Associations of Maternal Nutritional Status and Supplementation with Fetal, Newborn, and Infant Outcomes in Low-Income and Middle-Income Settings: An Overview of Reviews
Highlights
- An appropriate BMI and the intake of fruits and vegetables during preconception and early pregnancy, and adequate concentrations of Hb and associated micronutrients (iron, folate, vitamin B12) in mid- and late gestation have proved to favor fetal, neonatal, and/or infant outcomes.
- Nutritional interventions during early pregnancy, particularly through Balanced Protein Supplementation (BPS)/Lipid-Based Supplementation (LBS) and food-based strategies, may be more effective than individual micronutrient supplementation in improving neonatal and infant outcomes, but policies and programs need to be adapted to social and cultural contexts and the particular nutritional needs of populations.
- Implications of main findings: Caution is warranted in iron supplementation for populations with multiple nutritional deficiencies and infections, alongside a need for large studies on the long-term effects of maternal nutritional interventions that account for confounding factors like socio-demographic characteristics, time of pregnancy, and infection status.
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Search Selection
2.3. Data Synthesis
3. Results
3.1. Associations Between Maternal Nutritional Indicators or Supplementation and Fetal, Neonatal, and Infant Outcomes by Time of Pregnancy
3.1.1. Periconception Period
Maternal Diet
Maternal Anthropometry
Maternal Folate Supplementation
Maternal Nutritional Status Indicator | Reviewed by | Quality of the Review | Outcome | Overall | LMICs | |||
---|---|---|---|---|---|---|---|---|
Effect Estimate (95% CI) | Number of Studies (Participants) | Quality of Evidence | Effect Estimate (95% CI) | Number of Studies (Participants) | ||||
Antenatal nutritional education | Ota et al. (2015) [29] | High | BW among under-nourished women | MD: 489.76 (427.93 to 551.59, | 2 (320) | Low 1 | MD: 490 (427.40 to 552.60) | 1 (300) (Bangladesh) |
LBW | RR: 0.04 (0.01 to 0.14) | 1 (300) | Low 1 | LMIC evidence only (Bangladesh) | ||||
Multivitamins + IFA vs. IFA | Balogun, O. O., et al. (2016) [33] | High | Stillbirth | RR 0.92, (0.85 to 0.99) | 10 (79,851) | High 1 | LMIC evidence only (Pakistan, Tanzania, Nepal, Burkina Faso, Niger (1 each) Indonesia (3), Bangladesh (2)) | |
Early or late miscarriage | RR 0.98, (0.94 to 1.03) | 10 (94,948) | Moderate 1 | LMIC evidence only (Pakistan, Tanzania, Nepal, Burkina Faso, Niger (1 each) Indonesia (3), Bangladesh (2)) | ||||
Folate supplementation | Daly, M., et al. (2022) [52] | High | Neural tube defects | RR: 0.31 (0.17 to 0.58) | 5 (6708) | High 1 | RR: 0.41 (0.19 to 1.29) | 1 (279) (India) |
Prepregnancy underweight | Rahman et al. (2015) [48] | Low | PTB | OR: 1.13 (1.01 to 1.27) | 11 | Moderate-High 2 | LMIC evidence only (China (4), Iran (2), Argentina, Thailand, Pakistan, Mexico, Thailand (1 each)) | |
Dean et al. (2014) [47] | Low | OR: 1.32 (1.22 to 1.43) | 12 | Low 1 | OR: 0.90 (0.40 to 2.02) | 1 (China) | ||
Rahman et al. (2015) [48] | Low | SGA | OR: 1.85 (1.69 to 2.02) | 5 | Moderate-High 2 | LMIC evidence only (China (3), Brazil (2)) | ||
Dean et al. (2014) [47] | Low | RR: 1.64 (1.22 to 2.21) | 4 | Low 1 | OR: 1.95 (1.52 to 2.50) | 1 (Vietnam) | ||
Rahman et al. (2015) [48] | Low | LBW | OR: 1.66 (1.50 to 1.84) | 8 | Moderate-High 2 | LMIC evidence only (China (3), Thailand (2), Pakistan, Mexico, Iran) | ||
Dean et al. (2014) [47] | Low | RR: 1.37 (0.46 to 4.13) | 5 | Low 1 | RR: 0.74 [0.39, 1.43] OR:1.97 [1.18, 3.28] (Han 2010 [54]; referent BMI 18.5–22.9 for Asian population) | 2 (China and Vietnam) |
3.1.2. Early Pregnancy
Maternal Diet
Maternal Nutritional Status Indicator | Reviewed by | Quality of the Review | Outcome | Overall | LMICs | |||
---|---|---|---|---|---|---|---|---|
Effect Estimate (95% CI) | Number of Studies (Participants) | Quality of Evidence | Effect Estimate (95% CI) | Number of Studies (Participants) | ||||
Fruit and vegetable intake in the second or third trimester | Murphy, M. M., et al. (2014) [55] | Very Low | BW | One study reported positive association | 4 (1214) (India (2), Malaysia, Egypt) | Very low 1 | Increased frequency of intake in second and third trimester associated with higher BW | 1 (234) (Egypt) |
Anemia in the first trimester | Rahmati et al. (2017) [59] | Very low 3 | LBW in the first trimester of pregnancy | OR: 1.26 (1.03 to 1.55) | 12 (210,578) | Low 4 | OR: 0.96 (0.85 to 1.08) | 10 (34,383) |
Low Hb in the second trimester | Dewey, K. G. and B. M. Oaks (2017) [37] | Not a systematic review | PTB | Three studies report positive association | 11 (374,925) | Low 1 | 1/6 studies in LMICs positive association | 1 (35,449) (Peru) |
SGA | Three studies report positive association | 10 (214,252) | Low 1 | 2/6 studies in LMICs positive association | 2 (36,872) (Peru and Malawi) | |||
Stillbirth | Two studies report positive association | 5 (428,091) | Low 1 | 1/6 studies in LMICs positive association | 1 (35,449) (Peru) | |||
