The Concurrent Association of Magnesium and Calcium Deficiencies with Cognitive Function in Older Hospitalized Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Anamnesis
2.3. Measurements
2.4. Statistical Analysis
2.5. Ethical Considerations
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ozawa, M.; Ninomiya, T.; Ohara, T.; Hirakawa, Y.; Doi, Y.; Hata, J.; Uchida, K.; Shirota, T.; Kitazono, T.; Kiyohara, Y. Self-Reported Dietary Intake of Potassium, Calcium, and Magnesium and Risk of Dementia in the Japanese: The Hisayama Study. J. Am. Geriatr. Soc. 2012, 60, 1515–1520. [Google Scholar] [CrossRef] [PubMed]
- Barbagallo, M.; Dominguez, L.J. Magnesium and aging. Curr. Pharm. Des. 2010, 16, 832–839. [Google Scholar] [CrossRef] [PubMed]
- Barbagallo, M.; Veronese, N.; Dominguez, L.J. Magnesium in Aging, Health and Diseases. Nutrients 2021, 13, 463. [Google Scholar] [CrossRef] [PubMed]
- Cristina, N.M.; Lucia, D. Nutrition and Healthy Aging: Prevention and Treatment of Gastrointestinal Diseases. Nutrients 2021, 13, 4337. [Google Scholar] [CrossRef]
- Slutsky, I.; Sadeghpour, S.; Li, B.; Liu, G. Enhancement of Synaptic Plasticity through Chronically Reduced Ca2+ Flux during Uncorrelated Activity. Neuron 2004, 44, 835–849. [Google Scholar] [CrossRef]
- Chui, D.; Chen, Z.; Yu, J.; Zhang, H.; Wang, W.; Song, Y.; Yang, H.; Liang, Z. Magnesium in Alzheimer’s disease. In Magnesium in the Central Nervous System; Vink, R., Nechifor, M., Eds.; University of Adelaide Press: Adelaide, Australia, 2011. [Google Scholar]
- Kirkland, A.E.; Sarlo, G.L.; Holton, K.F. The Role of Magnesium in Neurological Disorders. Nutrients 2018, 10, 730. [Google Scholar] [CrossRef]
- Lu, Z.; He, R.; Zhang, Y.; Li, B.; Li, F.; Fu, Y.; Rong, S. Relationship between Whole-Blood Magnesium and Cognitive Performance among Chinese Adults. Nutrients 2023, 15, 2706. [Google Scholar] [CrossRef]
- Oliveira, A.M.; Bading, H. Calcium signaling in cognition and aging-dependent cognitive decline. BioFactors 2011, 37, 168–174. [Google Scholar] [CrossRef]
- Sun, B.; Zhao, Y.; Lu, W.; Chen, Y. The Relationship of Malnutrition with Cognitive Function in the Older Chinese Population: Evidence from the Chinese Longitudinal Healthy Longevity Survey Study. Front. Aging Neurosci. 2021, 13, 766159. [Google Scholar] [CrossRef]
- Cowen, L.E.; Hodak, S.P.; Verbalis, J.G. Age-Associated Abnormalities of Water Homeostasis. Endocrinol. Metab. Clin. North. Am. 2023, 52, 277–293. [Google Scholar] [CrossRef]
- Tao, M.; Liu, J.; Cervantes, D. Association between magnesium intake and cognition in US older adults: National Health and Nutrition Examination Survey (NHANES) 2011 to 2014. Alzheimer’s Dement. Transl. Res. Clin. Interv. 2022, 8, e12250. [Google Scholar] [CrossRef] [PubMed]
- Schram, M.T.; Trompet, S.; Kamper, A.M.; De Craen, A.J.M.; Hofman, A.; Euser, S.M.; Breteler, M.M.B.; Westendorp, R.G.J. Serum Calcium and Cognitive Function in Old Age. J. Am. Geriatr. Soc. 2007, 55, 1786–1792. [Google Scholar] [CrossRef] [PubMed]
