Effects of Extracted Pulse Proteins on Lipid Targets for Cardiovascular Risk Reduction: Systematic Review and Meta-Analysis of Randomized Controlled Trials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Sources and Search Strategy
2.2. Study Selection
2.3. Data Collection and Quality Assessment
2.4. Risk of Bias Assessment
2.5. Outcomes
2.6. Data Synthesis and Analysis
2.7. Certainty of the Evidence
3. Results
3.1. Search Results
3.2. Trial Characteristics
3.3. Risk of Bias
3.4. Primary Outcome
3.5. Secondary Outcomes
3.6. Adverse Events and Acceptability
3.7. Sensitivity Analyses
3.8. Subgroup Analyses
3.9. Dose–Response Analyses
4. Small-Study Effects
GRADE Assessment
5. Discussion
5.1. Findings in Relation to the Literature
5.2. Strengths and Limitations
5.3. Implications
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cardiovascular Diseases (CVDs). Available online: https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)#:~:text=Key%20facts,to%20heart%20attack%20and%20stroke (accessed on 10 June 2024).
- Canada, S. Morality, Summary List of Causes 2008. 2011. Available online: https://www150.statcan.gc.ca/n1/en/catalogue/84F0209X2008000 (accessed on 10 June 2024).
- The Conference Board of Canada. The Canadian Heart Health Strategy: Risk Factors and Future Cost Implications. Available online: https://sencanada.ca/content/sen/committee/412/SOCI/Briefs/2015-05-07ReportCdnCardiovascularSociety-AddInfoConferenceBoardofCanada_e.pdf (accessed on 10 June 2024).
- National Cholesterol Education Program (US); Expert Panel on Detection; Treatment of High Blood Cholesterol in Adults. Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III). JAMA 2001, 285, 2486–2497. [Google Scholar] [CrossRef] [PubMed]
- EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific Opinion on the substantiation of a health claim related to 3 g/day plant sterols/stanols and lowering blood LDL-cholesterol and reduced risk of (coronary) heart disease pursuant to Article 19 of Regulation (EC) No 1924/2006. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). EFSA J. 2012, 10, 2693. [Google Scholar] [CrossRef]
- EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific Opinion on the substantiation of a health claim related to oat beta-glucan and lowering blood cholesterol and reduced risk of (coronary) heart disease pursuant to Article 14 of Regulation (EC) No 1924/2006. EFSA J. 2010, 8, 1885. [Google Scholar] [CrossRef]
- Sud, M.; Han, L.; Koh, M.; Abdel-Qadir, H.; Austin, P.C.; Farkouh, M.E.; Godoy, L.C.; Lawler, P.R.; Udell, J.A.; Wijeysundera, H.C.; et al. Low-Density Lipoprotein Cholesterol and Adverse Cardiovascular Events After Percutaneous Coronary Intervention. J. Am. Coll. Cardiol. 2020, 76, 1440–1450. [Google Scholar] [CrossRef] [PubMed]
- Sarak, B.; Savu, A.; Kaul, P.; McAlister, F.A.; Welsh, R.C.; Yan, A.T.; Goodman, S.G. Lipid Testing, Lipid-Modifying Therapy, and PCSK9 (Proprotein Convertase Subtilisin-Kexin Type 9) Inhibitor Eligibility in 27 979 Patients with Incident Acute Coronary Syndrome. Circ. Cardiovasc. Qual. Outcomes 2021, 14, e006646. [Google Scholar] [CrossRef]
- Health Canada. Canada’s Food Guide. Available online: https://food-guide.canada.ca/en/ (accessed on 10 June 2024).