Maternal B12 deficiency | Sukumar, N., et al. (2016) [60] | Very Low | LBW/SGA | OR: 1.70 (1.16 to 2.50) | 8 (1482) | Moderate 1 | OR: 2.44 (1.50 to 3.95) | 6 (1032) (India) |
Vitamin B12 concentrations in maternal blood | MD: −9.12 (−21.25, 3.01) | 14 (1969) | Low 1 | A larger effect size found in the first and second compared with the third trimester. | 4 (India (3), Pakistan)) | |||
Iron <20 weeks’ gestation | Cantor, A. G., et al. (2015). [61] | Low | SGA | Inconsistent effect | 4 (2595) | Fair-Good 5 | SGA in women who received supplements: 15% vs. control: 10% [p = 0.035]) | 1 (727) (Iran) |
Iron treatment started <20 weeks’ gestation vs. placebo | Peña-Rosas, J. P., et al. (2015) [30] | High | LBW | RR: 0.79 (0.59 to 1.05) | 6 (14,512) | Low 1 | RR: 0.73 (0.53 to 1.00) | 4 (13,965) (China, Nepal, Iran (2)) |
Serum 25 (OH)D levels <75 nmol/L | Amegah, A. K., et al. (2017) [62] | Very low | PTB <35–37 weeks | RR: 1.13 (0.94 to 1.36) | 7 | Moderate 1 | RR: 1.04 (1.02 to 1.06) | 1 (China) |
Vitamin D supplementation <20 weeks’ gestation | APGAR score | Vitamin D nutrition status was positively correlated with APGAR scores | 2 | Very Low 1 | LMIC evidence only (India, Pakistan) | |||
Vitamin D supplementation <20 weeks’ gestation, | Zhao, R., et al. (2022) [63] | Very Low | LBW | RR: 0.65 (0.48 to 0.86) | 14 | Low 1 | RR: 0.60 (0.41 to 0.89) | 9 |
Ca supplementation starting around week 20 | Hofmeyr, G. J., et al. (2018) [26] | High | PTB | RR: 0.76 (0.60 to 0.97) | 11 (15,275) | Low 1 | RR: 0.68 (0.49 to 0.95 | 5 (2099) (Argentina, Ecuador (2), India (2)) |
Zinc supplementation <27 weeks’ gestation | Carducci, B., E. C. Keats and Z. A. Bhutta (2021) [23] | High | PTB | RR: 0.87 (0.74 to1.03) | 21 (9851) | Low 1 | RR 0.98 (0.87 to 1.11) | 13 (5724) |
Stillbirth | RR: 1.22 (0.80 to 1.88) | 7 (3295) | Low 1 | RR 1.34 (0.85 to 2.12) | 5 (2310) | |||
LBW | RR: 0.94 (0.79 to 1.13) | 17 (7399) | Moderate 1 | RR 1.05 (0.96 to 1.15) | 11 (4957) | |||
SGA | RR: 1.02 (0.92 to 1.12) | 9 (5330) | Moderate 1 | RR 1.05 (0.97 to 1.13) | 5 (2330) | |||
Omega-3 supplementation <21 weeks’ gestation, | Saccone, G., et al. (2015) [64] | Low | Perinatal mortality | Overall: RR: 0.61 (0.30 to 1.24) <21 weeks: RR: 0.27 (0.09 to 0.80) | 5 (3415) | Low 1 | RR: 1.13 (0.51 to 2.49) | 1 (323) (Bangladesh) |
Antioxidant levels | Solé-Navais, P., et al. (2016) [43] | Not a systematic review | BW | Inverse association of elevated homocysteine mid-pregnancy with BW | 3 (1514) | Low 1 | Non-significant association in one study | 2 (1041) (India (2)) |
MMN <20 weeks’ gestation vs. IFA supplementation | Bourassa, M. W., et al. (2019) [39] | High | PTB | RR: 0.93 (0.87 to 1.00) | 14 | Moderate 1 | LMIC evidence only (Nepal (1), Tanzania (1), Guinea Bissau (1), China (1), Nepal (1), Mexico (1), Burkina Faso (1), Bangladesh (2)) | |
LBS <20 weeks’ gestation vs. IFA supplementation | Das, JK., et al. (2018) [25] | High | LBW | RR 0.87 (0.72 to 1.05) | 3 (4826) | Moderate 1 | LMIC evidence only (Bangladesh, Ghana, Malawi) | |
SGA | RR 0.94 (0.89 to 0.99) | 3 (4823) | Moderate 1 | |||||
PTB | RR 0.94 (0.89 to 0.99) | 3 (5924) | Moderate 1 | |||||
Food fortification at <20 weeks’ gestation, | Gresham, E., et al. (2014) [65] | Low | Birth weight, low birth weight, length, head circumference | Lower incidence of LBW infants | 1 (1135) | Neutral 6 | LMIC evidence only (Chile) | |
High-energy supplement | Neonatal birth and weight, birth and weight up to 1 year of age | Heavier and taller infants at 3, 6 and 12 months of age | 1 (542) | Neutral 6 | LMIC evidence only (Indonesia) | |||
Fortified biscuits | Stillbirth, birth weight, low birth weight, length, and head circumference | Reduced prevalence of LBW. stillbirths and larger head circumference | 1 (2082) | Positive 6 | LMIC evidence only (Gambia) |
Maternal Micronutrient Deficiencies
Maternal Supplementation
3.1.3. Late Pregnancy
Maternal Micronutrient Deficiencies
Maternal Nutritional Status Indicator | Reviewed by | Quality of the Review | Outcome | Overall | LMICs | |||
---|---|---|---|---|---|---|---|---|
Effect Estimate (95% CI) | Number of Studies (Participants) | Quality of Evidence | Effect Estimate (95% CI) | Number of Studies (Participants) | ||||
Maternal anemia | Figuerido et al. (2018) [69] | Moderate | LBW | Overall— Adjusted OR: 1.23 (1.06 to 1.43) Third trimester— Crude OR: 0.88 (0.53 to 1.48) | Overall—13 third trimester -3 | Moderate-High 2 | OR: 1.30 (0.87 to 1.94) | 4 |
Low hemoglobin in the third trimester | Dewey et al. (2017) [37] | Not a systematic review | Stillbirth | Two studies report negative association | 3 (190,849) | Low 1 | Two studies report negative association | 2 (168,050) (Iran and China) |
Iron supplementation at >20 weeks’ gestation | Peña-Rosas, J. P., et al. (2015) [30] | High | LBW | RR: 1.05 (0.50 to 2.19) | 3 (665) | Low 1 | RR: 0.57 (0.14 to 2.31) | 1 (181) (Gambia) |
Low maternal or cord blood B12 | Sukumar, N., et al. (2016) [60] | Very Low | LBW/SGA | OR: 1.70 (1.16 to 2.50) | 8 (1482) | Moderate 1 | OR: 2.44 (1.50 to 3.95) | 6 (1032) (India) |
