Sepiolite–Chitosan–Acetic Acid Biocomposite Attenuates the Development of Obesity and Nonalcoholic Fatty Liver Disease in Mice Fed a High-Fat Diet
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biocomposite Preparation
2.2. Animals and Diets
2.3. Measurement of Body Weight and Composition, Energy Intake, Absorption, and Digestibility
2.4. Estimating Energy Expenditure Using the Energy Balance Method
2.5. Blood Glucose and Serum Lipid Profile
2.6. Measurement of Dietary, Fecal, and Hepatic Lipids and Fecal Bile Acids
2.7. Measurement of Hepatic Gene Expression
2.8. Hepatic Histopathological Analysis
2.9. Statistical Analysis
3. Results
3.1. Biocomposite Supplementation Decreases HFD-Induced Fat Gain and Prevents Lean-Mass Loss
3.2. Biocomposite-Induced DIO Attenuation Is Not Due to Reduced Energy Intake or Absorption
3.3. DIO Attenuation Is Related to Higher Energy Expenditure, as Calculated by the Energy Balance Method
3.4. DIO Attenuation by Biocomposite Supplementation Is Not Due to Attenuated Lipid Digestibility
3.5. Biocomposite Supplementation Does Not Affect the HFD-Induced Increment in Bile Salt Extraction Rate
3.6. Biocomposite Supplementation Attenuates HFD-Induced Hepatic Lipid Accumulation and Related Gene Expression
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Appendix A
Parameter | LFD | HFD | HFD + BAS 1 | HFD + AA 2 | HFD + BcL 3 | HFD + BcH 3 |
---|---|---|---|---|---|---|
Change in body weight (g) | 1.4 ± 1.8 C | 10.9 ± 1.6 A | 0.8 ± 1.5 C | 5.7 ± 3.2 B | 8.9 ± 5.3 A | 4.4 ± 2.1 B |
Change in fat percentage (% points) | −0.8 ± 4.4 C | 28.0 ± 9.2 A | −2.5 ± 6.2 C | 17.2 ± 13.7 AB | 28.0 ± 10.1 A | 12.4 ± 10.2 B |
Energy expenditure (Kcal/d/g) | 0.6 ± 0.1 B | 0.6 ± 0.1 B | 0.7 ± 0.1 A | 0.6 ± 0.1 B | 0.6 ± 0.1 B | 0.7 ± 0.1 A |
Hepatic lipids (% vs. LFD) | 100.0 ± 27.8 B | 171.2 ± 43.3 A | 119.8 ± 13.6 B | 181.2 ± 21.1 A | 159.2 ± 24.7 A | 105.3 ± 29.9 B |
References
- Noubiap, J.J.; Nansseu, J.R.; Lontchi-Yimagou, E.; Nkeck, J.R.; Nyaga, U.F.; Ngouo, A.T.; Tounouga, D.N.; Tianyi, F.-L.; Foka, A.J.; Ndoadoumgue, A.L.; et al. Geographic distribution of metabolic syndrome and its components in the general adult population: A meta-analysis of global data from 28 million individuals. Diabetes Res. Clin. Pract. 2022, 188, 109924. [Google Scholar] [CrossRef] [PubMed]
- Tak, Y.J.; Lee, S.Y. Long-Term Efficacy and Safety of Anti-Obesity Treatment: Where Do We Stand? Curr. Obes. Rep. 2021, 10, 14–30. [Google Scholar] [CrossRef] [PubMed]
- Pilitsi, E.; Farr, O.M.; Polyzos, S.A.; Perakakis, N.; Nolen-Doerr, E.; Papathanasiou, A.E.; Mantzoros, C.S. Pharmacotherapy of obesity: Available medications and drugs under investigation. Metabolism 2019, 92, 170–192. [Google Scholar] [CrossRef] [PubMed]
- Armitage, J. The safety of statins in clinical practice. Lancet 2007, 370, 1781–1790. [Google Scholar] [CrossRef]
- Patel, K.K.; Sehgal, V.S.; Kashfi, K. Molecular targets of statins and their potential side effects: Not all the glitter is gold. Eur. J. Pharmacol. 2022, 922, 174906. [Google Scholar] [CrossRef]
- Alder, M.; Bavishi, A.; Zumpf, K.; Peterson, J.; Stone, N.J. A Meta-Analysis Assessing Additional LDL-C Reduction from Addition of a Bile Acid Sequestrant to Statin Therapy. Am. J. Med. 2020, 133, 1322–1327. [Google Scholar] [CrossRef]
- Mantovani, A.; Dalbeni, A. Treatments for nafld: State of art. Int. J. Mol. Sci. 2021, 22, 2350. [Google Scholar] [CrossRef]
- Mendrick, D.L.; Diehl, A.M.; Topor, L.S.; Dietert, R.R.; Will, Y.; La Merrill, M.A.; Bouret, S.; Varma, V.; Hastings, K.L.; Schug, T.T.; et al. Metabolic syndrome and associated diseases: From the bench to the clinic. Toxicol. Sci. 2018, 162, 36–42. [Google Scholar] [CrossRef]
