Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (7,614)

Search Parameters:
Keywords = acetic acid

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1580 KB  
Article
Bioconversion of Corn Cob Acid Hydrolysates into Isoamyl Alcohol and Volatile Compounds Using Meyerozyma guilliermondii
by Nora Estela Ponce-Fernández, Leticia Casas-Godoy, Rebeca Astorga-Trejo, Cuauhtémoc Reyes-Moreno and Claudia Castro-Martínez
Biomass 2025, 5(3), 51; https://doi.org/10.3390/biomass5030051 (registering DOI) - 28 Aug 2025
Abstract
Corn residues are an abundant and low-cost lignocellulosic feedstock that provides a renewable carbon platform for the production of biofuels, bioplastics, and high-value aromatic volatile compounds (AVCs). Isoamyl alcohol, an important AVC, has applications in the food, cosmetics, and biofuel industries. This study [...] Read more.
Corn residues are an abundant and low-cost lignocellulosic feedstock that provides a renewable carbon platform for the production of biofuels, bioplastics, and high-value aromatic volatile compounds (AVCs). Isoamyl alcohol, an important AVC, has applications in the food, cosmetics, and biofuel industries. This study evaluated the bioconversion of corn cob acid hydrolysates by Meyerozyma guilliermondii into isoamyl alcohol and ethanol. Corn cob was selected as feedstock due to its high hemicellulose content. A Box–Behnken (BBD) design was used to optimize phosphoric acid hydrolysis. The optimal treatment (2.49% v/v H3PO4, 130 °C, 120 min, 1 mm particle size) generated 19.79 g L−1 xylose with 2.74 g L−1 acetic acid. Then, agitation speed and nitrogen concentration were optimized via a central composite design (CCD) in synthetic and hydrolysate-based media fermentations. Isoamyl alcohol specific yield after 48 h of fermentation was higher in hydrolysate medium (12.08 ± 0.67 mg·g−1) than in synthetic medium (8.274 ± 0.83 mg·g−1). Free amino nitrogen (FAN) and intracellular protein analyses revealed higher nitrogen consumption in synthetic media fermentation and greater biomass production in acid hydrolysate media. In addition to isoamyl alcohol (33 mg·L−1), and ethanol (10.18 g·L−1), 1-butanol (61.2 mg·L−1), 1-propanol (13.25 mg·L−1), and acetaldehyde (14.88 mg·L−1) were produced. These results demonstrate the potential of M. guilliermondii to convert corn cob into value-added products. Full article
30 pages, 1838 KB  
Review
An Overview of Bio-Based Polymers with Potential for Food Packaging Applications
by Raluca Şomoghi, Sonia Mihai and Florin Oancea
Polymers 2025, 17(17), 2335; https://doi.org/10.3390/polym17172335 - 28 Aug 2025
Abstract
Food packaging is an essential part of the food industry. Packaging materials are indispensable in ensuring product safety, enhancing consumer experience, and supporting sustainable practices. This review provides an update on the role of bio-based polymers, including polylactic acid (PLA), polyhydroxyalkanoates (PHAs), starch-based [...] Read more.
Food packaging is an essential part of the food industry. Packaging materials are indispensable in ensuring product safety, enhancing consumer experience, and supporting sustainable practices. This review provides an update on the role of bio-based polymers, including polylactic acid (PLA), polyhydroxyalkanoates (PHAs), starch-based polymers, and cellulose-based polymers (cellulose acetate (CA), cellulose sulphate (CS), carboxymethyl cellulose (CMC), nanocellulose (NC), and methylcellulose (MC)) for food packaging applications. Properties as mechanical, barrier and antimicrobial, as well as their eco-friendly behavior, are also summarized. The advantages and disadvantages of using bio-based polymers in food packaging are discussed. Present review also addresses the challenges associated with their preparation and highlights the potential future prospects of bio-based polymers for packaging applications. Full article
(This article belongs to the Special Issue Advances in Natural Polymers for Sustainable Food Packaging)
Show Figures