Plasma folate/B12 in the third trimester | Solé-Navais, P., et al. (2016) [43] | Not a systematic review | Infant growth outcomes | Plasma homocysteine negatively associated with BW. | 3 (1514) | Low 1 | Non-significant association in one study | 2 (1041) (India (2)) |
Maternal vitamin D in the second and third trimesters | Dos Santos et al. (2023) [72] | Not a systematic review | PTB | RR: 7.35 (2.99 to 18.07) | 1 (180) | Very Low 1 | LMIC evidence only (Brazil) | |
Vitamin D supplementation >20 weeks’ gestation | Zhao, R., et al. (2022) [63] | Very Low | PTB | RR: 0.67 (0.57 to 0.79) | 53 | Low 1 | RR: 0.62 (0.46 to 0.84) | 22 |
Calcium supplementation >20 weeks’ gestation (no supplementation <20 weeks) | Buppasiri et al. (2015) [24] | High | PTB | RR: 0.86 (0.70 to 2.05) | 13 (161,390) | Moderate 1 | RR: 0.92 (0.82 to 1.04) | 6 (10,622) (Argentina, Iran, multicenter in LMICs, India (3)) |
LBW | Overall: RR: 0.93 (0.81 to 1.07) After 20 weeks RR 0.41 (0.23 to 0.73) | Overall: 6 (14,162) After 20 weeks: 3 (737) | Moderate 1 | 0.99 (0.93 to 1.05) | 3 (8928) (Argentina, Ecuador, India) | |||
MMN >20 weeks’ gestation | Bourassa et al. (2019) [39] | High | SGA | RR: 0.94 (0.90 to 0.98) Third trimester RR: 0.88 (0.79 to 0.98) | Overall: 17 third trimester: 6 | Moderate 1 | LMIC evidence only Pakistan (1), Nepal (1), Ghana (1), Zimbabwe (1), Burkina Faso (1), Indonesia (1), Bangladesh (1)) | |
MNS >20 weeks’ gestation, | Haider, B. A. and Z. A. Bhutta (2017) [34] | Not a systematic review | Perinatal mortality | RR: 1.01 (0.91 to 1.13) | 12 | High 1 | LMIC evidence only (Pakistan, Nepal (2), Tanzania, Zimbabwe, Guinea, Bissau, China (2), Mexico, Burkina Faso, Thailand (3), Bangladesh, Niger) | |
BEP supplementation | Ota et al. (2015) [29] | High | Stillbirth | RR: 0.6 (0.39 to 0.94) | 5 (3408) | Moderate 1 | RR: 0.52 (0.31 to 0.88) | 4 (2862) (Gambia, India, Burkina-Faso, Colombia) |
SGA | RR: 0.79 (0.69 to 0.90) | 7 (4409) | Moderate 1 | RR: 0.57 (0.50 to 0.66) | 4 (2344) (Burkina-Faso, Colombia, Gambia, India) | |||
BW | MD: +41g (4.7 to 77.3 g) | 11 (5385) | Moderate 1 | MD: +59.71 (25.60 to 93.82) | 5 (2228) (Gambia, India, Burkina Faso, Indonesia, Colombia) | |||
MMN supplementation + enriched food during the third trimester | Gresham, E., et al. (2014) [65] | Low | BW | Women produced heavier full-term male infants [95 g (p < 0.05)] compared to control | 1 (456) | Neutral 3 | LMIC evidence only (Colombia) |
Maternal Supplementation
3.1.4. Post-Partum or Lactation
Maternal Nutritional Status Indicator | Reviewed by | Quality of the Review | Outcome | Overall | LMICs | |||
---|---|---|---|---|---|---|---|---|
Effect Estimate (95% CI) | Number of Studies (Participants) | Quality of Evidence | Effect Estimate (95% CI) | Number of Studies (Participants) | ||||
Low maternal BMI | Akombi et al. (2017) [36] | Not a systematic review | Wasting | Narrative | 3 (36,223) | Medium 4 | LMIC evidence only (Nigeria, Ghana, Ethiopia) | |
Stunting | Narrative | 5 (41,070) | Medium-high 4 | LMIC evidence only (Ghana (2), Nigeria, Ethiopia, Tanzania) | ||||
Intake of low-energy density foods | Stunting | Narrative | 1 (261) | Medium 4 | LMIC evidence only (Uganda) | |||
Low intake of fruits and vegetables | Stunting, wasting, underweight | Narrative | 1 (1963) | Medium 4 | LMIC evidence only (Cameroon) | |||
Low maternal height | Stunting | Narrative | 1 (318) | Medium 4 | LMIC evidence only (Ethiopia) | |||
Breastmilk micronutrients | Reyes et al. (2024) [38] | High | Infant growth outcomes | No association: breastmilk Vit. A, B, K and Mg, Cu, Fe, and infant anthropometry: Mixed results: breastmilk Ca, Na, P, Zn, I, Se, and infant anthropometry. Positive association: Mg in breastmilk with higher WAZ | 26 (2526) | Good 5 | Most studied mineral in LMICs Zinc: 8 studies | 17 (2298) |
Maternal vitamin A post-partum supplementation | Oliveira et al. (2016) [28] | High | Infant mortality | RR: 1.08 (0.77 to 1.52) | 5 (6090) | Low 1 | LMIC evidence only (Kenya, India, Ghana, Zimbabwe, Brazil) | |
Neonatal morbidity (gastroenteritis at 3 months) | RR: 6.03 (0.30 to 121.82) | 1 (84) | Very low 1 | LMIC evidence only (India) |
4. Discussion
4.1. Key Messages of Associations of Maternal Nutritional Status at Different Stages
4.2. Studies on Maternal Supplementation and Fetal/Newborn/Infant Outcomes
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- WHO. Low Birth Weight. Nutrition Landscape Information System (NLiS): World Health Organization. 2024. Available online: https://www.who.int/data/nutrition/nlis/info/low-birth-weight (accessed on 10 June 2024).
- Victora, C.G.; Christian, P.; Vidaletti, L.P.; Gatica-Dominguez, G.; Menon, P.; Black, R.E. Revisiting maternal and child undernutrition in low-income and middle-income countries: Variable progress towards an unfinished agenda. Lancet 2021, 397, 1388–1399. [Google Scholar] [CrossRef] [PubMed]
- UNICEF. The State of Food Security and Nutrition in the World 2024: Financing to End Hunger, Food Insecurity and Malnutrition in All Its Forms. 2024. Available online: http://icsfarchives.net/20253/ (accessed on 18 October 2024).