- Mazidi, M.; Rezaie, P.; Karimi, E.; Kengne, A.P. The effects of bile acid sequestrants on lipid profile and blood glucose concentrations: A systematic review and meta-analysis of randomized controlled trials. Int. J. Cardiol. 2017, 227, 850–857. [Google Scholar] [CrossRef]
- Zhu, A.; Chen, J.; Wu, P.; Luo, M.; Zeng, Y.; Liu, Y.; Zheng, H.; Zhang, L.; Chen, Z.; Sun, Q.; et al. Cationic polystyrene resolves nonalcoholic steatohepatitis, obesity, and metabolic disorders by promoting eubiosis of gut microbiota and decreasing endotoxemia. Diabetes 2017, 66, 2137–2143. [Google Scholar] [CrossRef]
- Zhou, K.; Xia, W.; Zhang, C.; Yu, L. In vitro binding of bile acids and triglycerides by selected chitosan preparations and their physico-chemical properties. LWT 2006, 39, 1087–1092. [Google Scholar] [CrossRef]
- Sumiyoshi, M.; Kimura, Y. Low molecular weight chitosan inhibits obesity induced by feeding a high-fat diet long-term in mice. J. Pharm. Pharmacol. 2010, 58, 201–207. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Liu, J.; Li, L.; Xia, W. Dietary chitosan improves hypercholesterolemia in rats fed high-fat diets. Nutr. Res. 2008, 28, 383–390. [Google Scholar] [CrossRef] [PubMed]
- Bahijri, S.M.; Alsheikh, L.; Ajabnoor, G.; Borai, A. Effect of supplementation with chitosan on weight, cardiometabolic, and other risk indices in wistar rats fed normal and high-fat/high-cholesterol diets ad libitum. Nutr. Metab. Insights 2017, 10, 1178638817710666. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.H.; Chen, R.Y.; Chiang, M.T. Effects and mechanisms of chitosan and chitosan oligosaccharide on hepatic lipogenesis and lipid peroxidation, adipose lipolysis, and intestinal lipid absorption in rats with high-fat diet-induced obesity. Int. J. Mol. Sci. 2021, 22, 1139. [Google Scholar] [CrossRef] [PubMed]
- Fukada, Y.; Kimura, K.; Ayaki, Y. Effect of chitosan feeding on intestinal bile acid metabolism in rats. Lipids 1991, 26, 395–399. [Google Scholar] [CrossRef]
- van Bennekum, A.M.; Nguyen, D.V.; Schulthess, G.; Hauser, H.; Phillips, M.C. Mechanisms of cholesterol-lowering effects of dietary insoluble fibres: Relationships with intestinal and hepatic cholesterol parameters. Br. J. Nutr. 2005, 94, 331–337. [Google Scholar] [CrossRef]
- Ni Mhurchu, C.; Poppitt, S.D.; McGill, A.T.; Leahy, F.E.; Bennett, D.A.; Lin, R.B.; Ormrod, D.; Ward, L.; Strik, C.; Rodgers, A. The effect of the dietary supplement, Chitosan, on body weight: A randomised controlled trial in 250 overweight and obese adults. Int. J. Obes. 2004, 28, 1149–1156. [Google Scholar] [CrossRef]
- Bessell, E.; Maunder, A.; Lauche, R.; Adams, J.; Sainsbury, A.; Fuller, N.R. Efficacy of dietary supplements containing isolated organic compounds for weight loss: A systematic review and meta-analysis of randomised placebo-controlled trials. Int. J. Obes. 2021, 45, 1631–1643. [Google Scholar] [CrossRef]
- Yuan, Q.; Shah, J.; Hein, S.; Misra, R.D.K. Controlled and extended drug release behavior of chitosan-based nanoparticle carrier. Acta Biomater. 2010, 6, 1140–1148. [Google Scholar] [CrossRef]
- Katti, K.S.; Katti, D.R.; Dash, R. Synthesis and characterization of a novel chitosan/montmorillonite/ hydroxyapatite nanocomposite for bone tissue engineering. Biomed. Mater. 2008, 3, 034122. [Google Scholar] [CrossRef] [PubMed]
- Sivak, O.; Darlington, J.; Gershkovich, P.; Constantinides, P.P.; Wasan, K.M. Protonated nanostructured aluminosilicate (NSAS) reduces plasma cholesterol concentrations and atherosclerotic lesions in apolipoprotein E deficient mice fed a high cholesterol and high fat diet. Lipids Health Dis. 2009, 8, 30. [Google Scholar] [CrossRef] [PubMed]
