Current Perspectives for Treating Adolescents with Obesity and Type 2 Diabetes: A Review
Abstract
:1. Introduction
2. Materials and Methods
3. Treatment Options for T2D and Obesity in Children and Adolescents
3.1. Nonpharmacologic Therapy
3.2. Metformin
3.3. Insulin
3.4. Sodium-Glucose Transporter 2 (SGLT2) Inhibitors
3.5. Glucagon-like Peptide-1 (GLP-1) Receptor Agonists
3.6. Challenges and Special Considerations of Youth-Onset T2D Management
3.7. Other Antiobesity Medications
3.7.1. Orlistat
3.7.2. Phentermine and Topiramate
3.8. Bariatric Surgery
4. Strengths and Limitations of the Review
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bentham, J.; Di Cesare, M.; Bilano, V.; Bixby, H.; Zhou, B.; Stevens, G.A.; Riley, L.M.; Taddei, C.; Hajifathalian, K.; Lu, Y.; et al. Worldwide Trends in Body-Mass Index, Underweight, Overweight, and Obesity from 1975 to 2016: A Pooled Analysis of 2416 Population-Based Measurement Studies in 128·9 Million Children, Adolescents, and Adults. Lancet 2017, 390, 2627–2642. [Google Scholar] [CrossRef]
- Obesity and Overweight. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 22 October 2023).
- Jebeile, H.; Kelly, A.S.; O’Malley, G.; Baur, L.A. Obesity in Children and Adolescents: Epidemiology, Causes, Assessment, and Management. Lancet Diabetes Endocrinol. 2022, 10, 351. [Google Scholar] [CrossRef] [PubMed]
- Hampl, S.E.; Hassink, S.G.; Skinner, A.C.; Armstrong, S.C.; Barlow, S.E.; Bolling, C.F.; Edwards, K.C.A.; Eneli, I.; Hamre, R.; Joseph, M.M.; et al. Clinical Practice Guideline for the Evaluation and Treatment of Children and Adolescents with Obesity. Pediatrics 2023, 151, e2022060640. [Google Scholar] [CrossRef] [PubMed]
- Mazur, A.; Zachurzok, A.; Baran, J.; Dereń, K.; Łuszczki, E.; Weres, A.; Wyszyńska, J.; Dylczyk, J.; Szczudlik, E.; Drożdż, D.; et al. Childhood Obesity: Position Statement of Polish Society of Pediatrics, Polish Society for Pediatric Obesity, Polish Society of Pediatric Endocrinology and Diabetes, the College of Family Physicians in Poland and Polish Association for Study on Obesity. Nutrients 2022, 14, 3806. [Google Scholar] [CrossRef]
- Shah, A.S.; Zeitler, P.S.; Wong, J.; Pena, A.S.; Wicklow, B.; Arslanian, S.; Chang, N.; Fu, J.; Dabadghao, P.; Pinhas-Hamiel, O.; et al. ISPAD Clinical Practice Consensus Guidelines 2022: Type 2 Diabetes in Children and Adolescents Type 2 Diabetes, Pediatrics, Obesity, Youth. Pediatr. Diabetes 2022, 23, 872–902. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes Association Professional Practice Committee; American Diabetes Association Professional Practice Committee. 14. Children and Adolescents: Standards of Medical Care in Diabetes—2022. Diabetes Care 2022, 45, S208–S231. [Google Scholar] [CrossRef]
- Flores-Dorantes, M.T.; Díaz-López, Y.E.; Gutiérrez-Aguilar, R. Environment and Gene Association with Obesity and Their Impact on Neurodegenerative and Neurodevelopmental Diseases. Front. Neurosci. 2020, 14, 565326. [Google Scholar] [CrossRef]
- Abbasi, A.; Juszczyk, D.; van Jaarsveld, C.H.M.; Gulliford, M.C. Body Mass Index and Incident Type 1 and Type 2 Diabetes in Children and Young Adults: A Retrospective Cohort Study. J. Endocr. Soc. 2017, 1, 524. [Google Scholar] [CrossRef]