- Kern, J.; Kern, S.; Blennow, K.; Zetterberg, H.; Waern, M.; Guo, X.; Börjesson-Hanson, A.; Skoog, I.; Östling, S. Calcium supplementation and risk of dementia in women with cerebrovascular disease. Neurology 2016, 87, 1674–1680. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Zhang, C.; Zhao, Q.; Wu, W.; Liang, X.; Xiao, Z.; Mortimer, J.A.; Borenstein, A.R.; Dai, Q.; Ding, D. Dietary calcium and magnesium intake and risk for incident dementia: The Shanghai Aging Study. Alzheimer’s Dement. Transl. Res. Clin. Interv. 2022, 8, e12362. [Google Scholar] [CrossRef]
- Mohamed, A.A.; Hassaan, M.M.M.; Hussien, A.G.; Allam, A.S. Correlation between Cognitive Dysfunction and Serum Magnesium, Calcium and Phosphorus Level in the Elderly Egyptian Patients in Zagazig University Hospitals. Egypt J. Hosp. Med. 2022, 87, 1097–1105. [Google Scholar] [CrossRef]
- Basheer, M.; Kumar, K.P.; Sreekumaran, E.; Ramakrishna, T. A study of serum magnesium, calcium and phosphorus level, and cognition in the elderly population of South India. Alex. J. Med. 2016, 52, 303–308. [Google Scholar] [CrossRef]
- Oscanoa, T.J.; Amado, J.P.; Romero-Ortuno, R.; Hidalgo, J.A. Estimation of the glomerular filtration rate in older individuals with serum creatinine-based equations: A systematic comparison between CKD-EPI and BIS1. Arch. Gerontol. Geriatr. 2018, 75, 139–145. [Google Scholar] [CrossRef]
- Thomas, L. Clinical Laboratory Diagnostics: Use and Assessment of Clinical Laboratory Results, 1st ed.; TH-Books: Frankfurt, Germany, 1998. [Google Scholar]
- Zhu, X.; Borenstein, A.R.; Zheng, Y.; Zhang, W.; Seidner, D.L.; Ness, R.; Murff, H.J.; Li, B.; Shrubsole, M.J.; Yu, C.; et al. Ca:Mg Ratio, APOE Cytosine Modifications, and Cognitive Function: Results from a Randomized Trial. J. Alzheimer’s Dis. 2020, 75, 85–98. [Google Scholar] [CrossRef]
- Folstein, M.F.; Folstein, S.E.; McHugh, P.R. Mini-Mental State: A Practical Method for Grading the Cognitive State of Patients for the Clinician. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef]
- Sunderland, T.; Hill, J.L.; Mellow, A.M.; Lawlor, B.A.; Gundersheimer, J.; Newhouse, P.A.; Grafman, J.H. Clock drawing in Alzheimer’s disease. A novel measure of dementia severity. J. Am. Geriatr. Soc. 1989, 37, 725–729. [Google Scholar] [CrossRef]
- Palsetia, D.; Rao, G.P.; Tiwari, S.C.; Lodha, P.; De Sousa, A. The Clock Drawing Test versus Mini-mental Status Examination as a Screening Tool for Dementia: A Clinical Comparison. Indian. J. Psychol. Med. 2018, 40, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Sun, M.; Chen, Z.; Lu, J.; Liu, Y.; Zhou, L.; Xu, X.; Fan, D.; Chui, D. Magnesium modulates amyloid-beta protein precursor trafficking and processing. J. Alzheimers Dis. 2010, 20, 1091–1106. [Google Scholar] [CrossRef] [PubMed]
- Peeri, N.C.; Egan, K.M.; Chai, W.; Tao, M.-H. Association of magnesium intake and vitamin D status with cognitive function in older adults: An analysis of US National Health and Nutrition Examination Survey (NHANES) 2011 to 2014. Eur. J. Nutr. 2020, 60, 465–474. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Hu, Q.; Li, S.; Dai, F.; Qian, W.; Hewlings, S.; Yan, T.; Wang, Y. A Magtein®, Magnesium L-Threonate, -Based Formula Improves Brain Cognitive Functions in Healthy Chinese Adults. Nutrients 2022, 14, 5235. [Google Scholar] [CrossRef]