- Pearson, G.J.; Thanassoulis, G.; Anderson, T.J.; Barry, A.R.; Couture, P.; Dayan, N.; Francis, G.A.; Genest, J.; Gregoire, J.; Grover, S.A.; et al. 2021 Canadian Cardiovascular Society Guidelines for the Management of Dyslipidemia for the Prevention of Cardiovascular Disease in Adults. Can. J. Cardiol. 2021, 37, 1129–1150. [Google Scholar] [CrossRef]
- Tobe, S.W.; Stone, J.A.; Anderson, T.; Bacon, S.; Cheng, A.Y.Y.; Daskalopoulou, S.S.; Ezekowitz, J.A.; Gregoire, J.C.; Gubitz, G.; Jain, R.; et al. Canadian Cardiovascular Harmonized National Guidelines Endeavour (C-CHANGE) guideline for the prevention and management of cardiovascular disease in primary care: 2018 update. CMAJ 2018, 190, E1192–E1206. [Google Scholar] [CrossRef]
- Diabetes Canada Clinical Practice Guidelines Expert Committee; Punthakee, Z.; Goldenberg, R.; Katz, P. Definition, Classification and Diagnosis of Diabetes, Prediabetes and Metabolic Syndrome. Can. J. Diabetes 2018, 42 (Suppl. 1), S10–S15. [Google Scholar] [CrossRef]
- Brown, J.; Clarke, C.; Johnson Stoklossa, C.; Sievenpiper, J. Canadian Adult Obesity Clinical Practice Guidelines: Medical Nutrition Therapy in Obesity Management. Available online: https://obesitycanada.ca/guidelines/nutrition (accessed on 10 June 2024).
- Hertzler, S.R.; Lieblein-Boff, J.C.; Weiler, M.; Allgeier, C. Plant Proteins: Assessing Their Nutritional Quality and Effects on Health and Physical Function. Nutrients 2020, 12, 3704. [Google Scholar] [CrossRef]
- Ha, V.; Sievenpiper, J.L.; de Souza, R.J.; Jayalath, V.H.; Mirrahimi, A.; Agarwal, A.; Chiavaroli, L.; Mejia, S.B.; Sacks, F.M.; Di Buono, M.; et al. Effect of dietary pulse intake on established therapeutic lipid targets for cardiovascular risk reduction: A systematic review and meta-analysis of randomized controlled trials. CMAJ 2014, 186, E252–E262. [Google Scholar] [CrossRef]
- Emily, M.T.; Padhi, D.D.R. A review of the relationship between pulse consumption and reduction of cardiovascular disease risk factors. J. Funct. Foods 2017, 38, 635–643. [Google Scholar] [CrossRef]
- Alberti, K.G.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.C.; James, W.P.; Loria, C.M.; Smith, S.C., Jr.; et al. Harmonizing the metabolic syndrome: A joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009, 120, 1640–1645. [Google Scholar] [CrossRef] [PubMed]
- Higgins, J.P.T.; Thomas, J.; Chandler, J.; Cumpston, M.; Li, T.; Page, M.J.; Welch, V.A. Cochrane Handbook for Systematic Reviews of Interventions Version 6.3. Available online: https://training.cochrane.org/handbook/current (accessed on 10 June 2022).
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The Prisma 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. bmj 2020, 372, n71. [Google Scholar]
- U.S. Food and Drug Administration. Guidance for Industry: Evidence-Based Review System for The Scientific Evaluation of Health Claims; FDA: Silver Spring, MD, USA, 2009.
- SourceForge. Plot Digitizer. 2001. Available online: http://plotdigitizer.sourceforge.net/ (accessed on 24 October 2015).
- Sterne, J.A.C.; Savovic, J.; Page, M.J.; Elbers, R.G.; Blencowe, N.S.; Boutron, I.; Cates, C.J.; Cheng, H.Y.; Corbett, M.S.; Eldridge, S.M.; et al. RoB 2: A revised tool for assessing risk of bias in randomised trials. BMJ 2019, 366, l4898. [Google Scholar] [CrossRef]