- Gong, X.; Tang, Y.; Zhang, M.; Yu, Y.; Hu, W.; Xu, Y.; Liu, Y.; Sun, H.; Yu, G.; Zhai, C. The Global Burden of Disease Attributable to Child and Maternal Malnutrition: 1990–2019. Pediatrics 2024, 154, e2023064167. [Google Scholar] [CrossRef] [PubMed]
- Clark, H.; Coll-Seck, A.M.; Banerjee, A.; Peterson, S.; Dalglish, S.L.; Ameratunga, S.; Balabanova, D.; Bhan, M.K.; Bhutta, Z.A.; Borrazzo, J.; et al. A future for the world’s children? A WHO-UNICEF-Lancet Commission. Lancet 2020, 395, 605–658. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Levels and Trends in Child Malnutrition UNICEF/WHO/World Bank Group Joint Child Malnutrition Estimates Key Findings of the 2023 Edition; World Health Organization: Geneva, Switzerland, 2023; 32p. [Google Scholar]
- Gaccioli, F.; Lager, S. Placental nutrient transport and intrauterine growth restriction. Front. Physiol. 2016, 7, 40. [Google Scholar] [CrossRef] [PubMed]
- Sacchi, C.; Marino, C.; Nosarti, C.; Vieno, A.; Visentin, S.; Simonelli, A. Association of Intrauterine Growth Restriction and Small for Gestational Age Status with Childhood Cognitive Outcomes: A Systematic Review and Meta-analysis. JAMA Pediatr. 2020, 174, 772–781. [Google Scholar] [CrossRef]
- WHO. Preterm Birth. Fact Sheets: World Health Organization. 2024. Available online: https://www.who.int/news-room/fact-sheets/detail/preterm-birth (accessed on 10 June 2024).
- Petrou, S.; Eddama, O.; Mangham, L. A structured review of the recent literature on the economic consequences of preterm birth. Arch. Dis. Child. Fetal Neonatal Ed. 2011, 96, F225–F232. [Google Scholar] [CrossRef]
- Reyes, L.; Manalich, R. Long-term consequences of low birth weight. Kidney Int. Suppl. 2005, 68, S107–S111. [Google Scholar] [CrossRef]
- Coats, L.E.; Davis, G.K.; Newsome, A.D.; Ojeda, N.B.; Alexander, B.T. Low Birth Weight, Blood Pressure and Renal Susceptibility. Curr. Hypertens. Rep. 2019, 21, 62. [Google Scholar] [CrossRef]
- Wrottesley, S.V.; Lamper, C.; Pisa, P.T. Review of the importance of nutrition during the first 1000 days: Maternal nutritional status and its associations with fetal growth and birth, neonatal and infant outcomes among African women. J. Dev. Orig. Health Dis. 2016, 7, 144–162. [Google Scholar] [CrossRef]
- Katoch, O.R. Determinants of malnutrition among children: A systematic review. Nutrition 2022, 96, 111565. [Google Scholar] [CrossRef]
- Shekar, M.; Heaver, R.; Lee, Y.-K. Repositioning Nutrition as Central to Development: A Strategy for Large Scale Action; World Bank Publications: Washington, DC, USA, 2006. [Google Scholar]
- Mertens, A.; Benjamin-Chung, J.; Colford, J.M., Jr.; Coyle, J.; van der Laan, M.J.; Hubbard, A.E.; Rosete, S.; Malenica, I.; Hejazi, N.; Sofrygin, O.; et al. Causes and consequences of child growth faltering in low-resource settings. Nature 2023, 621, 568–576. [Google Scholar] [CrossRef] [PubMed]
- Bhutta, Z.A.; Gupta, I.; de’Silva, H.; Manandhar, D.; Awasthi, S.; Hossain, S.M.; Salam, M.A. Maternal and child health: Is South Asia ready for change? BMJ 2004, 328, 816–819. [Google Scholar] [CrossRef] [PubMed]
- Goossen, K.; Hess, S.; Lunny, C.; Pieper, D. Database combinations to retrieve systematic reviews in overviews of reviews: A methodological study. BMC Med. Res. Methodol. 2020, 20, 138. [Google Scholar] [CrossRef] [PubMed]
- Sutton, A.; Clowes, M.; Preston, L.; Booth, A. Meeting the review family: Exploring review types and associated information retrieval requirements. Health Inf. Libr. J. 2019, 36, 202–222. [Google Scholar] [CrossRef]
- Roser, M.; Arriagada, P.; Hasell, J.; Ritchie, H.; Ortiz-Ospina, E. Data Page: World Bank Income Groups. “Economic Growth” 2023. Data Adapted from World Bank. Available online: https://ourworldindata.org/grapher/world-bank-income-groups (accessed on 10 June 2024).
- Pollock, M.; Fernandes, R.M.; Becker, L.A.; Pieper, D.; Hartling, L. Chapter V: Overviews of reviews. In Cochrane Handbook for Systematic Reviews of Interventions Version; Cochrane: London, UK, 2020. [Google Scholar]
- Shea, B.J.; Reeves, B.C.; Wells, G.; Thuku, M.; Hamel, C.; Moran, J.; Moher, D.; Tugwell, P.; Welch, V.; Kristjansson, E.; et al. AMSTAR 2: A critical appraisal tool for systematic reviews that include randomised or non-randomised studies of healthcare interventions, or both. BMJ 2017, 358, j4008. [Google Scholar] [CrossRef]
- Carducci, B.; Keats, E.C.; Bhutta, Z.A. Zinc supplementation for improving pregnancy and infant outcome. Cochrane Database Syst. Rev. 2021, 3, Cd000230. [Google Scholar] [CrossRef]
- Buppasiri, P.; Lumbiganon, P.; Thinkhamrop, J.; Ngamjarus, C.; Laopaiboon, M.; Medley, N. Calcium supplementation (other than for preventing or treating hypertension) for improving pregnancy and infant outcomes. Cochrane Database Syst. Rev. 2015, 2015, Cd007079. [Google Scholar] [CrossRef]
- Das, J.K.; Hoodbhoy, Z.; Salam, R.A.; Bhutta, A.Z.; Valenzuela-Rubio, N.G.; Weise Prinzo, Z.; Bhutta, Z.A. Lipid-based nutrient supplements for maternal, birth, and infant developmental outcomes. Cochrane Database Syst. Rev. 2018, 8, Cd012610. [Google Scholar] [CrossRef]
- Hofmeyr, G.J.; Lawrie, T.A.; Atallah, Á.N.; Torloni, M.R. Calcium supplementation during pregnancy for preventing hypertensive disorders and related problems. Cochrane Database Syst. Rev. 2018, 10, Cd001059. [Google Scholar] [CrossRef]
- McCauley, M.E.; van den Broek, N.; Dou, L.; Othman, M. Vitamin A supplementation during pregnancy for maternal and newborn outcomes. Cochrane Database Syst. Rev. 2015, 2015, Cd008666. [Google Scholar] [CrossRef]