Figure 1

22 pages, 1844 KB  
Article
Selective Extraction and Hydrotreatment of Biocrude from Sewage Sludge: Toward High-Yield, Alkane-Rich, Low-Heteroatom Biofuels
by Muhammad Usman, Shuo Cheng, Sasipa Boonyubol, Muhammad Aziz and Jeffrey S. Cross
Energies 2025, 18(17), 4568; https://doi.org/10.3390/en18174568 - 28 Aug 2025
Abstract
This study investigates the hydrothermal liquefaction (HTL) of sewage sludge across a temperature range of 250–375 °C, combined with selective solvent extraction and catalytic hydrotreatment to produce high-quality biocrude. Four solvents including dichloromethane (DCM), hexane, ethyl butyrate (EB), and ethyl acetate (EA), were [...] Read more.
This study investigates the hydrothermal liquefaction (HTL) of sewage sludge across a temperature range of 250–375 °C, combined with selective solvent extraction and catalytic hydrotreatment to produce high-quality biocrude. Four solvents including dichloromethane (DCM), hexane, ethyl butyrate (EB), and ethyl acetate (EA), were used to evaluate temperature-dependent extraction performance and product quality. Biocrude yields increased from 250 °C to a maximum at 350 °C for all solvents: hexane (9.3–18.1%), DCM (16.3–49.7%), EB (17.6–50.1%), and EA (9.6–23.5%). A yield decline was observed at 375 °C due to secondary cracking and gasification. Elemental analysis revealed that hexane and EB extracts had higher carbon (up to 61.6 wt%) and hydrogen contents, while DCM retained the most nitrogen (up to 3.96 wt%) due to its polarity. Sulfur remained below 0.5 wt% in all biocrudes. GC–MS analysis of 350 °C biocrudes showed fatty acids as dominant components (43–53%), especially palmitic acid, along with ketones, amides, and heterocyclic compounds. Hydrotreatment using Ni/SiO₂–Al₂O₃ significantly enhanced biocrude quality by increasing alkane content by 40–60% and reducing nitrogen levels by up to 75%, with higher heating values reaching 38–44 MJ/kg. These findings demonstrate the integrated potential of HTL process tuning, green solvent extraction, and catalytic upgrading for converting sewage sludge into cleaner, energy-dense biofuels. Full article
20 pages, 2684 KB  
Article
Food Waste Bioconversion Features Depending on the Regime of Anaerobic Digestion
by Marta Zofia Cieślik, Andrzej Jan Lewicki, Wojciech Czekała and Iryna Vaskina
Energies 2025, 18(17), 4567; https://doi.org/10.3390/en18174567 - 28 Aug 2025
Abstract
Approximately one-third of global food production is wasted annually, which contributes significantly to greenhouse gas emissions and economic costs. Anaerobic digestion (AD) is an effective method for converting food waste into biogas, but its efficiency depends on factors such as temperature and substrate [...] Read more.
Approximately one-third of global food production is wasted annually, which contributes significantly to greenhouse gas emissions and economic costs. Anaerobic digestion (AD) is an effective method for converting food waste into biogas, but its efficiency depends on factors such as temperature and substrate composition. This study compared mesophilic and thermophilic AD of selectively collected fruit and vegetable waste, quantifying process efficiency and identifying factors leading to collapse. Studies were performed in 1 dm3 reactors with gradually increasing organic loading rates until process collapse. Process dynamics, stability, and gas yields were assessed through daily biogas measurements and analyses of pH, FOS/TAC ratio, sCOD, ammonia, volatile fatty acids, alcohols, total and volatile solids, and C/N ratio. Research has shown that peak methane yields occurred at OLR = 0.5–1.0 kg VS·m−3·d−1, with thermophilic systems producing 0.63–5.48% more methane during stable phases. Collapse occurred at OLR = 3.0 in thermophilic and 4.0 in mesophilic reactors, accompanied by sharp increases in methanol, acetic acid, butyric acid, propionic acid, and FOS/TAC. The pH dropped to 5.49 and 6.09. While thermophilic conditions offered higher methane yields, they were more susceptible to rapid process destabilization due to intermediate metabolite accumulation. Full article
