Dietary Bovine Lactoferrin Reduces the Deleterious Effects of Lipopolysaccharide Injection on Mice Intestine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design and Diets
2.2. Stool Water Content
2.3. In Vivo and Ex Vivo Gut Permeability Assessment
2.4. Quantification of Gene Expression via Real-Time Polymerase Chain Reaction (qRT-PCR)
2.5. Histological Analysis
2.6. Protein Quantification by ELISA
2.7. Statistical Analyses
3. Results
3.1. Selection of bLF and LPS Doses Based on Plasmatic TNF-α Concentration, Intestinal Permeability and Diarrhea Severity
3.2. Protective Effect of bLF on Plasmatic TNF-α and Intestinal Permeability 6 and 24 h After LPS Injection
3.3. Preventive Effect of bLF on Ex Vivo Mucosal Permeability in Both Jejunum and Colon After LPS Injection
3.4. bLF Effects on Expression of Genes Related to Intestinal Barrier Function and Gut Homeostasis, After LPS Challenge
3.5. Protective Impact of bLF on Jejunal Epithelium Integrity After LPS Injection
3.6. Preventive Effect of bLF on Inflammatory Gene Expression Induced by LPS in Jejunum
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lönnerdal, B. Nutritional roles of lactoferrin. Curr. Opin. Clin. Nutr. Metab. Care 2009, 12, 293–297. [Google Scholar] [CrossRef]
- Legrand, D.; Mazurier, J. A critical review of the roles of host lactoferrin in immunity. Biometals 2010, 23, 365–376. [Google Scholar] [CrossRef]
- Kell, D.B.; Heyden, E.L.; Pretorius, E. The Biology of Lactoferrin, an Iron-Binding Protein That Can Help Defend Against Viruses and Bacteria. Front. Immunol. 2020, 28, 1221. [Google Scholar] [CrossRef]
- Mayeur, S.; Spahis, S.; Pouliot, Y.; Levy, E. Antioxid Lactoferrin, a Pleiotropic Protein in Health and Disease. Antioxid. Redox. Signal. 2016, 24, 813–836. [Google Scholar] [CrossRef]
- Giansanti, F.; Panella, G.; Leboffe, L.; Antonini, G. Lactoferrin from Milk: Nutraceutical and Pharmacological Properties. Pharmaceuticals 2016, 9, 61. [Google Scholar] [CrossRef]
- Legrand, D. Overview of Lactoferrin as a Natural Immune Modulator. J. Pediatr. 2016, 173, Suppl: S10–S15. [Google Scholar] [CrossRef]
- Blais, A.; Fan, C.; Voisin, T.; Aattouri, N.; Dubarry, M.; Blachier, F.; Tomé, D. Effects of lactoferrin on intestinal epithelial cell growth and differentiation: An in vivo and in vitro study. BioMetals 2014, 27, 857–874. [Google Scholar] [CrossRef]
- Blais, A.; Lan, A.; Boluktas, A.; Grauso-Culetto, M.; Chaumontet, C.; Blachier, F.; Davila, A.-M. Lactoferrin Supplementation during Gestation and Lactation Is Efficient for Boosting Rat Pup Development. Nutrients 2022, 14, 2814. [Google Scholar] [CrossRef]
- Buccigrossi, V.; de Marco, G.; Bruzzese, E.; Ombrato, L.; Bracale, I.; Polito, G.; Guarino, A. Lactoferrin Induces Concentration-Dependent Functional Modulation of Intestinal Proliferation and Differentiation. Pediatr. Res. 2007, 61, 410–414. [Google Scholar] [CrossRef]