- Toffa, D.H.; Magnerou, M.A.; Kassab, A.; Djibo, F.H.; Sow, A.D. Can magnesium reduce central neurodegeneration in Alzheimer’s disease? Basic evidences and research needs. Neurochem. Int. 2019, 126, 195–202. [Google Scholar] [CrossRef]
- Al-Ghazali, K.; Eltayeb, S.; Musleh, A.; Al-Abdi, T.; Ganji, V.; Shi, Z. Serum Magnesium and Cognitive Function Among Qatari Adults. Front. Aging Neurosci. 2020, 12, 101. [Google Scholar] [CrossRef]
- Yang, Y.; Long, Y.; Yuan, J.; Zha, Y. U-shaped association of serum magnesium with mild cognitive impairment among hemodialysis patients: A multicenter study. Ren. Fail. 2023, 45, 2231084. [Google Scholar] [CrossRef]
- Kieboom, B.C.; Licher, S.; Wolters, F.J.; Ikram, M.K.; Hoorn, E.J.; Zietse, R.; Stricker, B.H. Serum magnesium is associated with the risk of dementia. Neurology 2017, 89, 1716–1722. [Google Scholar] [CrossRef]
- Alam, A.B.; Lutsey, P.L.; Gottesman, R.F.; Tin, A.; Alonso, A. Low Serum Magnesium is Associated with Incident Dementia in the ARIC-NCS Cohort. Nutrients 2020, 12, 3074. [Google Scholar] [CrossRef]
- Veronese, N.; Zurlo, A.; Solmi, M.; Luchini, C.; Trevisan, C.; Bano, G.; Manzato, E.; Sergi, G.; Rylander, R. Magnesium Status in Alzheimer’s Disease: A Systematic Review. Am. J. Alzheimers Dis. Other Demen 2016, 31, 208–213. [Google Scholar] [CrossRef]
- Alam, A.B.; Thomas, D.S.; Lutsey, P.L.; Shrestha, S.; Alonso, A. Associations of Serum Magnesium with Brain Morphology and Subclinical Cerebrovascular Disease: The Atherosclerosis Risk in Communities-Neurocognitive Study. Nutrients 2021, 13, 4496. [Google Scholar] [CrossRef] [PubMed]
- Tong, B.C.; Wu, A.J.; Li, M.; Cheung, K.H. Calcium signaling in Alzheimer’s disease & therapies. Biochim. Biophys. Acta Mol. Cell Res. 2018, 1865, 1745–1760. [Google Scholar] [PubMed]
- Verkhratsky, A. Astroglial Calcium Signaling in Aging and Alzheimer’s Disease. Cold Spring Harb. Perspect. Biol. 2019, 11, a035188. [Google Scholar] [CrossRef] [PubMed]
- Hermes, M.; Eichhoff, G.; Garaschuk, O. Intracellular calcium signalling in Alzheimer’s disease. J. Cell. Mol. Med. 2010, 14, 30–41. [Google Scholar] [CrossRef]
- McBrayer, M.; Ralph, A. Nixon, Lysosome and calcium dysregulation in Alzheimer’s disease: Partners in crime. Biochem. Soc. Trans. 2013, 41, 1495–1502. [Google Scholar] [CrossRef]
- Frazier, H.N.; Maimaiti, S.; Anderson, K.L.; Brewer, L.D.; Gant, J.C.; Porter, N.M.; Thibault, O. Calcium’s role as nuanced modulator of cellular physiology in the brain. Biochem. Biophys. Res. Commun. 2017, 483, 981–987. [Google Scholar] [CrossRef]
- Bojarski, L.; Herms, J.; Kuznicki, J. Calcium dysregulation in Alzheimer’s disease. Neurochem. Int. 2008, 52, 621–633. [Google Scholar] [CrossRef]
- Baracaldo-Santamaría, D.; Avendaño-Lopez, S.S.; Ariza-Salamanca, D.F.; Rodriguez-Giraldo, M.; Calderon-Ospina, C.A.; González-Reyes, R.E.; Nava-Mesa, M.O. Role of Calcium Modulation in the Pathophysiology and Treatment of Alzheimer’s Disease. Int. J. Mol. Sci. 2023, 24, 9067. [Google Scholar] [CrossRef]