(This article belongs to the Special Issue Biomass and Waste-to-Energy for Sustainable Energy Production)
20 pages, 2311 KB  
Article
Changes in Microbial Communities in Industrial Anaerobic Digestion of Dairy Manure Caused by Caldicellulosiruptor Pretreatment
by Jakob Young, Maliea Nipko, Spencer Butterfield and Zachary Aanderud
BioTech 2025, 14(3), 67; https://doi.org/10.3390/biotech14030067 - 28 Aug 2025
Abstract
Extremophilic biological process (EBP) pretreatment increases substrate availability in anaerobic digestion, but the effect on downstream microbial community composition in industrial systems is not characterized. Changes in microbial communities were determined at an industrial facility processing dairy manure in a modified split-stream system [...] Read more.
Extremophilic biological process (EBP) pretreatment increases substrate availability in anaerobic digestion, but the effect on downstream microbial community composition in industrial systems is not characterized. Changes in microbial communities were determined at an industrial facility processing dairy manure in a modified split-stream system with three reactor types: (1) EBP tanks at 70–72 °C; (2) mesophilic Continuously Stirred Tank Reactors (CSTRs); (3) mesophilic Induced Bed Reactors (IBRs) receiving combined CSTR and EBP effluent. All reactors had a two-day hydraulic retention time. Samples were collected weekly for 60 days. pH, volatile fatty acid and bicarbonate concentrations, COD, and methane yield were measured to assess tank environmental conditions. Microbial community compositions were obtained via 16S rRNA gene sequencing. EBP pretreatment increased acetate availability but led to a decline in the relative abundance of acetoclastic Methanosarcina species in downstream IBRs. Rather, syntrophic methanogens, e.g., members of Methanobacteriaceae, increased in relative abundance and became central to microbial co-occurrence networks, particularly in association with hydrogen-producing bacteria. Network analysis also demonstrated that these syntrophic relationships were tightly coordinated in pretreated digestate but absent in the untreated CSTRs. By promoting syntrophic methanogenesis while increasing acetate concentrations, EBP pretreatment requires system configurations that enable acetoclast retention to prevent acetate underutilization and maximize methane yields. Full article
(This article belongs to the Section Industry, Agriculture and Food Biotechnology)
14 pages, 1816 KB  
Article
Sequential Extraction of Naringin and Low-Ester Pectin from Naturally Dropped Fruit of Pomelo
by Bo Yu, Liwen Huang, Yuhan Ding, Ning Zhang, Kexin Li, Yuanbao Jin and Zhihua Wu
Int. J. Mol. Sci. 2025, 26(17), 8341; https://doi.org/10.3390/ijms26178341 - 28 Aug 2025
Abstract
Naringin and pectin were innovatively and sequentially extracted from naturally dropped fruit of pomelo (NDFP), optimizing yields via response surface methodology (RSM). Under optimized conditions, naringin was extracted first with 70% ethanol (70 °C, 110 min, SSR 15:1 v/w), followed [...] Read more.
Naringin and pectin were innovatively and sequentially extracted from naturally dropped fruit of pomelo (NDFP), optimizing yields via response surface methodology (RSM). Under optimized conditions, naringin was extracted first with 70% ethanol (70 °C, 110 min, SSR 15:1 v/w), followed by pectin extraction from the residue using pH 1.50 acetic acid (80 °C, 160 min, ratio 40:1 v/w) naringin yield reached 42.77% with 97.6% ± 0.31% HPLC purity, while pectin yield was 14.32%. Critically, the recovered pectin was identified as low-ester and exhibited significantly superior antioxidant activity compared to commercial pectin. This work establishes an efficient sequential extraction process valorizing waste pomelo drop, yielding high-purity naringin and antioxidant-rich, low-ester pectin. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
Show Figures