- Gershkovich, P.; Darlington, J.; Sivak, O.; Constantinides, P.P.; Wasan, K.M. Inhibition of intestinal absorption of cholesterol by surface-modified nanostructured aluminosilicate compounds. J. Pharm. Sci. 2009, 98, 2390–2400. [Google Scholar] [CrossRef] [PubMed]
- Gershkovich, P.; Sivak, O.; Contreras-Whitney, S.; Darlington, J.W.; Wasan, K.M. Assessment of cholesterol absorption inhibitors nanostructured aluminosilicate and cholestyramine using in vitro lipolysis model. J. Pharm. Sci. 2012, 101, 291–300. [Google Scholar] [CrossRef]
- Xu, P.; Dai, S.; Wang, J.; Zhang, J.; Liu, J.; Wang, F.; Zhai, Y. Preventive obesity agent montmorillonite adsorbs dietary lipids and enhances lipid excretion from the digestive tract. Sci. Rep. 2016, 6, 19659. [Google Scholar] [CrossRef]
- Xu, P.; Hong, F.; Wang, J.; Cong, Y.; Dai, S.; Wang, S.; Wang, J.; Jin, X.; Wang, F.; Liu, J.; et al. Microbiome Remodeling via the Montmorillonite Adsorption-Excretion Axis Prevents Obesity-related Metabolic Disorders. eBioMedicine 2017, 16, 251–261. [Google Scholar] [CrossRef]
- Robinson, A.; Johnson, N.M.; Strey, A.; Taylor, J.F.; Marroquin-Cardona, A.; Mitchell, N.J.; Afriyie-Gyawu, E.; Ankrah, N.; Williams, J.; Wang, J.; et al. Calcium montmorillonite clay reduces urinary biomarkers of fumonisin B1 exposure in rats and humans. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2012, 29, 809–818. [Google Scholar] [CrossRef]
- Afriyie-Gyawu, E.; Wang, Z.; Ankrah, N.A.; Xu, L.; Johnson, N.M.; Tang, L.; Guan, H.; Huebner, H.; Jolly, P.; Ellis, W.; et al. NovaSil clay does not affect the concentrations of vitamins A and E and nutrient minerals in serum samples from Ghanaians at high risk for aflatoxicosis. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2008, 25, 872–884. [Google Scholar] [CrossRef]
- Wang, J.S.; Luo, H.; Billam, M.; Wang, Z.; Guan, H.; Tang, L.; Goldston, T.; Afriyie-Gyawu, E.; Lovett, C.; Griswold, J.; et al. Short-term safety evaluation of processed calcium montmorillonite clay (NovaSil) in humans. Food Addit. Contam. 2005, 22, 270–279. [Google Scholar] [CrossRef]
- Mitchell, N.J.; Kumi, J.; Aleser, M.; Elmore, S.E.; Rychlik, K.A.; Zychowski, K.E.; Romoser, A.A.; Phillips, T.D.; Ankrah, N.-A. Short-term safety and efficacy of calcium montmorillonite clay (UPSN) in children. Am. J. Trop. Med. Hyg. 2014, 91, 777–785. [Google Scholar] [CrossRef]
- Gutman, R.; Rauch, M.; Neuman, A.; Khamaisi, H.; Jonas-Levi, A.; Konovalova, Y.; Rytwo, G. Sepiolite Clay Attenuates the Development of Hypercholesterolemia and Obesity in Mice Fed a High-Fat High-Cholesterol Diet. J. Med. Food 2020, 23, 289–296. [Google Scholar] [CrossRef] [PubMed]
- Zadaka-Amir, D.; Bleiman, N.; Mishael, Y.G. Sepiolite as an effective natural porous adsorbent for surface oil-spill. Microporous Mesoporous Mater. 2013, 169, 153–159. [Google Scholar] [CrossRef]
- Shaltiel-Harpaz, L.; Kreimer, T.; Dudai, N.; Kaspi, R.; Ben-Yakir, D.; Rytwo, G. Sepiolite- rosemary oil combination as an environmentally oriented insecticide. Appl. Clay Sci. 2023, 234, 106838. [Google Scholar] [CrossRef]
- Aranda, P.; Darder, M.; Wicklein, B.; Rytwo, G.; Ruiz-Hitzky, E. Clay-Organic Interfaces for Design of Functional Hybrid Materials. In Hybrid Organic-Inorganic Interfaces; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2017; pp. 1–84. [Google Scholar]
- Rytwo, G.; Sitruk, A.; Lavi, R.; Khamaisi, H.; Gutman, R. De-emulsification of oil emulsions by clays and biocomposites. In Proceedings of the 8th Mid-European Clay Conference, Košice, Slovakia, 4–8 July 2016. [Google Scholar]