- Luo, D.; Wan, X.; Liu, J.; Tong, T. Optimally estimating the sample mean from the sample size, median, mid-range, and/or mid-quartile range. Stat. Methods Med. Res. 2018, 27, 1785–1805. [Google Scholar] [CrossRef]
- Wan, X.; Wang, W.; Liu, J.; Tong, T. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med. Res. Methodol. 2014, 14, 135. [Google Scholar] [CrossRef]
- Furukawa, T.A.; Barbui, C.; Cipriani, A.; Brambilla, P.; Watanabe, N. Imputing missing standard deviations in meta-analyses can provide accurate results. J. Clin. Epidemiol. 2006, 59, 7–10. [Google Scholar] [CrossRef]
- Ku, H. Notes on the Use of Propagation of Error Formulas. J. Res. Natl. Bur. Stand. 1966, 70, 263–273. [Google Scholar] [CrossRef]
- DerSimonian, R.; Laird, N. Meta-analysis in clinical trials. Control. Clin. Trials 1986, 7, 177–188. [Google Scholar] [CrossRef]
- Tufanaru, C.; Munn, Z.; Stephenson, M.; Aromataris, E. Fixed or random effects meta-analysis? Common methodological issues in systematic reviews of effectiveness. JBI Evid. Implement. 2015, 13, 196–207. [Google Scholar] [CrossRef]
- Elbourne, D.R.; Altman, D.G.; Higgins, J.P.; Curtin, F.; Worthington, H.V.; Vail, A. Meta-analyses involving cross-over trials: Methodological issues. Int. J. Epidemiol. 2002, 31, 140–149. [Google Scholar] [CrossRef] [PubMed]
- Follmann, D.; Elliott, P.; Suh, I.; Cutler, J. Variance imputation for overviews of clinical trials with continuous response. J. Clin. Epidemiol. 1992, 45, 769–773. [Google Scholar] [CrossRef]
- Balk, E.M.; Earley, A.; Patel, K.; Trikalinos, T.A.; Dahabreh, I.J. AHRQ Methods for Effective Health Care. In Empirical Assessment of Within-Arm Correlation Imputation in Trials of Continuous Outcomes; Agency for Healthcare Research and Quality (US): Rockville, MD, USA, 2012. [Google Scholar]
- Deeks, J.J.; Higgins, J.P.T. Statistical Algorithms in Review Manager 5. 2010. Available online: https://training.cochrane.org/handbook/current/statistical-methods-revman5 (accessed on 30 June 2017).
- Food Directorate Health Products and Food Branch, Health Canada. Summary of Health Canada’s Assessment of a Health Claim About Soy Protein and Cholesterol Lowering; Bureau of Nutritional Sciences: Ottawa, ON, Canada, 2015. [Google Scholar]
- Food Directorate Health Products and Food Branch, Health Canada. Oat Products and Blood Cholesterol Lowering; Bureau of Nutritional Sciences: Ottawa, ON, Canada, 2010. [Google Scholar]
- Roberts, W.C. The rule of 5 and the rule of 7 in lipid-lowering by statin drugs. Am. J. Cardiol. 1997, 80, 106–107. [Google Scholar] [CrossRef]
- Nicholls, S.J.; Brandrup-Wognsen, G.; Palmer, M.; Barter, P.J. Meta-analysis of comparative efficacy of increasing dose of Atorvastatin versus Rosuvastatin versus Simvastatin on lowering levels of atherogenic lipids (from VOYAGER). Am. J. Cardiol. 2010, 105, 69–76. [Google Scholar] [CrossRef]
- Borenstein, M.; Hedges, L.V.; Higgins, J.P.T.; Rothstein, H.R. Introduction to Meta-Analysis; John Wiley & Sons: Chichester, UK, 2009. [Google Scholar]
- Thompson, S.G.; Higgins, J.P. How should meta-regression analyses be undertaken and interpreted? Stat. Med. 2002, 21, 1559–1573. [Google Scholar] [CrossRef]