- Reznikov, E.A.; Comstock, S.S.; Yi, C.; Contractor, N.; Donovan, S.M. Dietary bovine lactoferrin increases intestinal cell proliferation in neonatal piglets. J. Nutr. 2014, 144, 1401–1408. [Google Scholar] [CrossRef]
- Takakura, N.; Wakabayashi, H.; Yamauchi, K.; Takase, M. Influences of orally administered lactoferrin on IFN-γ and IL-10 production by intestinal intraepithelial lymphocytes and mesenteric lymph-node cells. Biochem. Cell Biol. 2006, 84, 363–368. [Google Scholar] [CrossRef]
- Sfeir, R.M.; Dubarry, M.; Boyaka, P.N.; Rautureau, M.; Tomé, D. The Mode of Oral Bovine Lactoferrin Administration Influences Mucosal and Systemic Immune Responses in Mice. J. Nutr. 2004, 134, 403–409. [Google Scholar] [CrossRef]
- Togawa, J.-I.; Nagase, H.; Tanaka, K.; Inamori, M.; Nakajima, A.; Ueno, N.; Saito, T.; Sekihara, H. Oral administration of lactoferrin reduces colitis in rats via modulation of the immune system and correction of cytokine imbalance. J. Gastroenterol. Hepatol. 2002, 17, 1291–1298. [Google Scholar] [CrossRef]
- Li, L.; Ren, F.; Yun, Z.; An, Y.; Wang, C.; Yan, X. Determination of the effects of lactoferrin in a preclinical mouse model of experimental colitis. Mol. Med. Rep. 2013, 8, 1125–1129. [Google Scholar] [CrossRef]
- Hu, P.; Zong, Q.; Zhao, Y.; Gu, H.; Liu, Y.; Gu, F.; Liu, H.Y.; Ahmed, A.A.; Bao, W.; Cai, D.J. Lactoferrin Attenuates Intestinal Barrier Dysfunction and Inflammation by Modulating the MAPK Pathway and Gut Microbes in Mice. J. Nutr. 2022, 152, 2451–2460. [Google Scholar] [CrossRef]
- Kruzel, M.L.; Harari, Y.; Chen, C.-Y.; Castro, G.A. Lactoferrin Protects Gut Mucosal Integrity During Endotoxemia Induced by Lipopolysaccharide in Mice. Inflammation 2000, 24, 33–44. [Google Scholar] [CrossRef]
- Kruzel, M.L.; Harali, Y.; Mailman, D.; Actor, J.K.; Zimecki, M. Differential effects of prophylactic, concurrent and therapeutic lactoferrin treatment on LPS-induced inflammatory responses in mice. Clin. Exp. Immunol. 2002, 130, 25–31. [Google Scholar] [CrossRef]
- Li, C.; Liu, X.; Huang, Z.; Zhai, Y.; Li, H.; Wu, J. Lactoferrin Alleviates Lipopolysaccharide-Induced Infantile Intestinal Immune Barrier Damage by Regulating an ELAVL1-Related Signaling Pathway. Int. J. Mol. Sci. 2022, 23, 13719. [Google Scholar] [CrossRef]
- Doursout, M.F.; Horton, H.; Hoang, L.; Liang, Y.; Hwang, S.A.; Boyd, S.; Actor, J.K.; Kruzel, M.L. Lactoferrin moderates LPS-induced hypotensive response and gut injury in rats. Int. Immunopharmacol. 2013, 15, 227–231. [Google Scholar] [CrossRef]
- Puddu, P.; Latorre, D.; Valenti, P.; Gessani, S. Immunoregulatory role of lactoferrin-lipopolysaccharide interactions. Biometals 2010, 23, 387–397. [Google Scholar] [CrossRef] [PubMed]
- Temiz-Resitoglu, M.; Kucukkavruk, S.P.; Guden, D.S.; Cecen, P.; Sari, A.N.; Tunctan, B.; Gorur, A.; Tamer-Gumus, L.; Buharalioglu, C.K.; Malik, K.U.; et al. Activation of mTOR/IkappaB-alpha/NF-kappaB pathway contributes to LPS-induced hypotension and inflammation in rats. Eur. J. Pharmacol. 2017, 802, 7–19. [Google Scholar] [CrossRef]