- López-Arrieta, J.M.; Birks, J. Nimodipine for primary degenerative, mixed and vascular dementia. Cochrane Database Syst. Rev. 2000, 2002, Cd000147. [Google Scholar]
- Goodison, W.V.; Frisardi, V.; Kehoe, P.G. Calcium channel blockers and Alzheimer’s disease: Potential relevance in treatment strategies of metabolic syndrome. J. Alzheimers Dis. 2012, 30, S269–S282. [Google Scholar] [CrossRef]
- Thomassen, J.Q.; Nordestgaard, B.G.; Tybjærg-Hansen, A.; Frikke-Schmidt, R. Plasma Concentrations of Calcium and Risk of Alzheimer Disease—Observational and Genetic Studies. Clin. Chem. 2023, 69, 525–536. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.Z.; Wang, Z.X.; Wang, Z.T.; Hou, X.H.; Shen, X.N.; Ou, Y.N.; Dong, Q.; Tan, L.; Yu, J.T. Serum Calcium Predicts Cognitive Decline and Clinical Progression of Alzheimer’s Disease. Neurotox. Res. 2021, 39, 609–617. [Google Scholar] [CrossRef] [PubMed]
- Lourida, I.; Thompson-Coon, J.; Dickens, C.M.; Soni, M.; Kuźma, E.; Kos, K.; Llewellyn, D.J. Parathyroid Hormone, Cognitive Function and Dementia: A Systematic Review. PLoS ONE 2015, 10, e0127574. [Google Scholar] [CrossRef]
- Subhash, M.; Padmashree, T.; Srinivas, K.; Subbakrishna, D.; Shankar, S. Calcium and phosphorus levels in serum and CSF in dementia. Neurobiol. Aging 1991, 12, 267–269. [Google Scholar] [CrossRef]
- He, Y.; Zhang, H.; Wang, T.; Han, Z.; Ni, Q.-B.; Wang, K.; Wang, L.; Zhang, Y.; Hu, Y.; Jin, S.; et al. Impact of Serum Calcium Levels on Alzheimer’s Disease: A Mendelian Randomization Study. J. Alzheimer’s Dis. 2020, 76, 713–724. [Google Scholar] [CrossRef]
- Sato, K.; Mano, T.; Ihara, R.; Suzuki, K.; Tomita, N.; Arai, H.; Ishii, K.; Senda, M.; Ito, K.; Ikeuchi, T.; et al. Lower Serum Calcium as a Potentially Associated Factor for Conversion of Mild Cognitive Impairment to Early Alzheimer’s Disease in the Japanese Alzheimer’s Disease Neuroimaging Initiative. J. Alzheimer’s Dis. 2019, 68, 777–788. [Google Scholar] [CrossRef]
- Licher, S.; de Bruijn, R.F.; Wolters, F.J.; Zillikens, M.C.; Ikram, M.A. Vitamin D and the Risk of Dementia: The Rotterdam Study. J. Alzheimer’s Dis. 2017, 60, 989–997. [Google Scholar] [CrossRef]
- Perry, E.; Walton, K.; Lambert, K. Prevalence of Malnutrition in People with Dementia in Long-Term Care: A Systematic Review and Meta-Analysis. Nutrients 2023, 15, 2927. [Google Scholar] [CrossRef]
- Evans, L.; Best, C. Managing malnutrition in patients with dementia. Nurs. Stand. 2015, 29, 50–57. [Google Scholar] [CrossRef]
- Brook, S. Nutrition and dementia: What can we do to help? Br. J. Community Nurs. 2014, 19, S24–S27. [Google Scholar] [CrossRef]
- Arifin, H.; Chen, R.; Banda, K.J.; Kustanti, C.Y.; Chang, C.-Y.; Lin, H.-C.; Liu, D.; Lee, T.-Y.; Chou, K.-R. Meta-analysis and moderator analysis of the prevalence of malnutrition and malnutrition risk among older adults with dementia. Int. J. Nurs. Stud. 2023, 150, 104648. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, T.; Zou, K.; Shibuya, Y.; Michikawa, M. Oral dysfunctions and cognitive impairment/dementia. J. Neurosci. Res. 2021, 99, 518–528. [Google Scholar] [CrossRef] [PubMed]