- Cioana, M.; Deng, J.; Nadarajah, A.; Hou, M.; Qiu, Y.; Chen, S.S.J.; Rivas, A.; Banfield, L.; Toor, P.P.; Zhou, F.; et al. The Prevalence of Obesity Among Children with Type 2 Diabetes: A Systematic Review and Meta-Analysis. JAMA Netw. Open 2022, 5, e2247186. [Google Scholar] [CrossRef]
- Liu, L.L.; Lawrence, J.M.; Davis, C.; Liese, A.D.; Pettitt, D.J.; Pihoker, C.; Dabelea, D.; Hamman, R.; Waitzfelder, B.; Kahn, H.S. Prevalence of Overweight and Obesity in Youth with Diabetes in USA: The SEARCH for Diabetes in Youth Study. Pediatr. Diabetes 2010, 11, 4–11. [Google Scholar] [CrossRef]
- Gandica, R.; Zeitler, P. Update on Youth-Onset Type 2 Diabetes: Lessons Learned from the TODAY Clinical Trial. Adv. Pediatr. 2016, 63, 195. [Google Scholar] [CrossRef] [PubMed]
- Kahn, S.E.; Lachin, J.M.; Zinman, B.; Haffner, S.M.; Aftring, R.P.; Paul, G.; Kravitz, B.G.; Herman, W.H.; Viberti, G.; Holman, R.R.; et al. Effects of Rosiglitazone, Glyburide, and Metformin on β-Cell Function and Insulin Sensitivity in ADOPT. Diabetes 2011, 60, 1552–1560. [Google Scholar] [CrossRef] [PubMed]
- Arslanian, S.; Pyle, L.; Payan, M.; Bacha, F.; Caprio, S.; Haymond, M.W.; Levitsky, L.L.; Goland, R.; White, N.H.; Willi, S.M. Effects of Metformin, Metformin plus Rosiglitazone, and Metformin plus Lifestyle on Insulin Sensitivity and β-Cell Function in TODAY. Diabetes Care 2013, 36, 1749–1757. [Google Scholar] [CrossRef]
- Constantino, M.I.; Molyneaux, L.; Limacher-Gisler, F.; Al-Saeed, A.; Luo, C.; Wu, T.; Twigg, S.M.; Yue, D.K.; Wong, J. Long-Term Complications and Mortality in Young-Onset Diabetes: Type 2 Diabetes Is More Hazardous and Lethal than Type 1 Diabetes. Diabetes Care 2013, 36, 3863–3869. [Google Scholar] [CrossRef] [PubMed]
- Westbury, S.; Oyebode, O.; van Rens, T.; Barber, T.M. Obesity Stigma: Causes, Consequences, and Potential Solutions. Curr. Obes. Rep. 2023, 12, 10–23. [Google Scholar] [CrossRef]
- O’hara, V.; Cuda, S.; Kharofa, R.; Censani, M.; Conroy, R.; Browne, N.T. Clinical Review: Guide to Pharmacological Management in Pediatric Obesity Medicine. Obes. Pillars 2023, 6, 100066. [Google Scholar] [CrossRef]
- Reinehr, T.; Kiess, W.; Kapellen, T.; Andler, W. Insulin Sensitivity among Obese Children and Adolescents, According to Degree of Weight Loss. Pediatrics 2004, 114, 1569–1573. [Google Scholar] [CrossRef]
- Hallal, P.C.; Victora, C.G.; Azevedo, M.R.; Wells, J.C.K. Adolescent Physical Activity and Health: A Systematic Review. Sports Med. 2006, 36, 1019–1030. [Google Scholar] [CrossRef]
- Hay, J.; Maximova, K.; Durksen, A.; Carson, V.; Rinaldi, R.L.; Torrance, B.; Ball, G.D.C.; Majumdar, S.R.; Plotnikoff, R.C.; Veugelers, P.; et al. Physical Activity Intensity and Cardiometabolic Risk in Youth. Arch. Pediatr. Adolesc. Med. 2012, 166, 1022–1029. [Google Scholar] [CrossRef]
- Janssen, I.; LeBlanc, A.G. Systematic Review of the Health Benefits of Physical Activity and Fitness in School-Aged Children and Youth. Int. J. Behav. Nutr. Phys. Act. 2010, 7, 40. [Google Scholar] [CrossRef]