- Darder, M.; Colilla, M.; Ruiz-Hitzky, E. Biopolymer-clay nanocomposites based on chitosan intercalated in montmorillonite. Chem. Mater. 2003, 15, 3774–3780. [Google Scholar] [CrossRef]
- An, J.-H.; Dultz, S. Adsorption of Cr(VI) and As(V) on chitosan-montmorillonite; selectivity and pH dependence. Clays Clay Min. 2008, 56, 549–557. [Google Scholar] [CrossRef]
- Sakakibara, S.; Yamauchi, T.; Oshima, Y.; Tsukamoto, Y.; Kadowaki, T. Acetic acid activates hepatic AMPK and reduces hyperglycemia in diabetic KK-A(y) mice. Biochem. Biophys. Res. Commun. 2006, 344, 597–604. [Google Scholar] [CrossRef]
- Kondo, T.; Kishi, M.; Fushimi, T.; Kaga, T. Acetic acid upregulates the expression of genes for fatty acid oxidation enzymes in liver to suppress body fat accumulation. J. Agric. Food Chem. 2009, 57, 5982–5986. [Google Scholar] [CrossRef]
- Fushimi, T.; Suruga, K.; Oshima, Y.; Fukiharu, M.; Tsukamoto, Y.; Goda, T. Dietary acetic acid reduces serum cholesterol and triacylglycerols in rats fed a cholesterol-rich diet. Br. J. Nutr. 2006, 95, 916–924. [Google Scholar] [CrossRef]
- Beh, B.K.; Mohamad, N.E.; Yeap, S.K.; Ky, H.; Boo, S.Y.; Chua, J.Y.H.; Tan, S.W.; Ho, W.Y.; Sharifuddin, S.A.; Long, K.; et al. Anti-obesity and anti-inflammatory effects of synthetic acetic acid vinegar and Nipa vinegar on high-fat-diet-induced obese mice. Sci. Rep. 2017, 7, 6664. [Google Scholar] [CrossRef]
- Jalili, M.; Nazari, M.; Magkos, F. Fermented Foods in the Management of Obesity: Mechanisms of Action and Future Challenges. Int. J. Mol. Sci. 2023, 24, 2665. [Google Scholar] [CrossRef]
- Hattori, M.; Kondo, T.; Kishi, M.; Yamagami, K. A single oral administration of acetic acid increased energy expenditure in C57BL/6J mice. Biosci. Biotechnol. Biochem. 2010, 74, 2158–2159. [Google Scholar] [CrossRef] [PubMed]
- Oh, I.; Baek, E.J.; Lee, D.H.; Choi, Y.H.; Bae, I.Y. Anti-obesity and anti-inflammatory effects of ginseng vinegar in high-fat diet fed mice. Food Sci. Biotechnol. 2019, 28, 1829–1836. [Google Scholar] [CrossRef] [PubMed]
- Rytwo, G.; Lavi, R.; Rytwo, Y.; Monchase, H.; Dultz, S.; König, T.N. Clarification of olive mill and winery wastewater by means of clay-polymer nanocomposites. Sci. Total Environ. 2013, 442, 134–142. [Google Scholar] [CrossRef] [PubMed]
- Rytwo, G.; Lavi, R.; Konovalova, Y.; Gutman, R. Adsorption of olive oil on clay minerals and nanocomposites. In Proceedings of the 51st Annual Meeting of the Clay Mineral Society, College Station, TX, USA, 17–21 May 2014; The Clay Minerals Society: College Station, TX, USA, 2014; p. 199. [Google Scholar]
- Watanabe, M.; Morimoto, K.; Houten, S.M.; Kaneko-Iwasaki, N.; Sugizaki, T.; Horai, Y.; Mataki, C.; Sato, H.; Murahashi, K.; Arita, E.; et al. Bile Acid Binding Resin Improves Metabolic Control through the Induction of Energy Expenditure. PLoS ONE 2012, 7, e38286. [Google Scholar] [CrossRef]
- Heidker, R.M.; Caiozzi, G.C.; Ricketts, M.L. Grape seed procyanidins and cholestyramine differentially alter bile acid and cholesterol homeostatic gene expression in mouse intestine and liver. PLoS ONE 2016, 11, e0154305. [Google Scholar] [CrossRef]
- Maugeais, C.; Annema, W.; Blum, D.; Mary, J.L.; Tietge, U.J.F. rHDL administration increases reverse cholesterol transport in mice, but is not additive on top of ezetimibe or cholestyramine treatment. Atherosclerosis 2013, 229, 94–101. [Google Scholar] [CrossRef]
- EFSA; Aquilina, G.; Bach, A.; Bampidis, V.; Bastos, M.D.L.; Flachowsky, G.; Gralak, M.A.; Hogstrand, C.; Leng, L.; López-Puente, S.; et al. Scientific Opinion on the safety and efficacy of a preparation of bentonite-and sepiolite (Toxfin® Dry) as feed additive for all species. EFSA J. 2013, 11, 3179. [Google Scholar]