Figure 1

16 pages, 3484 KB  
Article
Anti-Obesity Effects of Pea Peptides Modified by Steam Explosion on Obese Mice: Regulation of Gut Microbiota and Glucose Metabolism
by Jianqiu Tu, Chenggang Liu, Jingjing Zhang, Tiange Li, Jing Zhu, Qing Wang, Rongrong Wu and Tianlin Wang
Foods 2025, 14(17), 3008; https://doi.org/10.3390/foods14173008 - 28 Aug 2025
Abstract
Pea peptides (PPs), as organic compounds, exhibit a variety of biological functions that make them useful for both the prevention and treatment of metabolic disorders. This study focused on how PPs modified by steam explosion (SE-PP) may help to treat mice with high-fat [...] Read more.
Pea peptides (PPs), as organic compounds, exhibit a variety of biological functions that make them useful for both the prevention and treatment of metabolic disorders. This study focused on how PPs modified by steam explosion (SE-PP) may help to treat mice with high-fat diet (HFD)-mediated glucose metabolism disorders. The experimental results indicate that both the 100 mg/kg BW SE-PP (SE-PPL group) and 400 mg/kg BW SE-PP (SE-PPH group) experienced substantial decreases in body weight, epididymal and inguinal fat mass, and blood glucose levels of obese mice (notably, the body weight of the SE-PPH group was decreased by 33.13% when compared with that of the HFD group (p < 0.05)). By stimulating the IRS-1/PI3K/AKT signaling system, SE-PP controlled glucose metabolism disorder in adipose tissue, while also inhibiting the TLR4/MYD88/NF-κB pathway to reduce inflammation. Furthermore, SE-PP restored the diversity of the gut microbiota destroyed by HFD. SE-PPH increased the Bacteroidetes/Firmicutes ratio from 0.042 to 0.26 (p < 0.05), which is a key indicator of microbiota balance. In addition, SE-PP enhanced the synthesis of short-chain fatty acids (SCFAs) such as isovalerate, propionate, and acetate, which are essential for maintaining intestinal homeostasis and improving metabolic health (supplementation of SE-PPH increased the levels of total SCFAs by 49.87% in obese mice (p < 0.05)). Full article
Show Figures

Figure 1

19 pages, 2932 KB  
Article
Free and Immobilized Cells of Torulaspora delbrueckii and Lachancea thermotolerans in Sparkling Wine: Innovative Application in Secondary Bottle Fermentation
by Laura Canonico, Laura Moretti, Alice Agarbati, Francesca Comitini and Maurizio Ciani
Foods 2025, 14(17), 3007; https://doi.org/10.3390/foods14173007 - 28 Aug 2025
Abstract
Sparkling wine production involves secondary alcoholic fermentation, during which carbon dioxide is trapped, creating effervescence and enhancing sensory complexity. This study evaluated the impact of Torulaspora delbrueckii and Lachancea thermotolerans yeast species using free and immobilized cells in secondary fermentation of sparkling wine, [...] Read more.
Sparkling wine production involves secondary alcoholic fermentation, during which carbon dioxide is trapped, creating effervescence and enhancing sensory complexity. This study evaluated the impact of Torulaspora delbrueckii and Lachancea thermotolerans yeast species using free and immobilized cells in secondary fermentation of sparkling wine, in comparison with Saccharomyces cerevisiae. Immobilized S. cerevisiae enabled faster refermentation compared to free cells, while immobilization resulted in a slower process in non-Saccharomyces strains. Biomass monitoring showed stable viable cells for immobilized S. cerevisiae during fermentation, while non-Saccharomyces strains showed a consistent reduction. Volatile profiles were positively influenced by immobilization using S. cerevisiae strains, which produced a constant increase in key aroma compounds, such as geraniol and ethyl acetate, throughout fermentation. Non-Saccharomyces strains contributed to enhanced fruity and floral aromas with variations in volatiles during refermentation. Sparkling wines fermented with immobilized L. thermotolerans were noted for ripe fruit aromas, while T. delbrueckii increased floral notes. S. cerevisiae fermentations showed higher acidity and balanced structure. These findings highlight the influence of yeast species and the yeast immobilization procedures in secondary fermentation, modulating fermentation dynamics and aroma development, and offer a promising strategy to tailor sparkling wine quality and sensory complexity. Full article
(This article belongs to the Special Issue Winemaking: Innovative Technology and Sensory Analysis)
Show Figures