- Fu, R.; Gartlehner, G.; Grant, M.; Shamliyan, T.; Sedrakyan, A.; Wilt, T.J.; Griffith, L.; Oremus, M.; Raina, P.; Ismaila, A.; et al. Conducting quantitative synthesis when comparing medical interventions: AHRQ and the Effective Health Care Program. J. Clin. Epidemiol. 2011, 64, 1187–1197. [Google Scholar] [CrossRef]
- Egger, M.; Smith, G.D.; Schneider, M.; Minder, C. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997, 315, 629–634. [Google Scholar] [CrossRef]
- Begg, C.B.; Mazumdar, M. Operating Characteristics of a Rank Correlation Test for Publication Bias. Biometrics 1994, 50, 1088–1101. [Google Scholar] [CrossRef]
- Sterne, J.A.; Gavaghan, D.; Egger, M. Publication and related bias in meta-analysis: Power of statistical tests and prevalence in the literature. J. Clin. Epidemiol. 2000, 53, 1119–1129. [Google Scholar] [CrossRef]
- Duval, S.; Tweedie, R. Trim and fill: A simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics 2000, 56, 455–463. [Google Scholar] [CrossRef]
- Guyatt, G.; Oxman, A.D.; Akl, E.A.; Kunz, R.; Vist, G.; Brozek, J.; Norris, S.; Falck-Ytter, Y.; Glasziou, P.; DeBeer, H.; et al. GRADE guidelines: 1. Introduction-GRADE evidence profiles and summary of findings tables. J. Clin. Epidemiol. 2011, 64, 383–394. [Google Scholar] [CrossRef] [PubMed]
- Higgins, J.P.; Altman, D.G.; Gotzsche, P.C.; Juni, P.; Moher, D.; Oxman, A.D.; Savovic, J.; Schulz, K.F.; Weeks, L.; Sterne, J.A.; et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ 2011, 343, d5928. [Google Scholar] [CrossRef]
- Andrews, J.; Guyatt, G.; Oxman, A.D.; Alderson, P.; Dahm, P.; Falck-Ytter, Y.; Nasser, M.; Meerpohl, J.; Post, P.N.; Kunz, R.; et al. GRADE guidelines: 14. Going from evidence to recommendations: The significance and presentation of recommendations. J. Clin. Epidemiol. 2013, 66, 719–725. [Google Scholar] [CrossRef] [PubMed]
- Brunetti, M.; Shemilt, I.; Pregno, S.; Vale, L.; Oxman, A.D.; Lord, J.; Sisk, J.; Ruiz, F.; Hill, S.; Guyatt, G.H.; et al. GRADE guidelines: 10. Considering resource use and rating the quality of economic evidence. J. Clin. Epidemiol. 2013, 66, 140–150. [Google Scholar] [CrossRef]
- Guyatt, G.H.; Oxman, A.D.; Schünemann, H.J. GRADE guidelines-an introduction to the 10th-13th articles in the series. J. Clin. Epidemiol. 2013, 66, 121–123. [Google Scholar] [CrossRef] [PubMed]
- Guyatt, G.H.; Thorlund, K.; Oxman, A.D.; Walter, S.D.; Patrick, D.; Furukawa, T.A.; Johnston, B.C.; Karanicolas, P.; Akl, E.A.; Vist, G.; et al. GRADE guidelines: 13. Preparing summary of findings tables and evidence profiles-continuous outcomes. J. Clin. Epidemiol. 2013, 66, 173–183. [Google Scholar] [CrossRef]
- Guyatt, G.; Oxman, A.D.; Sultan, S.; Brozek, J.; Glasziou, P.; Alonso-Coello, P.; Atkins, D.; Kunz, R.; Montori, V.; Jaeschke, R.; et al. GRADE guidelines: 11. Making an overall rating of confidence in effect estimates for a single outcome and for all outcomes. J. Clin. Epidemiol. 2013, 66, 151–157. [Google Scholar] [CrossRef]
- Guyatt, G.H.; Oxman, A.D.; Santesso, N.; Helfand, M.; Vist, G.; Kunz, R.; Brozek, J.; Norris, S.; Meerpohl, J.; Djulbegovic, B.; et al. GRADE guidelines: 12. Preparing summary of findings tables-binary outcomes. J. Clin. Epidemiol. 2013, 66, 158–172. [Google Scholar] [CrossRef]
- Schünemann, H.; Brożek, J.; Guyatt, G.; Oxman, A. GRADE Handbook. Available online: https://gdt.gradepro.org/app/handbook/handbook.html (accessed on 10 November 2018).