- Oliveira, J.M.; Allert, R.; East, C.E. Vitamin A supplementation for postpartum women. Cochrane Database Syst. Rev. 2016, 3, Cd005944. [Google Scholar] [CrossRef] [PubMed]
- Ota, E.; Hori, H.; Mori, R.; Tobe-Gai, R.; Farrar, D. Antenatal dietary education and supplementation to increase energy and protein intake. Cochrane Database Syst. Rev. 2015, Cd000032. [Google Scholar] [CrossRef] [PubMed]
- Peña-Rosas, J.P.; De-Regil, L.M.; Garcia-Casal, M.N.; Dowswell, T. Daily oral iron supplementation during pregnancy. Cochrane Database Syst. Rev. 2015, 2015, Cd004736. [Google Scholar] [CrossRef] [PubMed]
- Rumbold, A.; Ota, E.; Hori, H.; Miyazaki, C.; Crowther, C.A. Vitamin E supplementation in pregnancy. Cochrane Database Syst. Rev. 2015, 2015, Cd004069. [Google Scholar] [CrossRef] [PubMed]
- Rumbold, A.; Ota, E.; Nagata, C.; Shahrook, S.; Crowther, C.A. Vitamin C supplementation in pregnancy. Cochrane Database Syst. Rev. 2015, Cd004072. [Google Scholar] [CrossRef]
- Balogun, O.O.; da Silva Lopes, K.; Ota, E.; Takemoto, Y.; Rumbold, A.; Takegata, M.; Mori, R. Vitamin supplementation for preventing miscarriage. Cochrane Database Syst. Rev. 2016, 2016, Cd004073. [Google Scholar] [CrossRef]
- Haider, B.A.; Bhutta, Z.A. Multiple-micronutrient supplementation for women during pregnancy. Cochrane Database Syst. Rev. 2017, 4, Cd004905. [Google Scholar] [CrossRef]
- Palacios, C.; Kostiuk, L.K.; Peña-Rosas, J.P. Vitamin D supplementation for women during pregnancy. Cochrane Database Syst. Rev. 2019, 7, Cd008873. [Google Scholar] [CrossRef]
- Akombi, B.J.; Agho, K.E.; Hall, J.J.; Wali, N.; Renzaho, A.M.N.; Merom, D. Stunting, Wasting and Underweight in Sub-Saharan Africa: A Systematic Review. Int. J. Environ. Res. Public Health 2017, 14, 863. [Google Scholar] [CrossRef]
- Dewey, K.G.; Oaks, B.M. U-shaped curve for risk associated with maternal hemoglobin, iron status, or iron supplementation. Am. J. Clin. Nutr. 2017, 106 (Suppl. 6), 1694s–1702s. [Google Scholar] [CrossRef]
- Reyes, S.M.; Brockway, M.M.; McDermid, J.M.; Chan, D.; Granger, M.; Refvik, R.; Sidhu, K.K.; Musse, S.; Monnin, C.; Lotoski, L.; et al. Human Milk Micronutrients and Child Growth and Body Composition in the First 2 years: A Systematic Review. Adv. Nutr. 2024, 15, 100082. [Google Scholar] [CrossRef] [PubMed]
- Bourassa, M.W.; Osendarp, S.J.M.; Adu-Afarwuah, S.; Ahmed, S.; Ajello, C.; Bergeron, G.; Black, R.; Christian, P.; Cousens, S.; de Pee, S.; et al. Review of the evidence regarding the use of antenatal multiple micronutrient supplementation in low- and middle-income countries. Ann. N. Y. Acad. Sci. 2019, 1444, 6–21. [Google Scholar] [CrossRef] [PubMed]
- Adu-Afarwuah, S. Impact of nutrient supplementation on maternal nutrition and child growth and development in Sub-Saharan Africa: The case of small-quantity lipid-based nutrient supplements. Matern. Child Nutr. 2020, 16 (Suppl. 3), e12960. [Google Scholar] [CrossRef] [PubMed]
- Ciulei, M.A.; Smith, E.R.; Perumal, N.; Jakazi, C.S.; Sudfeld, C.R.; Gernand, A.D. Nutritious Supplemental Foods for Pregnant Women from Food Insecure Settings: Types, Nutritional Composition, and Relationships to Health Outcomes. Curr. Dev. Nutr. 2023, 7, 100094. [Google Scholar] [CrossRef] [PubMed]
- Accrombessi, M.; Zeitlin, J.; Massougbodji, A.; Cot, M.; Briand, V. What Do We Know about Risk Factors for Fetal Growth Restriction in Africa at the Time of Sustainable Development Goals? A Scoping Review. Paediatr. Perinat. Epidemiol. 2018, 32, 184–196. [Google Scholar] [CrossRef]
- Solé-Navais, P.; Cavallé-Busquets, P.; Fernandez-Ballart, J.D.; Murphy, M.M. Early pregnancy B vitamin status, one carbon metabolism, pregnancy outcome and child development. Biochimie 2016, 126, 91–96. [Google Scholar] [CrossRef]
- Abe, S.K.; Balogun, O.O.; Ota, E.; Takahashi, K.; Mori, R. Supplementation with multiple micronutrients for breastfeeding women for improving outcomes for the mother and baby. Cochrane Database Syst. Rev. 2016, 2, Cd010647. [Google Scholar] [CrossRef]
- Abdollahi, S.; Soltani, S.; de Souza, R.J.; Forbes, S.C.; Toupchian, O.; Salehi-Abargouei, A. Associations between Maternal Dietary Patterns and Perinatal Outcomes: A Systematic Review and Meta-Analysis of Cohort Studies. Adv. Nutr. 2021, 12, 1332–1352. [Google Scholar] [CrossRef]
- Seid, A.; Dugassa Fufa, D.; Weldeyohannes, M.; Tadesse, Z.; Fenta, S.L.; Bitew, Z.W.; Dessie, G. Inadequate dietary diversity during pregnancy increases the risk of maternal anemia and low birth weight in Africa: A systematic review and meta-analysis. Food Sci. Nutr. 2023, 11, 3706–3717. [Google Scholar] [CrossRef]
- Dean, S.V.; Lassi, Z.S.; Imam, A.M.; Bhutta, Z.A. Preconception care: Nutritional risks and interventions. Reprod. Health 2014, 11 (Suppl. 3), S3. [Google Scholar] [CrossRef]
- Rahman, M.M.; Abe, S.K.; Kanda, M.; Narita, S.; Rahman, M.S.; Bilano, V.; Ota, E.; Gilmour, S.; Shibuya, K. Maternal body mass index and risk of birth and maternal health outcomes in low- and middle-income countries: A systematic review and meta-analysis. Obes. Rev. 2015, 16, 758–770. [Google Scholar] [CrossRef] [PubMed]
- Asefa, F.; Cummins, A.; Dessie, Y.; Hayen, A.; Foureur, M. Gestational weight gain and its effect on birth outcomes in sub-Saharan Africa: Systematic review and meta-analysis. PLoS ONE 2020, 15, e0231889. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Feng, L.; Huang, L.; Li, X.; Qiu, W.; Yang, K.; Qiu, J.; Li, H. Maternal Factors for Intrauterine Growth Retardation: Systematic Review and Meta-Analysis of Observational Studies. Reprod. Sci. 2023, 30, 1737–1745. [Google Scholar] [CrossRef] [PubMed]
