number of foods items * | 2 | 44 | 115 | 7 | 11 | 39 | 21 | 27 | 64 | 76 | 33 | 38 | 193 | 185 | 37 | 17 | 909 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uzokwe, C.A.; Nkwoala, C.C.; Ebenso, B.E.; Beer, S.; Williams, G.; Iheme, G.O.; Opara, C.G.; Sanusi, R.A.; Ene-Obong, H.N.; Cade, J.E. Development and Pilot Study of myfood24 West Africa—An Online Tool for Dietary Assessment in Nigeria. Nutrients 2024, 16, 3497. https://doi.org/10.3390/nu16203497
Uzokwe CA, Nkwoala CC, Ebenso BE, Beer S, Williams G, Iheme GO, Opara CG, Sanusi RA, Ene-Obong HN, Cade JE. Development and Pilot Study of myfood24 West Africa—An Online Tool for Dietary Assessment in Nigeria. Nutrients. 2024; 16(20):3497. https://doi.org/10.3390/nu16203497
Chicago/Turabian StyleUzokwe, Chinwe Adaugo, Chiaka Charles Nkwoala, Bassey E. Ebenso, Sarah Beer, Grace Williams, Gideon Onyedikachi Iheme, Chihurumnanya Gertrude Opara, Rasaki A. Sanusi, Henrietta Nkechi Ene-Obong, and Janet E. Cade. 2024. "Development and Pilot Study of myfood24 West Africa—An Online Tool for Dietary Assessment in Nigeria" Nutrients 16, no. 20: 3497. https://doi.org/10.3390/nu16203497
APA StyleUzokwe, C. A., Nkwoala, C. C., Ebenso, B. E., Beer, S., Williams, G., Iheme, G. O., Opara, C. G., Sanusi, R. A., Ene-Obong, H. N., & Cade, J. E. (2024). Development and Pilot Study of myfood24 West Africa—An Online Tool for Dietary Assessment in Nigeria. Nutrients, 16(20), 3497. https://doi.org/10.3390/nu16203497