- Santesso, N.; Glenton, C.; Dahm, P.; Garner, P.; Akl, E.A.; Alper, B.; Brignardello-Petersen, R.; Carrasco-Labra, A.; De Beer, H.; Hultcrantz, M.; et al. GRADE guidelines 26: Informative statements to communicate the findings of systematic reviews of interventions. J. Clin. Epidemiol. 2020, 119, 126–135. [Google Scholar] [CrossRef]
- Balshem, H.; Helfand, M.; Schunemann, H.J.; Oxman, A.D.; Kunz, R.; Brozek, J.; Vist, G.E.; Falck-Ytter, Y.; Meerpohl, J.; Norris, S.; et al. GRADE guidelines: 3. Rating the quality of evidence. J. Clin. Epidemiol. 2011, 64, 401–406. [Google Scholar] [CrossRef]
- Weisse, K.; Brandsch, C.; Zernsdorf, B.; Nkengfack Nembongwe, G.S.; Hofmann, K.; Eder, K.; Stangl, G.I. Lupin protein compared to casein lowers the LDL cholesterol:HDL cholesterol-ratio of hypercholesterolemic adults. Eur. J. Nutr. 2010, 49, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Sirtori, C.R.; Triolo, M.; Bosisio, R.; Bondioli, A.; Calabresi, L.; De Vergori, V.; Gomaraschi, M.; Mombelli, G.; Pazzucconi, F.; Zacherl, C.; et al. Hypocholesterolaemic effects of lupin protein and pea protein/fibre combinations in moderately hypercholesterolaemic individuals. Br. J. Nutr. 2012, 107, 1176–1183. [Google Scholar] [CrossRef] [PubMed]
- Bahr, M.; Fechner, A.; Kiehntopf, M.; Jahreis, G. Consuming a mixed diet enriched with lupin protein beneficially affects plasma lipids in hypercholesterolemic subjects: A randomized controlled trial. Clin. Nutr. 2015, 34, 7–14. [Google Scholar] [CrossRef]
- Frota Kde, M.; dos Santos Filho, R.D.; Ribeiro, V.Q.; Areas, J.A. Cowpea protein reduces LDL-cholesterol and apolipoprotein B concentrations, but does not improve biomarkers of inflammation or endothelial dysfunction in adults with moderate hypercholesterolemia. Nutr. Hosp. 2015, 31, 1611–1619. [Google Scholar] [CrossRef]
- Kohno, M.; Sugano, H.; Shigihara, Y.; Shiraishi, Y.; Motoyama, T. Improvement of glucose and lipid metabolism via mung bean protein consumption: Clinical trials of GLUCODIA isolated mung bean protein in the USA and Canada. J. Nutr. Sci. 2018, 7, e2. [Google Scholar] [CrossRef]
- Sucher, S.; Markova, M.; Hornemann, S.; Pivovarova, O.; Rudovich, N.; Thomann, R.; Schneeweiss, R.; Rohn, S.; Pfeiffer, A.F.H. Comparison of the effects of diets high in animal or plant protein on metabolic and cardiovascular markers in type 2 diabetes: A randomized clinical trial. Diabetes Obes. Metab. 2017, 19, 944–952. [Google Scholar] [CrossRef]
- Pivovarova-Ramich, O.; Markova, M.; Weber, D.; Sucher, S.; Hornemann, S.; Rudovich, N.; Raila, J.; Sunaga-Franze, D.; Sauer, S.; Rohn, S.; et al. Effects of diets high in animal or plant protein on oxidative stress in individuals with type 2 diabetes: A randomized clinical trial. Redox Biol. 2020, 29, 101397. [Google Scholar] [CrossRef]
- Crimarco, A.; Springfield, S.; Petlura, C.; Streaty, T.; Cunanan, K.; Lee, J.; Fielding-Singh, P.; Carter, M.M.; Topf, M.A.; Wastyk, H.C.; et al. A randomized crossover trial on the effect of plant-based compared with animal-based meat on trimethylamine-N-oxide and cardiovascular disease risk factors in generally healthy adults: Study With Appetizing Plantfood-Meat Eating Alternative Trial (SWAP-MEAT). Am. J. Clin. Nutr. 2020, 112, 1188–1199. [Google Scholar] [CrossRef]
- Li, S.S.; Blanco Mejia, S.; Lytvyn, L.; Stewart, S.E.; Viguiliouk, E.; Ha, V.; de Souza, R.J.; Leiter, L.A.; Kendall, C.W.C.; Jenkins, D.J.A.; et al. Effect of Plant Protein on Blood Lipids: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J. Am. Heart Assoc. 2017, 6, e006659. [Google Scholar] [CrossRef]