- Foretz, M.; Guigas, B.; Viollet, B. Metformin: Update on Mechanisms of Action and Repurposing Potential. Nat. Rev. Endocrinol. 2023, 19, 460–476. [Google Scholar] [CrossRef] [PubMed]
- Soliman, A.; De Sanctis, V.; Alaaraj, N.; Hamed, N. The Clinical Application of Metformin in Children and Adolescents: A Short Update. Acta Biomed. 2020, 91, e2020086. [Google Scholar] [CrossRef]
- Bedair, A.; Hamed, N.; Soliman, A.; Alyafei, F.; Abdulkayoum, A.; Almarri, N.; Elawwa, A.; Soliman, N.; Alaaraj, N.; Ahmed, S.; et al. The Role of Metformin in Modulating Cardiometabolic Risk in Obese Pediatric Populations with Metabolic Syndrome: A Systematic Review. World J. Adv. Res. Rev. 2024, 24, 1408–1419. [Google Scholar] [CrossRef]
- Gillani, S.W.; Ghayedi, N.; Roosta, P.; Seddigh, P.; Nasiri, O. Effect of Metformin on Lipid Profiles of Type 2 Diabetes Mellitus: A Meta-Analysis of Randomized Controlled Trials. J. Pharm. Bioallied Sci. 2020, 13, 76. [Google Scholar] [CrossRef] [PubMed]
- Ferrannini, E.; DeFronzo, R.A. Impact of Glucose-Lowering Drugs on Cardiovascular Disease in Type 2 Diabetes. Eur. Heart J. 2015, 36, 2288–2296. [Google Scholar] [CrossRef]
- Ahmed, W.; Vahabi, S.; Zaman, A.G. Reducing Cardiovascular Risk in Patients with Type 2 Diabetes Mellitus. Medicine 2022, 50, 691–695. [Google Scholar] [CrossRef]
- Patel, D.; Ayesha, I.E.; Monson, N.R.; Klair, N.; Patel, U.; Saxena, A.; Hamid, P. The Effectiveness of Metformin in Diabetes Prevention: A Systematic Review and Meta-Analysis. Cureus 2023, 15, e46108. [Google Scholar] [CrossRef]
- Aroda, V.R.; Ratner, R.E. Metformin and Type 2 Diabetes Prevention. Diabetes Spectr. 2018, 31, 336. [Google Scholar] [CrossRef]
- King, P.; Peacock, I.; Donnelly, R. The UK Prospective Diabetes Study (UKPDS): Clinical and Therapeutic Implications for Type 2 Diabetes. Br. J. Clin. Pharmacol. 1999, 48, 643. [Google Scholar] [CrossRef]
- Borzutzky, C.; King, E.; Fox, C.K.; Stratbucker, W.; Tucker, J.; Yee, J.K.; Kumar, S.; Cuda, S.; Sweeney, B.; Kirk, S. Trends in Prescribing Anti-Obesity Pharmacotherapy for Paediatric Weight Management: Data from the POWER Work Group. Pediatr. Obes. 2021, 16, e12701. [Google Scholar] [CrossRef]
- McDonagh, M.S.; Selph, S.; Ozpinar, A.; Foley, C. Systematic Review of the Benefits and Risks of Metformin in Treating Obesity in Children Aged 18 Years and Younger. JAMA Pediatr. 2014, 168, 178–184. [Google Scholar] [CrossRef] [PubMed]
- Edelstein, S.L. Restoring Insulin Secretion (RISE): Design of Studies of β-Cell Preservation in Prediabetes and Early Type 2 Diabetes across the Life Span. Diabetes Care 2014, 37, 780–788. [Google Scholar] [CrossRef]
- TODAY Study Group. A Clinical Trial to Maintain Glycemic Control in Youth with Type 2 Diabetes. N. Engl. J. Med. 2012, 366, 2247–2256. [Google Scholar] [CrossRef] [PubMed]
- Heller, S. Weight Gain during Insulin Therapy in Patients with Type 2 Diabetes Mellitus. Diabetes Res. Clin. Pract. 2004, 65 (Suppl. 1), S23–S27. [Google Scholar] [CrossRef]
- Pi-Sunyer, F.X. The Impact of Weight Gain on Motivation, Compliance, and Metabolic Control in Patients with Type 2 Diabetes Mellitus. Postgrad. Med. 2009, 121, 94. [Google Scholar] [CrossRef]