- Shea, M.K.; Xuan, A.Y.; Booth, S.L. Vitamin D, Alzheimer’s disease and related dementia. Adv. Food Nutr. Res. 2024, 109, 185–219. [Google Scholar] [PubMed]
- Gibson, G.E.; Hirsch, J.A.; Fonzetti, P.; Jordan, B.D.; Cirio, R.T.; Elder, J. Vitamin B1 (thiamine) and dementia. Ann. N. Y. Acad. Sci. 2016, 1367, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Liu, S.; Ge, B.; Zhou, D.; Li, M.; Li, W.; Ma, F.; Liu, Z.; Ji, Y.; Huang, G. Effects of Folic Acid and Vitamin B12 Supplementation on Cognitive Impairment and Inflammation in Patients with Alzheimer’s Disease: A Randomized, Single-Blinded, Placebo-Controlled Trial. J. Prev. Alzheimers Dis. 2021, 8, 249–256. [Google Scholar] [CrossRef]
- Katonova, A.; Sheardova, K.; Amlerova, J.; Angelucci, F.; Hort, J. Effect of a Vegan Diet on Alzheimer’s Disease. Int. J. Mol. Sci. 2022, 23, 14924. [Google Scholar] [CrossRef]
- Włodarek, D. Role of Ketogenic Diets in Neurodegenerative Diseases (Alzheimer’s Disease and Parkinson’s Disease). Nutrients 2019, 11, 169. [Google Scholar] [CrossRef]
- Rastas, S.; Pirttilä, T.; Mattila, K.; Verkkoniemi, A.; Juva, K.; Niinistö, L.; Länsimies, E.; Sulkava, R. Vascular risk factors and dementia in the general population aged >85 years: Prospective population-based study. Neurobiol. Aging 2010, 31, 1–7. [Google Scholar] [CrossRef]
- Tadic, M.; Cuspidi, C.; Hering, D. Hypertension and cognitive dysfunction in elderly: Blood pressure management for this global burden. BMC Cardiovasc. Disord. 2016, 16, 208. [Google Scholar] [CrossRef]
- Puteikis, K.; Ažukaitis, K.; Dadurkevičienė, D.; Mikučionytė, D.; Simanauskas, K.; Šileikienė, V.; Masiliūnas, R.; Jankauskienė, A.; Mameniškienė, R. Cognitive Outcomes in Young Adults with Primary Arterial Hypertension: The Role of Cardiovascular Risk Factors and Hypertension-Mediated Organ Damage. Medicina 2024, 60, 1353. [Google Scholar] [CrossRef]
- Carroll, S.; Turkheimer, E. Midlife risk factors for late-life cognitive decline. Dev. Rev. 2018, 48, 201–222. [Google Scholar] [CrossRef]
- Mielke, M.M.; Lyketsos, C.G. Lipids and the pathogenesis of Alzheimer’s disease: Is there a link? Int. Rev. Psychiatry 2006, 18, 173–186. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Huang, Z.; Zhang, X.; He, Y.; Gu, S.; Mo, D.; Wang, S.; Yuan, Z.; Huang, Y.; Zhong, Q.; et al. Association between lipid metabolism and cognitive function in patients with schizophrenia. Front. Psychiatry 2022, 13, 1013698. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Yin, Z.; Zhu, P.; Luo, J.; Shi, X.; Gao, X. Blood cholesterol in late-life and cognitive decline: A longitudinal study of the Chinese elderly. Mol. Neurodegener. 2017, 12, 24. [Google Scholar] [CrossRef]
- van Exel, E.; de Craen, A.J.; Gussekloo, J.; Houx, P.; der Wiel, A.B.-V.; Macfarlane, P.W.; Blauw, G.J.; Westendorp, R.G.J. Association between high-density lipoprotein and cognitive impairment in the oldest old. Ann. Neurol. 2002, 51, 716–721. [Google Scholar] [CrossRef]