- Blanco Mejia, S.; Messina, M.; Li, S.S.; Viguiliouk, E.; Chiavaroli, L.; Khan, T.A.; Srichaikul, K.; Mirrahimi, A.; Sievenpiper, J.L.; Kris-Etherton, P.; et al. A Meta-Analysis of 46 Studies Identified by the FDA Demonstrates that Soy Protein Decreases Circulating LDL and Total Cholesterol Concentrations in Adults. J. Nutr. 2019, 149, 968–981. [Google Scholar] [CrossRef]
- Barrea, L.; Verde, L.; Suarez, R.; Frias-Toral, E.; Vasquez, C.A.; Colao, A.; Savastano, S.; Muscogiuri, G. Sex-differences in Mediterranean diet: A key piece to explain sex-related cardiovascular risk in obesity? A cross-sectional study. J. Transl. Med. 2024, 22, 44. [Google Scholar] [CrossRef] [PubMed]
- Tong, L.T.; Xiao, T.; Wang, L.; Lu, C.; Liu, L.; Zhou, X.; Wang, A.; Qin, W.; Wang, F. Plant protein reduces serum cholesterol levels in hypercholesterolemia hamsters by modulating the compositions of gut microbiota and metabolites. iScience 2021, 24, 103435. [Google Scholar] [CrossRef] [PubMed]
- Lovati, M.R.; Manzoni, C.; Gianazza, E.; Arnoldi, A.; Kurowska, E.; Carroll, K.K.; Sirtori, C.R. Soy protein peptides regulate cholesterol homeostasis in Hep G2 cells. J. Nutr. 2000, 130, 2543–2549. [Google Scholar] [CrossRef]
- Baum, J.A.; Teng, H.; Erdman, J.W., Jr.; Weigel, R.M.; Klein, B.P.; Persky, V.W.; Freels, S.; Surya, P.; Bakhit, R.M.; Ramos, E.; et al. Long-term intake of soy protein improves blood lipid profiles and increases mononuclear cell low-density-lipoprotein receptor messenger RNA in hypercholesterolemic, postmenopausal women. Am. J. Clin. Nutr. 1998, 68, 545–551. [Google Scholar] [CrossRef]
- Health Canada. Canada’s Food Guide: Healthy Eating Recommendations. Available online: https://food-guide.canada.ca/en/healthy-eating-recommendations/ (accessed on 17 December 2019).
- Grundy, S.M.; Stone, N.J.; Bailey, A.L.; Beam, C.; Birtcher, K.K.; Blumenthal, R.S.; Braun, L.T.; de Ferranti, S.; Faiella-Tommasino, J.; Forman, D.E.; et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA Guideline on the Management of Blood Cholesterol: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 2019, 139, e1082–e1143. [Google Scholar] [CrossRef]
- Diabetes Canada Clinical Practice Guidelines Expert Committee; Sievenpiper, J.L.; Chan, C.B.; Dworatzek, P.D.; Freeze, C.; Williams, S.L. Nutrition Therapy. Can. J. Diabetes 2018, 42 (Suppl. 1), S64–S79. [Google Scholar] [CrossRef]
- Taylor, C.L. US Food and Drug Adminstration Qualified Health Claims: Letter of Enforcement Discretion—Nuts and Coronary Heart Disease (Docket No 02P-0505). Available online: https://wayback.archive-it.org/7993/20171114183724/https://www.fda.gov/Food/IngredientsPackagingLabeling/LabelingNutrition/ucm072926.htm (accessed on 10 June 2024).
- Tarantino, L.M. US Food and Drug Adminstration Qualified Health Claims: Letter of Enforcement Discretion—Walnuts and Coronary Heart Disease (Docket No 02P-0292). Available online: https://wayback.archive-it.org/7993/20171114183725/https://www.fda.gov/Food/IngredientsPackagingLabeling/LabelingNutrition/ucm072910.htm (accessed on 10 June 2024).
- Food and Drug Administration; HHS. Food labeling: Health claims; soluble fiber from certain foods and risk of coronary heart disease. Interim final rule. Fed. Regist. 2008, 73, 9938–9947. [Google Scholar]
- Canada, Bureau of Nutritional Sciences, Food Directorate, Health Products and Food Branch, Health Canada. Plant Sterols and Blood Cholesterol Lowering. 2010. Available online: https://www.canada.ca/en/health-canada/services/food-nutrition/food-labelling/health-claims/assessments/plant-sterols-blood-cholesterol-lowering-nutrition-health-claims-food-labelling.html (accessed on 10 June 2024).