- Goto, E. Maternal anthropometry to predict small for gestational age: A meta-analysis. Eur. J. Obstet. Gynecol. Reprod. Biol. 2016, 203, 193–198. [Google Scholar] [CrossRef] [PubMed]
- Daly, M.; Kipping, R.R.; Tinner, L.E.; Sanders, J.; White, J.W. Preconception exposures and adverse pregnancy, birth and postpartum outcomes: Umbrella review of systematic reviews. Paediatr. Perinat. Epidemiol. 2022, 36, 288–299. [Google Scholar] [CrossRef]
- De-Regil, L.M.; Peña-Rosas, J.P.; Fernández-Gaxiola, A.C.; Rayco-Solon, P. Effects and safety of periconceptional oral folate supplementation for preventing birth defects. Cochrane Database Syst. Rev. 2015, 2015, Cd007950. [Google Scholar] [CrossRef]
- Han, Y.S.; Ha, E.H.; Park, H.S.; Kim, Y.J.; Lee, S.S. Relationships between pregnancy outcomes, biochemical markers and pre-pregnancy body mass index. Int. J. Obes. 2011, 35, 570–577. [Google Scholar] [CrossRef]
- Murphy, M.M.; Stettler, N.; Smith, K.M.; Reiss, R. Associations of consumption of fruits and vegetables during pregnancy with infant birth weight or small for gestational age births: A systematic review of the literature. Int. J. Womens Health 2014, 6, 899–912. [Google Scholar] [CrossRef]
- Hassan, N.E.; Shalaan, A.H.; El-Masry, S.A. Relationship between maternal characteristics and neonatal birth size in Egypt. East. Mediterr. Health J. 2011, 17, 281–289. [Google Scholar] [CrossRef]
- Kanade, A.N.; Rao, S.; Kelkar, R.S.; Gupte, S. Maternal nutrition and birth size among urban affluent and rural women in India. J. Am. Coll. Nutr. 2008, 27, 137–145. [Google Scholar] [CrossRef]
- Rao, S.; Yajnik, C.S.; Kanade, A.; Fall, C.H.; Margetts, B.M.; Jackson, A.A.; Shier, R.; Joshi, S.; Rege, S.; Lubree, H.; et al. Intake of micronutrient-rich foods in rural Indian mothers is associated with the size of their babies at birth: Pune Maternal Nutrition Study. J. Nutr. 2001, 131, 1217–1224. [Google Scholar] [CrossRef] [PubMed]
- Rahmati, S.; Delpishe, A.; Azami, M.; Hafezi Ahmadi, M.R.; Sayehmiri, K. Maternal Anemia during pregnancy and infant low birth weight: A systematic review and Meta-analysis. Int. J. Reprod. Biomed. 2017, 15, 125–134. [Google Scholar] [CrossRef] [PubMed]
- Sukumar, N.; Rafnsson, S.B.; Kandala, N.B.; Bhopal, R.; Yajnik, C.S.; Saravanan, P. Prevalence of vitamin B-12 insufficiency during pregnancy and its effect on offspring birth weight: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2016, 103, 1232–1251. [Google Scholar] [CrossRef] [PubMed]
- Cantor, A.G.; Bougatsos, C.; Dana, T.; Blazina, I.; McDonagh, M. Routine iron supplementation and screening for iron deficiency anemia in pregnancy: A systematic review for the U.S. Preventive Services Task Force. Ann. Intern. Med. 2015, 162, 566–576. [Google Scholar] [CrossRef] [PubMed]
- Amegah, A.K.; Klevor, M.K.; Wagner, C.L. Maternal vitamin D insufficiency and risk of adverse pregnancy and birth outcomes: A systematic review and meta-analysis of longitudinal studies. PLoS ONE 2017, 12, e0173605. [Google Scholar] [CrossRef]
- Zhao, R.; Zhou, L.; Wang, S.; Yin, H.; Yang, X.; Hao, L. Effect of maternal vitamin D status on risk of adverse birth outcomes: A systematic review and dose-response meta-analysis of observational studies. Eur. J. Nutr. 2022, 61, 2881–2907. [Google Scholar] [CrossRef]
- Saccone, G.; Berghella, V.; Maruotti, G.M.; Sarno, L.; Martinelli, P. Omega-3 supplementation during pregnancy to prevent recurrent intrauterine growth restriction: Systematic review and meta-analysis of randomized controlled trials. Ultrasound Obstet. Gynecol. 2015, 46, 659–664. [Google Scholar] [CrossRef]
- Gresham, E.; Byles, J.E.; Bisquera, A.; Hure, A.J. Effects of dietary interventions on neonatal and infant outcomes: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2014, 100, 1298–1321. [Google Scholar] [CrossRef]
- Rahman, M.M.; Abe, S.K.; Rahman, M.S.; Kanda, M.; Narita, S.; Bilano, V.; Ota, E.; Gilmour, S.; Shibuya, K. Maternal anemia and risk of adverse birth and health outcomes in low- and middle-income countries: Systematic review and meta-analysis. Am. J. Clin. Nutr. 2016, 103, 495–504. [Google Scholar] [CrossRef]
- Abraha, I.; Bonacini, M.I.; Montedori, A.; Di Renzo, G.C.; Angelozzi, P.; Micheli, M.; Germani, A.; Carloni, D.; Scaccetti, A.; Palmieri, G.; et al. Oral iron-based interventions for prevention of critical outcomes in pregnancy and postnatal care: An overview and update of systematic reviews. J. Evid. Based Med. 2019, 12, 155–166. [Google Scholar] [CrossRef]
- Saccone, G.; Saccone, I.; Berghella, V. Omega-3 long-chain polyunsaturated fatty acids and fish oil supplementation during pregnancy: Which evidence? J. Matern. Fetal Neonatal Med. 2016, 29, 2389–2397. [Google Scholar] [CrossRef] [PubMed]
- Figueiredo, A.; Gomes-Filho, I.S.; Silva, R.B.; Pereira, P.P.S.; Mata, F.; Lyrio, A.O.; Souza, E.S.; Cruz, S.S.; Pereira, M.G. Maternal Anemia and Low Birth Weight: A Systematic Review and Meta-Analysis. Nutrients 2018, 10, 601. [Google Scholar] [CrossRef] [PubMed]