- Pool, R.; Gomez, H.; Kellum, J.A. Mechanisms of Organ Dysfunction in Sepsis. Crit. Care Clin. 2018, 34, 63–80. [Google Scholar] [CrossRef]
- Williams, J.M.; Duckworth, C.A.; Watson, A.J.; Frey, M.R.; Miguel, J.C.; Burkitt, M.D.; Sutton, R.; Hughes, K.R.; Hall, L.J.; Caamaño, J.H.; et al. A mouse model of pathological small intestinal epithelial cell apoptosis and shedding induced by systemic administration of lipopolysaccharide. Dis. Model. Mech. 2013, 6, 1388–1399. [Google Scholar] [CrossRef]
- Stephens, M.; von der Weid, P.Y. Lipopolysaccharides modulate intestinal epithelial permeability and inflammation in a species-specific manner. Gut Microbes 2020, 11, 421–432. [Google Scholar] [CrossRef]
- Chambon-Savanovitch, C.; Farges, M.C.; Raul, F.; Blachier, F.; Davot, P.; Cynober, L.; Vasson, M.P. Can a glutamate-enriched diet counteract glutamine depletion in endotoxemic rats? J. Nutr. Biochem. 1999, 10, 331–337. [Google Scholar] [CrossRef]
- Hietbrink, F.; Besselink, M.G.; Renooij, W.; de Smet, M.B.; Draisma, A.; van der Hoeven, H.; Pickkers, P. Systemic inflammation increases intestinal permeability during experimental human endotoxemia. Shock 2009, 32, 374–378. [Google Scholar] [CrossRef]
- King, C.J.; Tytgat, S.; Delude, R.L.; Fink, M.P. Ileal mucosal oxygen consumption is decreased in endotoxemic rats but is restored toward normal by treatment with aminoguanidine. Crit. Care Med. 1999, 27, 2518–2524. [Google Scholar] [CrossRef]
- Boutry, C.; Matsumoto, H.; Bos, C.; Moinard, C.; Cynober, L.; Yin, Y.; Tomé, D.; Blachier, F. Decreased glutamate, glutamine and citrulline concentrations in plasma and muscle in endotoxemia cannot be reversed by glutamate or glutamine supplementation: A primary intestinal defect? Amino Acids 2012, 43, 1485–1498. [Google Scholar] [CrossRef]
- Beaumont, M.; Andriamihaja, M.; Armand, L.; Grauso, M.; Jaffrézic, F.; Laloë, D.; Moroldo, M.; Davila, A.-M.; Tomé, D.; Blachier, F.; et al. Epithelial response to a high-protein diet in rat colon. BMC Genom. 2017, 18, 1–14. [Google Scholar] [CrossRef]
- Vidal-Lletjós, S.; Andriamihaja, M.; Blais, A.; Grauso, M.; Lepage, P.; Davila, A.-M.; Gaudichon, C.; Leclerc, M.; Blachier, F.; Lan, A. Mucosal healing progression after acute colitis in mice. World J. Gastroenterol. 2019, 25, 3572–3589. [Google Scholar] [CrossRef]
- Martínez-García, J.J.; Canizalez-Roman, A.; Angulo-Zamudio, U.A.; Velazquez-Roman, J.; Flores-Villaseñor, H.; Valdez-Flores, M.A.; Rios-Burgueño, E.; Moran-Portela, D.; León-Sicairos, N. Lactoferrin and Metoprolol Supplementation Increase Mouse Survival in an Experimental LPS-Induced Sepsis Model. Int. J. Pept. Res. Ther. 2022, 28, 141. [Google Scholar] [CrossRef]