- Gutman, R.; Rytwo, G. Acicular Clays and Bio-Composites Based Thereon for Use in Treatment of Metabolic Syndrome and Related Disorders. U.S. Patent 62/237593, 2017. [Google Scholar]
- Gutman, R.; Choshniak, I.; Kronfeld-Schor, N. Defending body mass during food restriction in Acomys russatus: A desert rodent that does not store food. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2006, 290, R881–R891. [Google Scholar] [CrossRef]
- Steckler, R.; Tamir, S.; Gutman, R. Mice held at an environmental photic cycle oscillating at their tau-like period length do not show the high-fat diet-induced obesity that develops under the 24-hour photic cycle. Chronobiol. Int. 2021, 38, 598–612. [Google Scholar] [CrossRef]
- Tschöp, M.H.; Speakman, J.R.; Arch, J.R.S.; Auwerx, J.; Brüning, J.C.; Chan, L.; Eckel, R.H.; Farese, R.V., Jr.; Galgani, J.E.; Hambly, C.; et al. A guide to analysis of mouse energy metabolism. Nat. Methods 2012, 9, 57–63. [Google Scholar] [CrossRef]
- Ravussin, Y.; Gutman, R.; Diano, S.; Shanabrough, M.; Borok, E.; Sarman, B.; Lehmann, A.; LeDuc, C.A.; Rosenbaum, M.; Horvath, T.L.; et al. Effects of chronic weight perturbation on energy homeostasis and brain structure in mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2011, 300, 1352–1362. [Google Scholar] [CrossRef] [PubMed]
- Ravussin, Y.; Gutman, R.; Leduc, C.A.; Leibel, R.L. Estimating energy expenditure in mice using an energy balance technique. Int. J. Obes. 2013, 37, 399–403, Erratum in Int. J. Obes. 2013, 37, 473. https://doi.org/10.1038/ijo.2012.147. [Google Scholar] [CrossRef] [PubMed]
- Pullar, J.D.; Webster, A.J.F. The energy cost of fat and protein deposition in the rat. Br. J. Nutr. 1977, 37, 355–363. [Google Scholar] [CrossRef] [PubMed]
- Schulz, L.O.; Alger, S.; Harper, I.; Wilmore, J.H.; Ravussin, E. Energy expenditure of elite female runners measured by respiratory chamber and doubly labeled water. J. Appl. Physiol. 1992, 72, 23–28. [Google Scholar] [CrossRef]
- Hara, A.; Radin, N.S. Lipid extraction of tissues with a low-toxicity solvent. Anal. Biochem. 1978, 90, 420–426. [Google Scholar] [CrossRef]
- Perwaiz, S.; Tuchweber, B.; Mignault, D.; Gilat, T.; Yousef, I.M. Determination of bile acids in biological fluids by liquid chromatography-electrospray tandem mass spectrometry. J. Lipid Res. 2001, 42, 114–119. [Google Scholar] [CrossRef]
- Batta, A.K.; Salen, G.; Rapole, K.R.; Batta, M.; Batta, P.; Alberts, D.; Earnest, D. Highly simplified method for gas-liquid chromatographic quantitation of bile acids and sterols in human stool. J. Lipid Res. 1999, 40, 1148–1154. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y.; Liao, X.; Liu, T.; Yang, F.; Yang, K.; Zhou, Z.; Fu, Y.; Fu, T.; Sysa, A.; et al. Glutamine prevents high-fat diet-induced hepatic lipid accumulation in mice by modulating lipolysis and oxidative stress. Nutr. Metab. 2024, 21, 12. [Google Scholar] [CrossRef]
- Qi, S.; Wang, C.; Li, C.; Wang, P.; Liu, M. Candidate genes investigation for severe nonalcoholic fatty liver disease based on bioinformatics analysis. Medicine 2017, 96, e7743. [Google Scholar] [CrossRef]
- Gensure, R.C.; Mäkitie, O.; Barclay, C.; Chan, C.; DePalma, S.R.; Bastepe, M.; Abuzahra, H.; Couper, R.; Mundlos, S.; Sillence, D.; et al. A novel COL1A1 mutation in infantile cortical hyperostosis (Caffey disease) expands the spectrum of collagen-related disorders. J. Clin. Investig. 2005, 115, 1250–1257. [Google Scholar] [CrossRef]
- Jull, A.B.; Ni Mhurchu, C.; Bennett, D.A.; Dunshea-Mooij, C.A.E.; Rodgers, A. Chitosan for overweight or obesity. Cochrane Database Syst. Rev. 2008, 16, CD003892. [Google Scholar] [CrossRef] [PubMed]