- Laffel, L.; Chang, N.; Grey, M.; Hale, D.; Higgins, L.; Hirst, K.; Izquierdo, R.; Larkin, M.; Macha, C.; Pham, T.; et al. Metformin Monotherapy in Youth with Recent Onset Type 2 Diabetes: Experience from the Prerandomization Run-in Phase of the TODAY Study. Pediatr. Diabetes 2012, 13, 369–375. [Google Scholar] [CrossRef]
- Kelsey, M.M.; Geffner, M.E.; Guandalini, C.; Pyle, L.; Tamborlane, W.V.; Zeitler, P.S.; White, N.H.; McKay, S.; Anderson, B.; Bush, C.; et al. Presentation and Effectiveness of Early Treatment of Type 2 Diabetes in Youth: Lessons from the TODAY Study. Pediatr. Diabetes 2016, 17, 212–221. [Google Scholar] [CrossRef]
- Mascolo, A.; Di Napoli, R.; Balzano, N.; Cappetta, D.; Urbanek, K.; De Angelis, A.; Scisciola, L.; Di Meo, I.; Sullo, M.G.; Rafaniello, C.; et al. Safety Profile of Sodium Glucose Co-Transporter 2 (SGLT2) Inhibitors: A Brief Summary. Front. Cardiovasc. Med. 2022, 9, 1010693. [Google Scholar] [CrossRef]
- Pelletier, R.; Ng, K.; Alkabbani, W.; Labib, Y.; Mourad, N.; Gamble, J.M. Adverse Events Associated with Sodium Glucose Co-Transporter 2 Inhibitors: An Overview of Quantitative Systematic Reviews. Ther. Adv. Drug Saf. 2021, 12, 2042098621989134. [Google Scholar] [CrossRef]
- Laffel, L.M.B.; Tamborlane, W.V.; Yver, A.; Simons, G.; Wu, J.; Nock, V.; Hobson, D.; Hughan, K.S.; Kaspers, S.; Marquard, J. Pharmacokinetic and Pharmacodynamic Profile of the Sodium-glucose Co-transporter-2 Inhibitor Empagliflozin in Young People with Type 2 Diabetes: A Randomized Trial. Diabet. Med. 2018, 35, 1096. [Google Scholar] [CrossRef]
- Laffel, L.M.; Danne, T.; Klingensmith, G.J.; Tamborlane, W.V.; Willi, S.; Zeitler, P.; Neubacher, D.; Marquard, J.; Bardymova, T.; Barrientos Perez, M.; et al. Efficacy and Safety of the SGLT2 Inhibitor Empagliflozin versus Placebo and the DPP-4 Inhibitor Linagliptin versus Placebo in Youth with Type 2 Diabetes: A Multicentre, Randomised, Double-Blind, Parallel Group, Phase 3 Trial. Lancet Diabetes Endocrinol. 2023, 11, 169. [Google Scholar] [CrossRef] [PubMed]
- Shehadeh, N.; Barrett, T.; Galassetti, P.; Karlsson, C.; Monyak, J.; Iqbal, N.; Tamborlane, W.V. Dapagliflozin or Saxagliptin in Pediatric Type 2 Diabetes. NEJM Evid. 2023, 2, EVIDoa2300210. [Google Scholar] [CrossRef] [PubMed]
- Kansara, A.; Mubeen, F.; Shakil, J. SGLT2 Inhibitors in Patients with Chronic Kidney Disease and Heart Disease: A Literature Review. Methodist Debakey Cardiovasc. J. 2022, 18, 62. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Wang, M.; Wen, Z.; Lu, Z.; Cui, L.; Fu, C.; Xue, H.; Liu, Y.; Zhang, Y. GLP-1 Receptor Agonists: Beyond Their Pancreatic Effects. Front. Endocrinol. 2021, 12, 721135. [Google Scholar] [CrossRef] [PubMed]
- Parab, P.; Chaudhary, P.; Mukhtar, S.; Moradi, A.; Kodali, A.; Okoye, C.; Klein, D.; Mohamoud, I.; Olanisa, O.O.; Hamid, P. Role of Glucagon-Like Peptide-1 (GLP-1) Receptor Agonists in Cardiovascular Risk Management in Patients with Type 2 Diabetes Mellitus: A Systematic Review. Cureus 2023, 15, e45487. [Google Scholar] [CrossRef]