Figure 1

20 pages, 2543 KB  
Article
Development of Fermentation Strategies for Quality Mild Coffee Production (Coffea arabica L.) Based on Oxygen Availability and Processing Time
by Aida Esther Peñuela-Martínez, Carol Vanessa Osorio-Giraldo, Camila Buitrago-Zuluaga and Rubén Darío Medina-Rivera
Foods 2025, 14(17), 3001; https://doi.org/10.3390/foods14173001 - 27 Aug 2025
Abstract
Fermentation is a crucial stage in the production of washed mild coffees, as it enables the generation of compounds that influence overall quality. The conditions to optimize this process are still unknown. This study evaluated the effects of fermenting coffee fruits and depulped [...] Read more.
Fermentation is a crucial stage in the production of washed mild coffees, as it enables the generation of compounds that influence overall quality. The conditions to optimize this process are still unknown. This study evaluated the effects of fermenting coffee fruits and depulped coffee under two conditions: an open tank (semi-anaerobic-SA) and a closed tank (self-induced anaerobic fermentation, SIAF) over 192 h. Samples were taken every 24 h using a sacrificial bioreactor. A randomized complete block design with a factorial arrangement (2 × 2 + 1), plus a standard control, was employed, incorporating two factors: coffee type and fermentation condition. High-throughput sequencing of 16S and ITS amplicons identified an average of 260 ± 71 and 101 ± 24 OTUs, respectively. Weisella was the dominant lactic acid bacteria, followed by Leuconostoc and Lactiplantibacillus. Acetic acid bacteria, mainly Acetobacter, were more abundant under semi-anaerobic conditions. The yeast genera most affected by the fermentation condition were Pichia, Issatchenkia, and Wickerhamomyces. Repeated measures analysis revealed significant differences in pH, glucose consumption, lactic acid production, dry matter content, embryo viability, and the percentage of healthy beans. Principal component analysis was used to develop an index that integrates physical, physiological, and sensory quality variables, thereby clarifying the impact of each treatment. Samples from shorter fermentation times and SIAF conditions scored closest to 1.0, reflecting the most favorable outcomes. Otherwise, samples from longer fermentation times in both depulped and coffee fruits scored 0.497 and 0.369, respectively, on the SA condition. These findings support technically and economically beneficial fermentation strategies. Full article
Show Figures

Figure 1

18 pages, 8783 KB  
Article
Pseudomonas chlororaphis YTBTa14 as a Multifunctional Biocontrol Agent: Simultaneous Growth Enhancement and Systemic Resistance Induction in Vitis vinifera Against Downy Mildew
by Baoyan Li, Qihua Sun, Jie Shi, Wei Zhang, Huafei Zhou, Yingzi Wang, Peisong Wang, Meiling Tang, Yuanpeng Du, Baoyou Liu and Jizhuang Wu
Agriculture 2025, 15(17), 1822; https://doi.org/10.3390/agriculture15171822 - 27 Aug 2025
Abstract
Biological control serves as a crucial strategy for crop disease management. The biocontrol potential and plant growth-promoting effects of the strain YTBTa14 were investigated. Genetic sequencing confirmed YTBTa14 as Pseudomonas chlororaphis, which exhibited broad-spectrum antifungal activity against multiple pathogens affecting grapevine, apple, [...] Read more.
Biological control serves as a crucial strategy for crop disease management. The biocontrol potential and plant growth-promoting effects of the strain YTBTa14 were investigated. Genetic sequencing confirmed YTBTa14 as Pseudomonas chlororaphis, which exhibited broad-spectrum antifungal activity against multiple pathogens affecting grapevine, apple, cherry, and wheat. YTBTa14 significantly enhanced the growth of wheat and grapevine, specifically increasing wheat seed germination rates and improving root and coleoptile development. In grapevine plant, significant increases in root length, stem length, and fresh weight were observed. The strain demonstrated robust adaptability and stable antagonism under varying sodium chloride (NaCl) concentrations, pH levels, and temperatures. YTBTa14 modulated plant hormone levels, elevating the content of indole-3-acetic acid (IAA), gibberellins (GA), and cytokinins (CTK). Furthermore, it effectively stimulated the production of key plant defense enzymes, including superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT). Pretreatment of grape leaves with YTBTa14 triggered plant cell defense response and upregulated the expression of defense-related genes PR1 (pathogenesis-related protein 1) and PAL1 (phenylalanine ammonia-lyase 1), thereby mitigating the severity of downy mildew disease and inducing systemic resistance. These findings demonstrate that YTBTa14 is a highly promising candidate for development as a multifunctional agricultural biocontrol agent. Full article
(This article belongs to the Section Crop Protection, Diseases, Pests and Weeds)
Show Figures