- Kondo, T.; Kishi, M.; Fushimi, T.; Ugajin, S.; Kaga, T. Vinegar intake reduces body weight, body fat mass, and serum triglyceride levels in obese Japanese subjects. Biosci. Biotechnol. Biochem. 2009, 73, 1837–1843. [Google Scholar] [CrossRef] [PubMed]
- Valdes, D.S.; So, D.; Gill, P.A.; Kellow, N.J. Effect of Dietary Acetic Acid Supplementation on Plasma Glucose, Lipid Profiles, and Body Mass Index in Human Adults: A Systematic Review and Meta-analysis. J. Acad. Nutr. Diet. 2021, 121, 895–914. [Google Scholar] [CrossRef] [PubMed]
- Petsiou, E.I.; Mitrou, P.I.; Raptis, S.A.; Dimitriadis, G.D. Effect and mechanisms of action of vinegar on glucose metabolism, lipid profile, and body weight. Nutr. Rev. 2014, 72, 651–661. [Google Scholar] [CrossRef]
- Zecharia, D.; Rauch, M.; Sharabi-Nov, A.; Tamir, S.; Gutman, R. Postnatal administration of leptin antagonist mitigates susceptibility to obesity under high-fat diet in male αMUPA mice. Am. J. Physiol. Endocrinol. Metab. 2019, 317, E783–E793. [Google Scholar] [CrossRef]
- Biddinger, S.B.; Almind, K.; Miyazaki, M.; Kokkotou, E.; Ntambi, J.M.; Kahn, C.R. Effects of Diet and Genetic Background on Sterol Regulatory Element-Binding Protein-1c, Stearoyl-CoA Desaturase 1, and the Development of the Metabolic Syndrome. Diabetes 2005, 54, 1314–1323. [Google Scholar] [CrossRef]
- Podrini, C.; Cambridge, E.L.; Lelliott, C.J.; Carragher, D.M.; Estabel, J.; Gerdin, A.-K.; Karp, N.A.; Scudamore, C.L.; Sanger Mouse Genetics Project; Ramirez-Solis, R.; et al. High-fat feeding rapidly induces obesity and lipid derangements in C57BL/6N mice. Mamm. Genome 2013, 24, 240–251. [Google Scholar] [CrossRef]
- Guo, J.; Jou, W.; Gavrilova, O.; Hall, K.D. Persistent diet-induced obesity in male C57BL/6 mice resulting from temporary obesigenic diets. PLoS ONE 2009, 4, e5370. [Google Scholar] [CrossRef]
- Williams, L.M.; Campbell, F.M.; Drew, J.E.; Koch, C.; Hoggard, N.; Rees, W.D.; Kamolrat, T.; Ngo, H.T.; Steffensen, I.-L.; Gray, S.R.; et al. The development of diet-induced obesity and glucose intolerance in C57Bl/6 mice on a high-fat diet consists of distinct phases. PLoS ONE 2014, 9, e106159. [Google Scholar] [CrossRef]
- Fraulob, J.C.; Ogg-Diamantino, R.; Fernandes-Santos, C.; Aguila, M.B.; Mandarim-de-Lacerda, C.A. A mouse model of metabolic syndrome: Insulin resistance, fatty liver and Non-Alcoholic Fatty Pancreas Disease (NAFPD) in C57BL/6 mice fed a high fat diet. J. Clin. Biochem. Nutr. 2010, 46, 212–223. [Google Scholar] [CrossRef]
- Li, J.; Wu, H.; Liu, Y.; Yang, L. High fat diet induced obesity model using four strains of mice: Kunming, c57bl/6, balb/c and icr. Exp. Anim. 2020, 69, 326–335. [Google Scholar] [CrossRef] [PubMed]
- Murphy, E.F.; Cotter, P.D.; Healy, S.; Marques, T.M.; O’Sullivan, O.; Fouhy, F.; Clarke, S.F.; O’Toole, P.W.; Quigley, E.M.; Stanton, C.; et al. Composition and energy harvesting capacity of the gut microbiota: Relationship to diet, obesity and time in mouse models. Gut 2010, 59, 1635–1642. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Zhang, T.; Yue, Y.; Wu, X. Effects of Bile Acid Modulation by Dietary Fat, Cholecystectomy, and Bile Acid Sequestrant on Energy, Glucose, and Lipid Metabolism and Gut Microbiota in Mice. Int. J. Mol. Sci. 2022, 23, 5935. [Google Scholar] [CrossRef] [PubMed]
- Kusumoto, Y.; Irie, J.; Iwabu, K.; Tagawa, H.; Itoh, A.; Kato, M.; Kobayashi, N.; Tanaka, K.; Kikuchi, R.; Fujita, M.; et al. Bile acid binding resin prevents fat accumulation through intestinal microbiota in high-fat diet-induced obesity in mice. Metabolism 2017, 71, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, M.; Ikegami, H.; Fujisawa, T.; Nojima, K.; Kawabata, Y.; Noso, S.; Babaya, N.; Itoi-Babaya, M.; Yamaji, K.; Hiromine, Y.; et al. Prevention and treatment of obesity, insulin resistance, and diabetes by bile acid-binding resin. Diabetes 2007, 56, 239–247. [Google Scholar] [CrossRef]