- Rost, N.S.; Brodtmann, A.; Pase, M.P.; van Veluw, S.J.; Biffi, A.; Duering, M.; Hinman, J.D.; Dichgans, M. Post-Stroke Cognitive Impairment and Dementia. Circ. Res. 2022, 130, 1252–1271. [Google Scholar] [CrossRef]
- Cannon, J.A.; Moffitt, P.; Perez-Moreno, A.C.; Walters, M.R.; Broomfield, N.M.; McMurray, J.J.; Quinn, T.J. Cognitive Impairment and Heart Failure: Systematic Review and Meta-Analysis. J. Card. Fail. 2017, 23, 464–475. [Google Scholar] [CrossRef]
- Li, T.; Bao, X.; Li, L.; Qin, R.; Li, C.; Wang, X. Heart failure and cognitive impairment: A narrative review of neuroimaging mechanism from the perspective of brain MRI. Front. Neurosci. 2023, 17, 1148400. [Google Scholar] [CrossRef]
Parameter | Group I Normomagnesemia and Normocalcemia (n = 678) | Group II Hypomagnesemia (n = 331) | Group III Hypocalcemia (n = 103) | Group IV Hypomagnesemia and Hypocalcemia (n = 108) | p-Value |
---|---|---|---|---|---|
Age (years), mean ± SD Median (lower; upper quartiles) | 81.14 ± 7.68 82(76; 87) | 81.51 ± 7.31 83 (77; 87) | 83.94 ± 8.51 86 (79; 90) *,# | 83.07 ± 8.46 84 (75; 90) | 0.003 KW |
Sex, raw numbers (%) | Women 486 (71.6%) Men 192 (28.4%) | Women 251 (75.8%) Men 80 (24.2%) | Women 65 (63.1%) Men 38 (36.9%) | Women 74 (68.5%) Men 34 (31.5%) | 0.06 chi2 |
Body mass (kg), mean ± SD Median (lower; upper quartiles) | 69.31 ± 16.14 69 (57; 80) | 68.05 ± 15.65 66 (57; 77) | 64.34 ± 14.53 60 (52; 73) # | 65.25 ± 14.98 64 (55; 75) | 0.03 KW |
BMI (kg/m2), mean ± SD Median (lower; upper quartiles) | 26.53 ± 5.30 25 (23; 30) | 27.12 ± 5.49 27 (23; 31) | 25.1 ± 4.9 24 (21; 28) # | 25.24 ± 4.87 24 (22; 27) # | 0.001 KW |
MMSE (points), mean ± SD Median (lower; upper quartiles) | 23.46 ± 5.88 25 (20; 28) | 22.65 ± 6.23 24 (19; 28) | 18.66 ± 8.33 20 (14; 25) *,# | 20.40 ± 7.55 22 (16; 26) * | 0.0001 KW |
CDT (points), mean ± SD Median (lower; upper quartiles) | 5.64 ± 3.77 6 (2; 10) | 5.24 ± 3.75 5 (1; 10) | 4.09 ± 3.69 4 (0; 7) * | 3.98 ± 3.83 3.5 (0; 8) *,# | 0.0001 KW |
Number of administered medications, mean ± SD Median (lower; upper quartiles) | 4.85 ± 2.42 5 (3;6) | 5.85 ± 2.45 6 (4;7) * | 3.98 ± 2.47 4.(2;6) *,# | 5.03 ± 2.39 5 (3;7) † | 0.001 KW |
Arterial hypertension, raw numbers (%) | 570 (84.1%) | 286 (86.4%) | 82 (80.4%) | 90 (83.3%) | 0.48 chi2 |
Diabetes mellitus, raw numbers (%) | 181 (26.8%) | 160 (48.3%) * | 26 (25.2%) # | 35 (32.4%) | <0.0001 chi2 |
Lipid disorders, raw numbers (%) | 352 (51.9%) | 147 (44.4%) | 32 (31.1%) * | 24 (22.2%) * | <0.0001 chi2 |
Stroke, raw numbers (%) | 100 (14.8%) | 72 (21.8%) * | 14 (13.6%) # | 18 (16.7%) | 0.03 chi2 |
Coronary artery disease, raw numbers (%) | 233 (34.4%) | 141 (42.6%) | 31 (30.1%) | 31 (28.7%) # | 0.01 chi2 |
Myocardial infarction, raw numbers (%) | 74 (10.9%) | 31 (9.4%) | 16 (15.5%) | 11 (10.9%) | 0.36 chi2 |
Atrial fibrillation, raw numbers (%) | 146 (21.5%) | 99 (29.9%) * | 28 (27.2%) | 33 (30.6%) * | 0.01 chi2 |
Heart failure, raw numbers (%) | 342 (50.4%) | 196 (59.2%) | 67 (65.1%) * | 79 (73.2%) *,# | <0.0001 chi2 |