Figure 1

11 pages, 1034 KB  
Article
The Development of an Efficient In Vitro Indirect Regeneration System for Tibouchina granulosa (Desr.) Cogn.
by Fei Xiao, Jiemei Yu, Lan Wang, Xinru Qin, Mengjia Wu, Seping Dai and Xiaomei Deng
Plants 2025, 14(17), 2677; https://doi.org/10.3390/plants14172677 - 27 Aug 2025
Abstract
This study established an efficient in vitro regeneration system for Tibouchina granulosato (Desr.) Cogn. petiolated leaves to address the low propagation efficiency and propagatable germplasm shortages. The results revealed that the Murashige and Skoog (MS) medium supplemented with 1.1 mg/L of Zeatin (ZT) [...] Read more.
This study established an efficient in vitro regeneration system for Tibouchina granulosato (Desr.) Cogn. petiolated leaves to address the low propagation efficiency and propagatable germplasm shortages. The results revealed that the Murashige and Skoog (MS) medium supplemented with 1.1 mg/L of Zeatin (ZT) and 0.2 mg/L of 1-naphthyl acetic acid (NAA) was the optimal formulation for callus induction, yielding callus induction of 89.59%. For adventitious bud induction, the combination of 2.0 mg/L of 6-benzyladenine (BA) and 0.4 mg/L of NAA proved most effective, achieving an induction rate of 83.33%. Additionally, the adventitious shoots exhibited remarkable elongation when cultured in a medium containing 0.2 mg/L of BA and 0.04 mg/L of NAA. All explants rooted when treated with 0.5 mg/l NAA, inducing a mean number of 6.90 roots per plant and a survival percentage of 91.00%. This study provided technical support for the promotion of superior varieties and genetic improvement of Tibouchina granulosa. Full article
(This article belongs to the Section Plant Development and Morphogenesis)
Show Figures

Figure 1

13 pages, 894 KB  
Article
Inactivation Kinetics of Listeria monocytogenes on Hard-Cooked Eggs Treated with Organic Acids
by Hui Zeng, Bashayer A. Khouja, Megan L. Fay, Xinyi Zhou, Joelle K. Salazar and Diana S. Stewart
Foods 2025, 14(17), 2985; https://doi.org/10.3390/foods14172985 - 27 Aug 2025
Abstract
Peeled hard-cooked eggs (HCEs) are a popular and convenient choice for consumers and food servicers. A recent outbreak and several recalls of HCEs have highlighted their susceptibility to contamination with Listeria monocytogenes. HCEs are generally treated with antimicrobials, such as citric acid, [...] Read more.
Peeled hard-cooked eggs (HCEs) are a popular and convenient choice for consumers and food servicers. A recent outbreak and several recalls of HCEs have highlighted their susceptibility to contamination with Listeria monocytogenes. HCEs are generally treated with antimicrobials, such as citric acid, to enhance the safety and quality of the product. A 2019 multistate outbreak linked to consumption of contaminated HCEs in the U.S. prompted research on the effectiveness of citric acid, and other organic acids, to control L. monocytogenes on this food product. This study therefore assessed the use of organic acids as antimicrobials against L. monocytogenes on HCEs. HCEs were dip-inoculated with L. monocytogenes, resulting in an initial concentration of ca. 8 log CFU/HCE. Following air-drying for 10 min, HCEs were treated at 5 or 25 °C with water, 0.3 or 2% citric acid, or 2% acetic, lactic, or malic acid for up to 24 h to determine reductions in L. monocytogenes populations. After 24 h of treatment, 0.3% citric acid treatment resulted in population reductions of <1.24 log CFU/HCE regardless of treatment temperature, while 2% organic acids resulted in statistically significant reductions of 2.88–4.78 log CFU/HCE at 5 °C and 2.35–5.10 log CFU/HCE at 25 °C. The highest L. monocytogenes reductions on HCEs resulted from the 2% malic acid treatment at 5 °C and the 2% acetic acid treatment at 25 °C. Primary modeling was used to determine the inactivation kinetics and model fit with the Weibull and log-linear models, both estimating the rapid rates of inactivation when using the 2% malic and lactic acid treatments at 25 °C. The results of this study suggest that 2% acetic, lactic, and malic acids may be effective treatments for the control of L. monocytogenes on HCEs. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