- Rawal, V.; Navarro, D.K. The Global Economy of Pulses; Food and Agriculture Organization of the United Nations: Rome, Italy, 2019. [Google Scholar]
- Viguiliouk, E.; Glenn, A.J.; Nishi, S.K.; Chiavaroli, L.; Seider, M.; Khan, T.; Bonaccio, M.; Iacoviello, L.; Mejia, S.B.; Jenkins, D.J.A.; et al. Associations between Dietary Pulses Alone or with Other Legumes and Cardiometabolic Disease Outcomes: An Umbrella Review and Updated Systematic Review and Meta-analysis of Prospective Cohort Studies. Adv. Nutr. 2019, 10 (Suppl. 4), S308–S319. [Google Scholar] [CrossRef]
- Chiavaroli, L.; Nishi, S.K.; Khan, T.A.; Braunstein, C.R.; Glenn, A.J.; Mejia, S.B.; Rahelic, D.; Kahleova, H.; Salas-Salvado, J.; Jenkins, D.J.A.; et al. Portfolio Dietary Pattern and Cardiovascular Disease: A Systematic Review and Meta-analysis of Controlled Trials. Prog. Cardiovasc. Dis. 2018, 61, 43–53. [Google Scholar] [CrossRef]
- Khan, S.U.; Khan, M.Z.; Raghu Subramanian, C.; Riaz, H.; Khan, M.U.; Lone, A.N.; Khan, M.S.; Benson, E.M.; Alkhouli, M.; Blaha, M.J.; et al. Participation of Women and Older Participants in Randomized Clinical Trials of Lipid-Lowering Therapies: A Systematic Review. JAMA Netw. Open 2020, 3, e205202. [Google Scholar] [CrossRef]
- Fazli, G.S.; Moineddin, R.; Bierman, A.S.; Booth, G.L. Ethnic variation in the conversion of prediabetes to diabetes among immigrant populations relative to Canadian-born residents: A population-based cohort study. BMJ Open Diabetes Res. Care 2020, 8, e000907. [Google Scholar] [CrossRef] [PubMed]
- Howard Wilsher, S.; Fearne, A.; Panagiotaki, G. “That is an Awful Lot of Fruit and Veg to Be Eating”. Focus Group Study on Motivations for the Consumption of 5 a Day in British Young Men. Nutrients 2019, 11, 1893. [Google Scholar] [CrossRef] [PubMed]
- Raparelli, V.; Romiti, G.F.; Spugnardi, V.; Borgi, M.; Cangemi, R.; Basili, S.; Proietti, M.; The Eva Collaborative, G. Gender-Related Determinants of Adherence to the Mediterranean Diet in Adults with Ischemic Heart Disease. Nutrients 2020, 12, 759. [Google Scholar] [CrossRef] [PubMed]
Trial Characteristics | LDL-C | Non-HDL-C | apoB | HDL-C | TG |
---|---|---|---|---|---|
Trial comparisons (n) | 11 | 11 | 1 | 11 | 14 |
Study size, median (range) a | 37 (24–45) | 37 (24–45) | 38 | 37 (24–45) | 35 (14–45) |
Age (y), median (range) | 55 (42–64) | 55 (42–64) | 57 (54–60) | 55 (42–64) | 54 (42–64) |
Health status (n) | Absence of disease = 2, T2D = 1, Hypercholesterolemia = 8 | Absence of disease = 2, T2D = 1, Hypercholesterolemia = 8 | Hypercholesterolemia = 1 | Absence of disease = 2, T2D = 1, Hypercholesterolemia = 8 | Absence of disease = 5, T2D = 1, Hypercholesterolemia = 8 |
Male:female ratio (%) b | 44:59 | 44:59 | 16:84 | 44:59 | 45:58 |
Country (No. of comparisons) | Australia = 1, Brazil = 1, Canada = 1, Germany = 4, Italy = 4, USA = 1 | Australia = 1, Brazil = 1, Canada = 1, Germany = 4, Italy = 4, USA = 1 | Brazil = 1 | Australia = 1, Brazil = 1, Canada = 1, Germany = 4, Italy = 4, USA = 1 | Australia = 1, Brazil = 1, Canada = 4, Germany = 4, Italy = 4, USA = 4 |
Study design (%), crossover:parallel | 36:64 | 36:64 | 100:0 | 36:64 | 29:71 |
Feeding control (%), met:sup:DA:met,sup | 0:100:0:0 | 0:100:0:0 | 0:100:0:0 | 0:100:0:0 | 0:100:0:0 |
Lipid medication use ratio (%), yes:no:mixed:unclear | 0:82:0:8 | 0:82:0:18 | 0:100:0:0 | 0:82:0:18 | 0:86:0:14 |