Chronic kidney disease, raw numbers (%) | 328 (48.4%) | 182 (55.2%) | 61 (59.2%) | 72 (66.7%) * | 0.001 chi2 |
Disease | Without a Particular Disease Mean ± SD, Median (Lower; Upper Quartiles) | With a Particular Disease Mean ± SD, Median (Lower; Upper Quartiles) | p-Value U |
---|---|---|---|
MMSE | |||
Arterial hypertension | 21.4 ± 7.5, 23 (17; 28) | 22.8 ± 6.3, 24 (19; 28) | 0.003 |
Diabetes mellitus | 22.5 ± 6.5, 24 (19; 28) | 22.8 ± 6.6, 24 (19; 28) | 0.32 |
Lipid disorders | 21.7 ± 6.6, 23 (18; 27) | 23.6 ± 6.3, 25 (20; 29) | 0.0001 |
Stroke | 22.9 ± 6.5, 24.5 (19; 28) | 20.9 ± 6.7, 22 (18; 26) | <0.0001 |
Coronary artery disease | 22.6 ± 6.6, 24 (19; 28) | 22.4 ± 6.5, 24 (19; 27) | 0.56 |
Myocardial infarction | 22.6 ± 6.5, 24 (19; 28) | 22.5 ± 6.5, 24 (19; 28) | 0.86 |
Atrial fibrillation | 22.7 ± 6.6, 24 (19; 28) | 22.2 ± 6.4, 23 (19; 27) | 0.23 |
Heart failure | 23.6 ± 6.3, 25 (20; 28) | 21.8 ± 6.7, 23 (18; 27) | <0.0001 |
Chronic kidney disease | 22.8 ± 6.8, 25 (19; 28) | 22.4 ± 6.3, 24 (19; 27) | 0.19 |
CDT | |||
Arterial hypertension | 5.0 ± 4.1, 5 (10; 9) | 5.4 ± 3.8, 5 (2; 9) | 0.27 |
Diabetes mellitus | 5.2 ± 3.8, 5 (1; 9) | 5.6 ± 3.8, 6 (2; 10) | 0.10 |
Lipid disorders | 4.9 ± 3.8, 5 (0; 9) | 5.8 ± 3.8, 7 (2; 10) | <0.0001 |
Stroke | 5.4 ± 3.8, 5 (1; 9) | 5.1 ± 3.8, 5 (1; 9) | 0.23 |
Coronary artery disease | 5.5 ± 3.8, 6 (2; 10) | 5.1 ± 3.8, 5 (1; 9) | 0.10 |
Myocardial infarction | 5.3 ± 3.8, 5 (1.5; 9) | 5.1 ± 3.9, 5 (0; 10) | 0.56 |
Atrial fibrillation | 5.5 ± 3.9, 6 (2; 10) | 4.9 ± 3.7, 5 (1; 9) | 0.01 |
Heart failure | 5.7 ± 3.9, 7 (2; 10) | 5 ± 3.7, 5 (1; 9) | 0.002 |
Chronic kidney disease | 5.5 ± 3.9, 6 (1; 10) | 5.1 ± 3.7, 5 (1; 9) | 0.01 |
Equation | R2 | p-Value | |
---|---|---|---|
MMSE = | 33.95 − (0.21 × Age) + (0.18 × BMI) + 1.69 if normal Mg and Ca; + 0.94 if low Mg; − 2.12 if low Ca; − 0.51 if low Mg/Ca; − 0.46 if present chronic heart failure or + 0.46 if absent chronic heart failure | 0.16 | <0.0001 |
CDT = | 13.26 − (0.13 × Age) + (0.09 × BMI) + 0.68 if normal Mg and Ca; + 0.28 if low Mg; − 0.36 if low Ca; − 0.60 if low Mg/Ca | 0.12 | <0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kravchenko, G.; Stephenson, S.S.; Gutowska, A.; Klimek, K.; Chrząstek, Z.; Pigłowska, M.; Kostka, T.; Sołtysik, B.K. The Concurrent Association of Magnesium and Calcium Deficiencies with Cognitive Function in Older Hospitalized Adults. Nutrients 2024, 16, 3756. https://doi.org/10.3390/nu16213756
Kravchenko G, Stephenson SS, Gutowska A, Klimek K, Chrząstek Z, Pigłowska M, Kostka T, Sołtysik BK. The Concurrent Association of Magnesium and Calcium Deficiencies with Cognitive Function in Older Hospitalized Adults. Nutrients. 2024; 16(21):3756. https://doi.org/10.3390/nu16213756
Chicago/Turabian StyleKravchenko, Ganna, Serena S. Stephenson, Agnieszka Gutowska, Karolina Klimek, Zuzanna Chrząstek, Małgorzata Pigłowska, Tomasz Kostka, and Bartłomiej K. Sołtysik. 2024. "The Concurrent Association of Magnesium and Calcium Deficiencies with Cognitive Function in Older Hospitalized Adults" Nutrients 16, no. 21: 3756. https://doi.org/10.3390/nu16213756