14 pages, 1631 KB  
Article
Urinary 1H-NMR Metabolomics Highlights MIIA (Microbiota–Immune–Inflammation Axis) Activation by Organic Mediterranean Diet
by Laura Di Renzo, Simona Cesaroni, Giulia Frank, Barbara Pala, Daniel Oscar Cicero, Paola Gualtieri and Greta Petrella
Metabolites 2025, 15(9), 571; https://doi.org/10.3390/metabo15090571 - 26 Aug 2025
Abstract
Background: While the Mediterranean diet is well-established for its health benefits, the specific influence of organic versus conventional food sources within this pattern remains underexplored at the systemic metabolic level. Objective: This study investigated the metabolic effects of two matched Mediterranean diets, one [...] Read more.
Background: While the Mediterranean diet is well-established for its health benefits, the specific influence of organic versus conventional food sources within this pattern remains underexplored at the systemic metabolic level. Objective: This study investigated the metabolic effects of two matched Mediterranean diets, one based on organically produced foods (IMOD) and the other on conventionally produced equivalents (IMNOD), to assess the impact of food production methods on host metabolism and immune-inflammatory balance. Methods: Twelve healthy adults completed a crossover dietary intervention including IMOD and IMNOD phases. Urinary metabolite profiles were assessed via 1H-NMR spectroscopy across 42 compounds. Multivariate and univariate analyses evaluated metabolic responses. Results: Both interventions normalized some out-of-range urinary metabolites. However, IMOD elicited broader and more significant changes, including increased levels of tricarboxylic acid (TCA) intermediates (e.g., isocitrate, trans-aconitate), plant-derived metabolites (e.g., trigonelline), and host–microbiota co-metabolites (e.g., N-phenylacetylglutamine, 1-methylnicotinamide). Simultaneously, fermentation-associated and xenobiotic-linked metabolites such as formate, acetate, and 2-furoylglycine decreased. These shifts collectively represent a beneficial modulation of the Microbiota–Immune–Inflammation Axis (MIIA effect). Conclusions: Organic food consumption within a Mediterranean framework promotes host–microbiota metabolic interplay and enhances immune-supportive biochemical pathways. The findings provide new mechanistic insight into how food production quality contributes to systemic metabolic health and support broader efforts to make organic foods more accessible. Full article
(This article belongs to the Special Issue Clinical Nutrition and Metabolic Diseases)
Show Figures