- Li, X.; Wang, L.; Li, Y.; Ho, Y.; Yang, D.; Chen, Y.; Hu, X.; Xue, M. Polysorbates as novel lipid-modulating candidates for reducing serum total cholesterol and low-density lipoprotein levels in hyperlipidemic C57BL/6J mice and rats. Eur. J. Pharmacol. 2011, 660, 468–475. [Google Scholar] [CrossRef]
- Nishida, S.; Horinouchi, A.; Higashimura, Y.; Akahori, R.; Matsumoto, K. Cholestyramine, a bile acid sequestrant, increases cecal short chain fatty acids and intestinal immunoglobulin A in mice. Biol. Pharm. Bull. 2020, 43, 565–568. [Google Scholar] [CrossRef]
- Pan, H.; Fu, C.; Huang, L.; Jiang, Y.; Deng, X.; Guo, J.; Su, Z. Anti-obesity effect of chitosan oligosaccharide capsules (coscs) in obese rats by ameliorating leptin resistance and adipogenesis. Mar. Drugs 2018, 16, 198. [Google Scholar] [CrossRef]
- Wang, J.; He, W.; Yang, D.; Cao, H.; Bai, Y.; Guo, J.; Su, Z. Beneficial metabolic effects of chitosan and chitosan oligosaccharide on epididymal wat browning and thermogenesis in obese rats. Molecules 2019, 24, 4455. [Google Scholar] [CrossRef]
- Binyamin, D.; Werbner, N.; Nuriel-Ohayon, M.; Uzan, A.; Mor, H.; Abbas, A.; Ziv, O.; Teperino, R.; Gutman, R.; Koren, O. The aging mouse microbiome has obesogenic characteristics. Genome Med. 2020, 12, 87. [Google Scholar] [CrossRef]
- Brodkorb, A.; Egger, L.; Alminger, M.; Alvito, P.; Assunção, R.; Ballance, S.; Bohn, T.; Bourlieu-Lacanal, C.; Boutrou, R.; Carrière, F.; et al. INFOGEST static in vitro simulation of gastrointestinal food digestion. Nat. Protoc. 2019, 14, 991–1014. [Google Scholar] [CrossRef]
- Wang, H.; Wang, L.; Cheng, Y.; Xia, Z.; Liao, Y.; Cao, J. Efficacy of orlistat in non-alcoholic fatty liver disease: A systematic review and meta-analysis. Biomed. Rep. 2018, 9, 90–96. [Google Scholar] [CrossRef]
Formulation | Diets (g/kg of Ingredients) | |||||||
---|---|---|---|---|---|---|---|---|
Ingredient | Manufacturer, Catalog No. | Humidity (%) 1 | LFD | HFD | HFD + BAS 2 | HFD+ AA 3 | HFD+ BcL 4 | HFD + BcH 4 |
Casein | Frutarom (Haifa, Israel), 9500682599 | 7.5 | 210 | 265 | 265 | 265 | 265 | 265 |
L-Cysteine | MP Biomedicals (Irvine, CA, USA), 210144490 | <0.1 | 3 | 4 | 4 | 4 | 4 | 4 |
Maltodextrin | Zhucheng Dongxiao Biotec. (Jiaozhou City, Shandong, China) | 4.6 | 465 | 160 | 160 | 160 | 160 | 160 |
Cornstarch | Galam (Maanit, Israel) | 7.8 | 100 | 0 | 0 | 0 | 0 | 0 |
Sucrose | Sugat (Kiryat Gat, Israel), 290000211503 | <0.1 | 90 | 90 | 90 | 90 | 90 | 90 |
Beef fat | Local slaughterhouse | 7.3 | 20 | 310 | 310 | 310 | 310 | 310 |
Soybean oil | Supersal (Rishon LeTsiyon, Israel), 2900024317 | <0.1 | 20 | 30 | 30 | 30 | 30 | 30 |
Cellulose | MP Biomedicals, 0219149991 | 5.9 | 37.25 | 65.6 | 65.6 | 65.6 | 65.6 | 65.6 |
Mineral mix | MP Biomedicals, 0296040002 | 0.3 | 35 | 48 | 48 | 48 | 48 | 48 |
Calcium phosphate | Sigma (Jerusalem, Israel), c7263 | 0.1 | 2 | 3.4 | 3.4 | 3.4 | 3.4 | 3.4 |
Vitamin mix | MP Biomedicals, 0296040201 | 0.8 | 15 | 21 | 21 | 21 | 21 | 21 |
Choline bitartrate | MP Biomedicals, 0210138483 | 0.1 | 2.75 | 3 | 3 | 3 | 3 | 3 |
Total ingredients (g) | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 |
Supplemented Compounds, on Top (g) | Humidity (%) | LFD | HFD | HFD + BAS | HFD + AA | HFD + BcL | HFD + BcH |
---|---|---|---|---|---|---|---|
Cholestyramine (2% w/w) | 7 | 20 1 | |||||
Acetic acid, 1 N (3% w/w) | 94.0 | 480 2 | |||||
Biocomposite 3 (0.8% w/w) | 98.3 | 80 3 | |||||