- Håversen, L.; Ohlsson, B.G.; Hahn-Zoric, M.; Hanson, L.A.; Mattsby-Baltzer, I. Lactoferrin down-regulates the LPS-induced cytokine production in monocytic cells via NF-kappa B. Cell Immunol. 2002, 220, 83–95. [Google Scholar] [CrossRef]
- Liu, C.; Peng, Q.; Wei, L.; Li, Z.; Zhang, X.; Wu, Y.; Wang, J.; Zheng, X.; Wen, Y.; Zheng, R.; et al. Deficiency of Lactoferrin aggravates lipopolysaccharide-induced acute inflammation via recruitment macrophage in mice. BioMetals 2023, 36, 549–562. [Google Scholar] [CrossRef]
- Garcia-Hernandez, V.; Quiros, M.; Nusrat, A. Intestinal epithelial claudins: Expression and regulation in homeostasis and inflammation. Ann. N. Y. Acad. Sci. 2017, 1397, 66–79. [Google Scholar] [CrossRef]
- Capaldo, C.T.; Powell, D.N.; Kalman, D. Layered defense: How mucus and tight junctions seal the intestinal barrier. J. Mol. Med. 2017, 95, 927–934. [Google Scholar] [CrossRef]
- Koelink, P.J.; Bloemendaal, F.M.; Li, B.; Westera, L.; Vogels, E.W.M.; van Roest, M.; Gloudemans, A.K.; van‘t Wout, A.B.; Korf, H.; Vermeire, S.; et al. Anti-TNF therapy in IBD exerts its therapeutic effect through macrophage IL-10 signalling. Gut 2020, 69, 1053–1063. [Google Scholar] [CrossRef]
- Friedman, G.; Jankowski, S.; Marchant, A.; Goldman, M.; Kahn, R.J.; Vincent, J.L. Blood interleukin 10 levels parallel the severity of septic shock. J. Crit. Care 1997, 12, 183–187. [Google Scholar] [CrossRef]
- Xie, W.; Song, L.; Wang, X.; Xu, Y.; Liu, Z.; Zhao, D.; Wang, S.; Fan, X.; Wang, Z.; Gao, C.; et al. A bovine lactoferricin-lactoferrampin-encoding Lactobacillus reuteri CO21 regulates the intestinal mucosal immunity and enhances the protection of piglets against enterotoxigenic Escherichia coli K88 challenge. Gut Microbes 2021, 13, 1956281. [Google Scholar] [CrossRef]
- Nguyen, D.N.; Jiang, P.; Jacobsen, S.; Sangild, P.T.; Bendixen, E.; Chatterton, D.E.W. Protective Effects of Transforming Growth Factor β2 in Intestinal Epithelial Cells by Regulation of Proteins Associated with Stress and Endotoxin Responses. PLoS ONE 2015, 10, e0117608. [Google Scholar] [CrossRef]
- Williams, J.M.; Duckworth, C.A.; Burkitt, M.D.; Watson, A.J.M.; Campbell, B.J.; Pritchard, D.M. Epithelial Cell Shedding and Barrier Function: A Matter of Life and Death at the Small Intestinal Villus Tip. Vet. Pathol. 2015, 52, 445–455. [Google Scholar] [CrossRef]
Ingredient (g/kg Diet) | CT | LF 0.25% | LF 1% |
---|---|---|---|
Bovine lactoferrin a | 0 | 2.5 | 10 |
Casein b | 130 | 127.5 | 120 |
Corn starch c | 630 | 630 | 630 |
Sucrose d | 103 | 103 | 103 |
Soybean oil e | 40 | 40 | 40 |
AIN 93M Mineral mix f | 35 | 35 | 35 |
AIN 93M Vitamins f | 10 | 10 | 10 |
Cellulose g | 50 | 50 | 50 |
Choline h | 2.3 | 2.3 | 2.3 |
LPS (mg/kg Bw) | LF (% of Diet) | TNF-α 2 h (pg/mL) | TNF-α 6 h (pg/mL) | Permeability 6 h FD4 (µg/mL) | Feces Water Content 2 h (%) |
---|---|---|---|---|---|
0 | 0 | 12.1 ± 1.4 a | 11.1 ± 1.5 a | 1.03 ± 0.09 a | 19.7 ± 1.4 a |