Figure 1

14 pages, 1031 KB  
Article
Determinants for Activation of the Ion Channel TRPV3 by Weak Acids
by Daniel Rudolf, Inês C. A. Pombeiro Stein, Toni Sturhahn, Julian Wunder, Axel Hage and Andreas Leffler
Int. J. Mol. Sci. 2025, 26(17), 8275; https://doi.org/10.3390/ijms26178275 - 26 Aug 2025
Abstract
Several transient receptor potential vanilloid (TRPV) ion channels are proton-sensitive, and recent structural studies have identified poorly conserved mechanisms for the proton sensitivity of TRPV1, TRPV2 and TRPV5. While such detailed studies are lacking for TRPV3, three distinct intracellular motifs were suggested to [...] Read more.
Several transient receptor potential vanilloid (TRPV) ion channels are proton-sensitive, and recent structural studies have identified poorly conserved mechanisms for the proton sensitivity of TRPV1, TRPV2 and TRPV5. While such detailed studies are lacking for TRPV3, three distinct intracellular motifs were suggested to be required for a direct channel activation by cytosolic acidification. In this study, we investigated if these mechanisms are also relevant for the activation of TRPV3 by weak acids. Wildtype (WT) and several mutants of human TRPV3 transiently expressed in HEK 293T cells were investigated by whole-cell patch clamp electrophysiology. Cells expressing TRPV3-WT generated membrane currents induced by acetic acid (HOAc), formic acid and carbonic acid at pH 5.0. Activation induced by HOAc was concentration-dependent and increased with decreasing pH values. HOAc also strongly potentiated TRPV3-mediated responses to carvacrol and heat. Among the three suggested motifs for the binding of intracellular protons, only the mutant TRPV3-Asp512Ala exhibited an almost complete loss of HOAc sensitivity. The mutation of two C-terminal charged residues (Gln689/Asp727) even resulted in a clear gain of function for both HOAc and heat, and the mutation of the 2-APB-binding site His426 did not significantly abrogate HOAc sensitivity. Finally, insertion of the recently identified binding site in TRPV2 for the weak acid probenecid into TRPV3 (Glu216His) resulted in an increased HOAc sensitivity. To conclude, our data confirm that TRPV3 is sensitized and activated by several weak acids. While Asp512 appears to be a critical intracellular proton-modulating site, a more profound understanding of the mechanisms dictating the proton sensitivity of TRPV3 may require structural studies. Full article
(This article belongs to the Special Issue TRP Channels: Mechanisms, Functions, and Therapeutic Implications)
Show Figures

Figure 1

12 pages, 1894 KB  
Article
Pyrometallurgical Process to Recover Lead and Silver from Zinc Leaching Residue
by Cancio Jiménez-Lugos, Manuel Flores-Favela, Antonio Romero-Serrano, Aurelio Hernández-Ramírez, Alejandro Cruz-Ramírez, Enrique Sanchez-Vite, José Ortiz-Landeros and Eduardo Colin-García
Recycling 2025, 10(5), 167; https://doi.org/10.3390/recycling10050167 - 25 Aug 2025
Viewed by 115
Abstract
During the roasting, leaching, and electrodeposition of zinc ores, lead–silver residues are produced. These residues contain valuable metals (Pb, Zn, and Ag) and toxic metals (Cd and As). In this study, a pyrometallurgical process is proposed for treating Pb-Ag residues, consisting of drying, [...] Read more.
During the roasting, leaching, and electrodeposition of zinc ores, lead–silver residues are produced. These residues contain valuable metals (Pb, Zn, and Ag) and toxic metals (Cd and As). In this study, a pyrometallurgical process is proposed for treating Pb-Ag residues, consisting of drying, roasting, and reduction steps to recover valuable metals, such as silver in a metallic Pb phase, while converting the waste into an environmentally friendly slag. First, the Pb-Ag residue is dried at 100 °C, then roasted at 700 °C, and finally reduced at a high temperature, with Na2CO3 as a flux and CaSi as a reducing agent, rather than carbon-based reducing agents (carbon or carbon monoxide), to minimize greenhouse gas production. The effects of the reduction temperature and the mass of the reducing agent were investigated on a laboratory scale. The metallic phase and slag obtained in the reduction step were characterized by their chemical composition and mineralogy via chemical analysis, X-ray diffraction, and SEM-EDS. The results showed that silver and lead formed a metallic phase, and that silver content decreased from 1700 ppm in the Pb-Ag residue to 32 ppm in the final slag at 1300 °C. The Pb-Ag residue and final slag were leached with an aqueous acetic acid solution to evaluate their chemical stability. Full article
Show Figures

Graphical abstract

Back to TopTop