Biocomposite 3 (5% w/w) | 90.0 | 480 3 | |||||
Added water | 540 | 80 | 80 | ||||
Total weight (g) | 1540 | 1080 | 1100 | 1480 | 1080 | 1480 | |
Selected nutritional information | |||||||
Humidity in diet (%) 4 | 20.8 | 11.5 | 8.7 | 14.1 | 11.2 | 11.1 | |
Carbohydrates (%, w/w) 5 | 65.8 | 28.9 | 28.4 | 28.9 | 28.7 | 27.7 | |
Protein (%, w/w) 5 | 20.7 | 26.3 | 25.8 | 25.6 | 26.1 | 25.1 | |
Fat (%, w/w) 5 | 4.1 | 33.5 | 32.9 | 32.6 | 33.3 | 31.9 | |
Carbohydrates (% of MEI) 6,7 | 69.5 | 22.1 | 22.1 | 21.8 | 22.1 | 21.9 | |
Protein (% of MEI) 6,7 | 21.2 | 20.1 | 20.1 | 19.9 | 20.1 | 19.9 | |
Fat (% of MEI) 6,7 | 9.3 | 57.8 | 57.8 | 58.2 | 57.8 | 58.2 | |
Metabolizable energy (kcal/g) 7 | 3.9 | 5.2 | 5.1 | 5.1 | 5.2 | 5.0 | |
Combustible energy (kcal/g; mean ± SD) 8 | 4.1 ± 0.31 | 5.9 ± 0.25 | 5.8 ± 0.07 | 5.7 ± 0.1 | 5.6 ± 0.29 | 5.7 ± 0.15 | |
Lipids (%) 9 | 5.1 ± 0.98 | 33.8 ± 0.3 | 33.3 ± 0.3 | 30.1 ± 0.3 | 31.3 ± 0.3 | 34.0 ± 0.5 |
Gene | Forward Primer | Reverse Primer |
---|---|---|
Col1a1 | GCTCCTCTTAGGGGCCACT | CCACGTCTCACCATTGGGG |
Gapdh | GGTCTACATGTTCCAGTA | CCCATTTGATGTTAGTGG |
Parameter | Time Point | LFD | HFD | HFD + BAS 1 | HFD + AA 2 | HFD + BcL 3 | HFD + BcH 3 |
---|---|---|---|---|---|---|---|
Glucose | Baseline | 130.3 ± 5.0 | 130 ± 5.5 | 129.8 ± 7.9 | 137.8 ± 6.7 | 135.8 ± 3.5 | 130.8 ± 3.7 |
End | 144.2 ± 4.1 BC | 173.8 ± 7.6 A$ | 135.6 ± 2.7 C | 155.7 ± 5.8 AB* | 166 ± 6.3 A$ | 159.4 ± 7 AB$ | |
Tri | Baseline | 72.9 ± 3.7 | 80.1 ± 3.7 | 68.9 ± 1.1 | 72.1 ± 3.3 | 72.3 ± 4.8 | 77.1 ± 2.6 |
End | 75.6 ± 3.0 A | 69.7 ± 2.9 AB* | 46.8 ± 4.0 C$ | 68.7 ± 4.1 AB | 68 ± 4.4 AB | 62.2 ± 4.2 B# | |
Total Cholesterol | Baseline | 162.2 ± 5.4 | 137.8 ± 10.4 | 167.9 ± 5.4 | 164.1 ± 12.9 | 153.3 ± 6 | 139.0 ± 5.6 |
End | 147.7 ± 20.5 | 182.0 ± 21.2 # | 158.0 ± 8.4 | 180.2 ± 15.1 | 193 ± 13 # | 174.6 ± 7.8 # | |
HDL Cholesterol | Baseline | 104.9 ± 3.3 | 92.9 ± 7.7 | 104.5 ± 3.4 | 100.9 ± 5.4 | 102 ± 2.6 | 96.4 ± 2.6 |
End | 85.2 ± 9.0 B* | 116.6 ± 12.6 A* | 105.2 ± 4.6 A | 117.3 ± 8.5 A* | 129 ± 8.6 A* | 109 ± 5.7 AB | |
LDL Cholesterol | Baseline | 41.3 ± 2.5 | 28.8 ± 2.7 | 49.4 ± 3.6 | 36.0 ± 3.7 | 36.6 ± 4.6 | 29.7 ± 2.6 |
End | 33.5 ± 5.4 | 51.4 ± 9.2 $ | 43.3 ± 3.9 | 42.4 ± 6.4 | 50 ± 10.8 | 53.6 ± 6.9 $ | |
VLDL Cholesterol | Baseline | 14.7 ± 0.8 | 15.9 ± 0.8 | 13.8 ± 0.2 | 14.1 ± 0.7 | 13.6 ± 0.6 | 15.3 ± 0.6 |
End | 15.0 ± 0.7 A | 13.9 ± 0.6 AB* | 9.2 ± 0.8 C$ | 13.8 ± 0.8 AB | 14 ± 1 AB | 12.3 ± 0.8 B# |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niv, D.; Anavi, E.; Yaval, L.; Abbas, A.; Rytwo, G.; Gutman, R. Sepiolite–Chitosan–Acetic Acid Biocomposite Attenuates the Development of Obesity and Nonalcoholic Fatty Liver Disease in Mice Fed a High-Fat Diet. Nutrients 2024, 16, 3958. https://doi.org/10.3390/nu16223958
Niv D, Anavi E, Yaval L, Abbas A, Rytwo G, Gutman R. Sepiolite–Chitosan–Acetic Acid Biocomposite Attenuates the Development of Obesity and Nonalcoholic Fatty Liver Disease in Mice Fed a High-Fat Diet. Nutrients. 2024; 16(22):3958. https://doi.org/10.3390/nu16223958
Chicago/Turabian StyleNiv, Dalia, Eli Anavi, Laris Yaval, Atallah Abbas, Giora Rytwo, and Roee Gutman. 2024. "Sepiolite–Chitosan–Acetic Acid Biocomposite Attenuates the Development of Obesity and Nonalcoholic Fatty Liver Disease in Mice Fed a High-Fat Diet" Nutrients 16, no. 22: 3958. https://doi.org/10.3390/nu16223958
APA StyleNiv, D., Anavi, E., Yaval, L., Abbas, A., Rytwo, G., & Gutman, R. (2024). Sepiolite–Chitosan–Acetic Acid Biocomposite Attenuates the Development of Obesity and Nonalcoholic Fatty Liver Disease in Mice Fed a High-Fat Diet. Nutrients, 16(22), 3958. https://doi.org/10.3390/nu16223958