0 | 1 | 10.0 ± 1.0 a | 9.9 ± 1.1 a | 1.12 ± 0.12 a | 18.9 ± 1.4 a |
3 | 0 | 1361 ± 68 b | 363 ± 22 c | 8.08 ± 0.81 b | 72.6 ± 3.4 b, |
3 | 0.25 | 1281 ± 99 b | 235 ± 22 d | 9.25 ± 1.2 b | 72.1 ± 3.9 b |
3 | 1 | 1146 ± 106 b | 177± 12 e | 5.25 ± 0.41 c | 61.4 ± 4.1 b,* |
10 | 0 | 1308 ± 103 b | 428 ± 15 c | 9.50 ± 0.96 b | 72.2 ± 2.6 b |
10 | 0.25 | 1229 ± 92 b | 373 ± 25 c | 8.65 ± 1.7 b | 71.1 ± 3.9 b |
10 | 1 | 1227 ± 76 b | 262 ± 24 d | 5.62 ± 0.76 c | 67.2 ± 4.9 b |
Genes | CT | LPS 6 h CT | LPS 6 h LF1% | LPS 24 h CT | LPS 24 h LF1% |
---|---|---|---|---|---|
Lgr5 | 1.08 ± 0.10 | 0.74 ± 0.10 | 0.83 ± 0.19 | 0.67 ± 0.16 | 0.90 ± 0.13 |
Ephb2 | 1.02 ± 0.07 a | 2.33 ± 0.30 b | 1.35 ± 0.09 a | 2.59 ± 0.25 b | 1.37 ± 0.11 a |
Ki67 | 1.02 ± 0.10 a | 1.86 ± 0.14 b | 1.09 ± 0.10 a | 1.74 ± 0.21 b,c | 1.21 ± 0.16 a,c |
Lys5 | 1.04 ± 0.21 a | 4.04 ± 0.79 b | 1.13 ± 0.14 a | 3.44 ± 0.21 b | 0.79 ± 0.10 a |
Chga | 0.98 ± 0.07 a | 1.15 ± 0.08 a | 0.97 ± 0.09 a | 1.91 ± 0.24 b | 1.65 ± 0.10 b |
Anpep | 1.00 ± 0.10 a | 0.98 ± 0.17 a | 0.82 ± 0.13 a | 3.34 ± 0.70 b | 2.44 ± 0.10 b |
Krt20 | 0.98 ± 0.04 a | 1.45 ± 0.11 b | 0.80 ± 0.05 a | 1.73 ± 0.15 b | 0.81 ± 0.06 a |
SI | 1.00 ± 0.04 a | 0.28 ± 0.03 b | 0.37 ± 0.05 b,c | 0.25 ± 0.02 b | 0.44 ± 0.03 c |
DPPIV | 1.04 ± 0.04 a,b | 0.79 ± 0.11 a | 0.88 ± 0.11 a,b | 1.08 ± 0.14 a,b | 1.34 ± 0.06 b |
Genes | CT | LPS 6 h CT | LPS 6 h bLF1% | LPS 24 h CT | LPS 24 h bLF1% |
---|---|---|---|---|---|
TNFα | 1.08 ± 0.16 a | 3.61 ± 0.31 b | 1.91 ± 0.20 a | 4.24 ± 0.41 b | 2.01 ± 0.15 a |
IL-1β | 1.03 ± 0.10 a | 5.26 ± 0.73 b | 1.70 ± 0.24 a | 4.13 ± 0.76 b | 1.10 ± 0.16 a |
IL-6 | 0.99 ± 0.16 a | 7.00 ± 0.81 b | 6.03 ± 0.66 b | 7.00 ± 0.80 b | 2.62 ± 0.29 a |
IL-10 | 0.99 ± 0.13 a | 13.87 ± 2.65 b | 14.65 ± 2.57 b | 7.73 ± 1.00 c | 2.24 ± 0.51 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blais, A.; Takakura, N.; Grauso, M.; Puel-Artero, C.; Blachier, F.; Lan, A. Dietary Bovine Lactoferrin Reduces the Deleterious Effects of Lipopolysaccharide Injection on Mice Intestine. Nutrients 2024, 16, 4040. https://doi.org/10.3390/nu16234040
Blais A, Takakura N, Grauso M, Puel-Artero C, Blachier F, Lan A. Dietary Bovine Lactoferrin Reduces the Deleterious Effects of Lipopolysaccharide Injection on Mice Intestine. Nutrients. 2024; 16(23):4040. https://doi.org/10.3390/nu16234040
Chicago/Turabian StyleBlais, Anne, Natsuko Takakura, Marta Grauso, Caroline Puel-Artero, François Blachier, and Annaïg Lan. 2024. "Dietary Bovine Lactoferrin Reduces the Deleterious Effects of Lipopolysaccharide Injection on Mice Intestine" Nutrients 16, no. 23: 4040. https://doi.org/10.3390/nu16234040
APA StyleBlais, A., Takakura, N., Grauso, M., Puel-Artero, C., Blachier, F., & Lan, A. (2024). Dietary Bovine Lactoferrin Reduces the Deleterious Effects of Lipopolysaccharide Injection on Mice Intestine. Nutrients, 16(23), 4040. https://doi.org/10.3390/nu16234040