Settings (%), inpatients:outpatients:inpatient,outpatient | 0:100:0 | 0:100:0 | 0:100:0 | 0:100:0 | 0:100:0 |
Baseline BW (kg), median (range) c | 77.4 (66.7–89.5) | 77.4 (66.7–89.5) | 66.7 (62.2–71.2) | 77.4 (66.7–89.5) | 81.1 (66.7–89.5) |
Baseline BMI (kg/m2), median (range) | 26.0 (24.7–30.6) | 26.0 (24.7–30.6) | 27.3 (26.1–28.5) | 26.0 (24.7–30.6) | 27.3 (24.7–31.5) |
Baseline outcome d, median (range) | 4.1 (3.1–4.9) | 4.9 (3.6–5.6) | 1.3 (1.3–1.4) | 1.5 (1.1–1.7) | 1.5 (1.1–1.8) |
Follow-up duration (week), median (range) | 4 (4–8) | 4 (4–8) | 6 | 4 (4–8) | 4 (4–8) |
Pulse protein dose (g/day), median (range) | 35 (5–122) | 35 (5–122) | 25 | 35 (5–122) | 30 (1–122) |
Intervention and food source (%), extracted and make into a food:beverage:food & beverage:tablet | 73:9:9:9 | 73:9:9:9 | 0:100:0:0 | 73:9:9:9 | 57:7:7:29 |
Comparator (No. of comparisons) | Animal protein = 2; Casein, milk protein = 9 | Animal protein = 2; Casein, milk protein = 9 | Casein, milk protein = 1 | Animal protein = 2; Casein, milk protein = 9 | Animal protein = 2; Casein, milk protein = 12 |
Energy balance (%), neutral:positive:negative e | 91:9:0 | 91:9:0 | 100:0:0 | 91:9:0 | 71:29:0 |
Energy control (%), substitution:addition:subtraction f | 100:0:0 | 100:0:0 | 100:0:0 | 100:0:0 | 100:0:0 |
Funding sources (%), A:I:A,I:NR g | 64:27:9 | 64:27:9 | 0:100:0:0 | 64:27:9 | 50:21:29 |
Outcome | Female Proportion Range | Trials | Beta [95% CI] | p | Residual I2 (%) | PQ |
---|---|---|---|---|---|---|
LDL-C | 0.35–0.84 | 11 | −1.53 [−2.47 to −0.59] | 0.001 | 0 | 0.959 |
non-HDL-C | 0.35–0.84 | 11 | −1.60 [−2.36 to −0.84] | <0.001 | 0 | 0.851 |
HDL-C | 0.35–0.84 | 11 | 0.15 [−0.12 to 0.43] | 0.277 | 0 | 0.940 |
TG | 0.35–0.84 | 14 | −0.16 [−0.87 to 0.55] | 0.657 | 0 | 0.646 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, S.; Back, S.; Grant, S.M.; Ayoub-Charette, S.; Chen, V.; Lin, E.J.; Haintz, L.; Chen, Y.-T.; Ahmad, E.; Gahagan, J.; et al. Effects of Extracted Pulse Proteins on Lipid Targets for Cardiovascular Risk Reduction: Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients 2024, 16, 3765. https://doi.org/10.3390/nu16213765
Yang S, Back S, Grant SM, Ayoub-Charette S, Chen V, Lin EJ, Haintz L, Chen Y-T, Ahmad E, Gahagan J, et al. Effects of Extracted Pulse Proteins on Lipid Targets for Cardiovascular Risk Reduction: Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients. 2024; 16(21):3765. https://doi.org/10.3390/nu16213765
Chicago/Turabian StyleYang, Shuting, Songhee Back, Shannan M. Grant, Sabrina Ayoub-Charette, Victoria Chen, Erika J. Lin, Lukas Haintz, Yue-Tong Chen, Elmirah Ahmad, Jacqueline Gahagan, and et al. 2024. "Effects of Extracted Pulse Proteins on Lipid Targets for Cardiovascular Risk Reduction: Systematic Review and Meta-Analysis of Randomized Controlled Trials" Nutrients 16, no. 21: 3765. https://doi.org/10.3390/nu16213765
APA StyleYang, S., Back, S., Grant, S. M., Ayoub-Charette, S., Chen, V., Lin, E. J., Haintz, L., Chen, Y. -T., Ahmad, E., Gahagan, J., Marinangeli, C. P. F., Ha, V., Khan, T. A., Mejia, S. B., Zurbau, A., de Souza, R. J., Beyene, J., English, M. M., Vuksan, V., ... Chiavaroli, L. (2024). Effects of Extracted Pulse Proteins on Lipid Targets for Cardiovascular Risk Reduction: Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients, 16(21), 3765. https://doi.org/10.3390/nu16213765