- Maghsoudlou, S.; Cnattingius, S.; Stephansson, O.; Aarabi, M.; Semnani, S.; Montgomery, S.M.; Bahmanyar, S. Maternal haemoglobin concentrations before and during pregnancy and stillbirth risk: A population-based case-control study. BMC Pregnancy Childbirth 2016, 16, 135. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.A.; Khan, M.N.; Rahman, M.M. Maternal anaemia and risk of adverse obstetric and neonatal outcomes in South Asian countries: A systematic review and meta-analysis. Public Health Pract. 2020, 1, 100021. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, S.F.; Dos Reis Costa, P.N.; Gouvêa, T.G.; de Almeida, N.F.A.; Cardoso, F.S. Influence of hypovitaminosis D during pregnancy on glycemic and lipid profile, inflammatory indicators and anthropometry of pregnant and newborn. Clin. Nutr. ESPEN 2023, 54, 81–93. [Google Scholar] [CrossRef]
- Rogne, T.; Tielemans, M.J.; Chong, M.F.; Yajnik, C.S.; Krishnaveni, G.V.; Poston, L.; Jaddoe, V.W.; Steegers, E.A.; Joshi, S.; Chong, Y.S.; et al. Associations of Maternal Vitamin B12 Concentration in Pregnancy with the Risks of Preterm Birth and Low Birth Weight: A Systematic Review and Meta-Analysis of Individual Participant Data. Am. J. Epidemiol. 2017, 185, 212–223. [Google Scholar] [CrossRef]
- Benaim, C.; Carrilho, T.R.B.; Farias, D.R.; Kac, G. Vitamin D during pregnancy and its association with birth outcomes: A Brazilian cohort study. Eur. J. Clin. Nutr. 2021, 75, 489–500. [Google Scholar] [CrossRef]
- van der Pligt, P.; Willcox, J.; Szymlek-Gay, E.A.; Murray, E.; Worsley, A.; Daly, R.M. Associations of Maternal Vitamin D Deficiency with Pregnancy and Neonatal Complications in Developing Countries: A Systematic Review. Nutrients 2018, 10, 640. [Google Scholar] [CrossRef]
- Liu, E.; Pimpin, L.; Shulkin, M.; Kranz, S.; Duggan, C.P.; Mozaffarian, D.; Fawzi, W.W. Effect of Zinc Supplementation on Growth Outcomes in Children under 5 Years of Age. Nutrients 2018, 10, 377. [Google Scholar] [CrossRef]
- Bhutta, Z.A.; Das, J.K. Interventions to address maternal and childhood undernutrition: Current evidence. Nestle Nutr. Inst. Workshop Ser. 2014, 78, 59–69. [Google Scholar] [CrossRef]
- Mora, J.O.; de Paredes, B.; Wagner, M.; de Navarro, L.; Suescun, J.; Christiansen, N.; Herrera, M.G. Nutritional supplementation and the outcome of pregnancy. I. Birth weight. Am. J. Clin. Nutr. 1979, 32, 455–462. [Google Scholar] [CrossRef] [PubMed]
- Stevens, B.; Buettner, P.; Watt, K.; Clough, A.; Brimblecombe, J.; Judd, J. The effect of balanced protein energy supplementation in undernourished pregnant women and child physical growth in low- and middle-income countries: A systematic review and meta-analysis. Matern. Child. Nutr. 2015, 11, 415–432. [Google Scholar] [CrossRef] [PubMed]
- Lassi, Z.S.; Padhani, Z.A.; Rabbani, A.; Rind, F.; Salam, R.A.; Das, J.K.; Bhutta, Z.A. Impact of Dietary Interventions during Pregnancy on Maternal, Neonatal, and Child Outcomes in Low- and Middle-Income Countries. Nutrients 2020, 12, 531. [Google Scholar] [CrossRef] [PubMed]
- Santander Ballestín, S.; Giménez Campos, M.I.; Ballestin Ballestin, J.; Luesma Bartolomé, M.J. Is supplementation with micronutrients still necessary during pregnancy? A review. Nutrients 2021, 13, 3134. [Google Scholar] [CrossRef] [PubMed]
- Souza, M.; Ferreira, L.B.; Dos Santos, L.C. Dietary Inflammatory Index during pregnancy is associated with birth weight and child anthropometry up to 10 years old: A systematic review and meta-analysis. Nutr. Res. 2023, 114, 81–97. [Google Scholar] [CrossRef]
- Yisahak, S.F.; Mumford, S.L.; Grewal, J.; Li, M.; Zhang, C.; Grantz, K.L.; Hinkle, S.N. Maternal diet patterns during early pregnancy in relation to neonatal outcomes. Am. J. Clin. Nutr. 2021, 114, 358–367. [Google Scholar] [CrossRef]
- Li, M.; Grewal, J.; Hinkle, S.N.; Yisahak, S.F.; Grobman, W.A.; Newman, R.B.; Skupski, D.W.; Chien, E.K.; Wing, D.A.; Grantz, K.L.; et al. Healthy dietary patterns and common pregnancy complications: A prospective and longitudinal study. Am. J. Clin. Nutr. 2021, 114, 1229–1237. [Google Scholar] [CrossRef]
- Elmighrabi, N.F.; Fleming, C.A.; Agho, K.E. Wasting and Underweight in Northern African Children: Findings from Multiple-Indicator Cluster Surveys, 2014–2018. Nutrients 2023, 15, 3207. [Google Scholar] [CrossRef]
- Elmighrabi, N.F.; Fleming, C.A.; Dhami, M.V.; Agho, K.E. Childhood undernutrition in North Africa: Systematic review and meta-analysis of observational studies. Glob. Health Action. 2023, 16, 2240158. [Google Scholar] [CrossRef]
- Sobhy, S.; Rogozinska, E.; Khan, K.S. Accuracy of on-site tests to detect anemia during prenatal care. Int. J. Gynaecol. Obstet. 2017, 139, 130–136. [Google Scholar] [CrossRef]
- Manger, M.S.; Brown, K.H.; Osendarp, S.J.M.; Atkin, R.A.; McDonald, C.M. Barriers to and Enablers of the Inclusion of Micronutrient Biomarkers in National Surveys and Surveillance Systems in Low- and Middle-Income Countries. Nutrients 2022, 14, 2009. [Google Scholar] [CrossRef] [PubMed]
- González-Fernández, D.; Nemeth, E.; Pons, E.d.C.; Rueda, D.; Sinisterra, O.T.; Murillo, E.; Sangkhae, V.; Starr, L.; Scott, M.E.; Koski, K.G. Multiple Infections, Nutrient Deficiencies, and Inflammation as Determinants of Anemia and Iron Status during Pregnancy: The MINDI Cohort. Nutrients 2024, 16, 1748. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.J.; Addo, O.Y.; Mei, Z.; Suchdev, P.S. Reexamination of hemoglobin adjustments to define anemia: Altitude and smoking. Ann. N. Y. Acad. Sci. 2019, 1450, 190–203. [Google Scholar] [CrossRef] [PubMed]
- Vricella, L.K. Emerging understanding and measurement of plasma volume expansion in pregnancy. Am. J. Clin. Nutr. 2017, 106, 1620S–1625S. [Google Scholar] [CrossRef] [PubMed]
- de Haas, S.; Ghossein-Doha, C.; van Kuijk, S.M.; van Drongelen, J.; Spaanderman, M.E. Physiological adaptation of maternal plasma volume during pregnancy: A systematic review and meta-analysis. Ultrasound Obstet. Gynecol. 2017, 49, 177–187. [Google Scholar] [CrossRef]
- Schröder-Heurich, B.; Springer, C.J.P.; von Versen-Höynck, F. Vitamin D Effects on the Immune System from Periconception through Pregnancy. Nutrients 2020, 12, 1432. [Google Scholar] [CrossRef]
- Yang, J.; Zhu, L.; Li, X.; Zheng, H.; Wang, Z.; Hao, Z.; Liu, Y. Maternal iodine status during lactation and infant weight and length in Henan Province, China. BMC Pregnancy Childbirth 2017, 17, 383. [Google Scholar] [CrossRef]
- González-Fernández, D.; Nemeth, E.; Pons, E.d.C.; Sinisterra, O.T.; Rueda, D.; Starr, L.; Sangkhae, V.; Murillo, E.; Scott, M.E.; Koski, K.G. Multiple indicators of undernutrition, infection, and inflammation in lactating women are associated with maternal iron status and infant anthropometry in Panama: The MINDI cohort. Nutrients 2022, 14, 3497. [Google Scholar] [CrossRef]
- Strand, T.A.; Ulak, M.; Kvestad, I.; Henjum, S.; Ulvik, A.; Shrestha, M.; Thorne-Lyman, A.L.; Ueland, P.M.; Shrestha, P.S.; Chandyo, R.K. Maternal and infant vitamin B12 status during infancy predict linear growth at 5 years. Pediatr. Res. 2018, 84, 611–618. [Google Scholar] [CrossRef]
- Jarjou, L.M.; Goldberg, G.R.; Coward, W.A.; Prentice, A. Calcium intake of rural Gambian infants: A quantitative study of the relative contributions of breast milk and complementary foods at 3 and 12 months of age. Eur. J. Clin. Nutr. 2012, 66, 673–677. [Google Scholar] [CrossRef]
- Mwangi, M.N.; Prentice, A.M.; Verhoef, H. Safety and benefits of antenatal oral iron supplementation in low-income countries: A review. Br. J. Haematol. 2017, 177, 884–895. [Google Scholar] [CrossRef]
- Lewies, A.; Zandberg, L.; Baumgartner, J. Interventions to prevent iron deficiency during the first 1000 days in low-income and middle-income countries: Recent advances and challenges. Curr. Opin. Clin. Nutr. Metab. Care 2019, 22, 223–229. [Google Scholar] [CrossRef] [PubMed]
- Garner, T.B.; Hester, J.M.; Carothers, A.; Diaz, F.J. Role of zinc in female reproduction. Biol. Reprod. 2021, 104, 976–994. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, A.; Gupta, S. Role of reactive oxygen species in female reproduction and the effects of antioxidant supplementation-Part 2. Agro Food Ind. Hi Tech 2005, 16, 38–41. [Google Scholar]
- Jaiswal, V.; Joshi, A.; Jha, M.; Hanif, M.; Arora, A.; Gupta, S.; Shah, M.; Deb, N.; Peng Ang, S.; Aujla, S.; et al. Association between calcium supplementation and gestational hypertension, and preeclampsia: A Meta-analysis of 26 randomized controlled trials. Curr. Probl. Cardiol. 2024, 49, 102217. [Google Scholar] [CrossRef] [PubMed]
- Taherian, A.A.; Taherian, A.; Shirvani, A. Prevention of preeclampsia with low-dose aspirin or calcium supplementation. Arch. Iran. Med. 2002, 5, 151–156. [Google Scholar]
- Firouzabadi, F.D.; Shab-Bidar, S.; Jayedi, A. The effects of omega-3 polyunsaturated fatty acids supplementation in pregnancy, lactation, and infancy: An umbrella review of meta-analyses of randomized trials. Pharmacol. Res. 2022, 177, 106100. [Google Scholar] [CrossRef]
- Shenoy, S.; Sharma, P.; Rao, A.; Aparna, N.; Adenikinju, D.; Iloegbu, C.; Pateña, J.; Vieira, D.; Gyamfi, J.; Peprah, E. Evidence-based interventions to reduce maternal malnutrition in low and middle-income countries: A systematic review. Front. Health Serv. 2023, 3, 1155928. [Google Scholar] [CrossRef]
Study Design Types | Population and Setting | Maternal Nutritional Indicator | Outcomes Associated in Offspring |
---|---|---|---|
Inclusion criteria | |||
Review studies conducted in the last 10 years (2013–2023) | Studies in low-and middle-income countries | Maternal nutritional status, indicated by:
| Fetal outcomes:
|
Exclusion criteria | |||
Older reviews, animal studies, reviews focused on mechanistic pathways but not maternal offspring relationships, narrative reviews without pooled effects | Twin pregnancies, studies conducted in developed settings only |
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Fernández, D.; Muralidharan, O.; Neves, P.A.; Bhutta, Z.A. Associations of Maternal Nutritional Status and Supplementation with Fetal, Newborn, and Infant Outcomes in Low-Income and Middle-Income Settings: An Overview of Reviews. Nutrients 2024, 16, 3725. https://doi.org/10.3390/nu16213725
González-Fernández D, Muralidharan O, Neves PA, Bhutta ZA. Associations of Maternal Nutritional Status and Supplementation with Fetal, Newborn, and Infant Outcomes in Low-Income and Middle-Income Settings: An Overview of Reviews. Nutrients. 2024; 16(21):3725. https://doi.org/10.3390/nu16213725
Chicago/Turabian StyleGonzález-Fernández, Doris, Oviya Muralidharan, Paulo A. Neves, and Zulfiqar A. Bhutta. 2024. "Associations of Maternal Nutritional Status and Supplementation with Fetal, Newborn, and Infant Outcomes in Low-Income and Middle-Income Settings: An Overview of Reviews" Nutrients 16, no. 21: 3725. https://doi.org/10.3390/nu16213725
APA StyleGonzález-Fernández, D., Muralidharan, O., Neves, P. A., & Bhutta, Z. A. (2024). Associations of Maternal Nutritional Status and Supplementation with Fetal, Newborn, and Infant Outcomes in Low-Income and Middle-Income Settings: An Overview of Reviews. Nutrients, 16(21), 3725. https://doi.org/10.3390/nu16213725