- Le, R.; Nguyen, M.T.; Allahwala, M.A.; Psaltis, J.P.; Marathe, C.S.; Marathe, J.A.; Psaltis, P.J. Cardiovascular Protective Properties of GLP-1 Receptor Agonists: More than Just Diabetic and Weight Loss Drugs. J. Clin. Med. 2024, 13, 4674. [Google Scholar] [CrossRef]
- Matikainen, N.; Söderlund, S.; Björnson, E.; Pietiläinen, K.; Hakkarainen, A.; Lundbom, N.; Taskinen, M.R.; Borén, J. Liraglutide Treatment Improves Postprandial Lipid Metabolism and Cardiometabolic Risk Factors in Humans with Adequately Controlled Type 2 Diabetes: A Single-Centre Randomized Controlled Study. Diabetes Obes. Metab. 2019, 21, 84–94. [Google Scholar] [CrossRef]
- Zobel, E.H.; Wretlind, A.; Ripa, R.S.; Rotbain Curovic, V.; Von Scholten, B.J.; Suvitaival, T.; Hansen, T.W.; Kjær, A.; Legido-Quigley, C.; Rossing, P. Ceramides and Phospholipids Are Downregulated with Liraglutide Treatment: Results from the LiraFlame Randomized Controlled Trial. BMJ Open Diabetes Res. Care 2021, 9, e002395. [Google Scholar] [CrossRef]
- Buse, J.B.; Nauck, M.; Forst, T.; Sheu, W.H.H.; Shenouda, S.K.; Heilmann, C.R.; Hoogwerf, B.J.; Gao, A.; Boardman, M.K.; Fineman, M.; et al. Exenatide Once Weekly versus Liraglutide Once Daily in Patients with Type 2 Diabetes (DURATION-6): A Randomised, Open-Label Study. Lancet 2013, 381, 117–124. [Google Scholar] [CrossRef]
- Piccirillo, F.; Mastroberardino, S.; Nusca, A.; Frau, L.; Guarino, L.; Napoli, N.; Ussia, G.P.; Grigioni, F. Novel Antidiabetic Agents and Their Effects on Lipid Profile: A Single Shot for Several Cardiovascular Targets. Int. J. Mol. Sci. 2023, 24, 10164. [Google Scholar] [CrossRef]
- Parks, M.; Rosebraugh, C. Weighing Risks and Benefits of Liraglutide—The FDA’s Review of a New Antidiabetic Therapy. N. Engl. J. Med. 2010, 362, 774–777. [Google Scholar] [CrossRef] [PubMed]
- de Graaf, C.; Donnelly, D.; Wootten, D.; Lau, J.; Sexton, P.M.; Miller, L.J.; Ahn, J.M.; Liao, J.; Fletcher, M.M.; Yang, D.; et al. Glucagon-Like Peptide-1 and Its Class B G Protein–Coupled Receptors: A Long March to Therapeutic Successes. Pharmacol. Rev. 2016, 68, 954–1013. [Google Scholar] [CrossRef] [PubMed]
- Rosol, T.J. On-Target Effects of GLP-1 Receptor Agonists on Thyroid C-Cells in Rats and Mice. Toxicol. Pathol. 2013, 41, 303–309. [Google Scholar] [CrossRef] [PubMed]
- Funch, D.; Mortimer, K.; Ziyadeh, N.J.; Seeger, J.D.; Zhou, L.; Ng, E.; Ross, D.; Major-Pedersen, A.; Bosch-Traberg, H.; Gydesen, H.; et al. Risk of Thyroid Cancer Associated with Use of Liraglutide and Other Antidiabetic Drugs in a US Commercially Insured Population. Diabetes Metab. Syndr. Obes. 2021, 14, 2619. [Google Scholar] [CrossRef] [PubMed]
- Tamborlane, W.V.; Barrientos-Pérez, M.; Fainberg, U.; Frimer-Larsen, H.; Hafez, M.; Hale, P.M.; Jalaludin, M.Y.; Kovarenko, M.; Libman, I.; Lynch, J.L.; et al. Liraglutide in Children and Adolescents with Type 2 Diabetes. N. Engl. J. Med. 2019, 381, 637–646. [Google Scholar] [CrossRef]
- Kelly, A.S.; Auerbach, P.; Barrientos-Perez, M.; Gies, I.; Hale, P.M.; Marcus, C.; Mastrandrea, L.D.; Prabhu, N.; Arslanian, S. A Randomized, Controlled Trial of Liraglutide for Adolescents with Obesity. N. Engl. J. Med. 2020, 382, 2117–2128. [Google Scholar] [CrossRef]
- Tamborlane, W.V.; Bishai, R.; Geller, D.; Shehadeh, N.; Al-Abdulrazzaq, D.; Vazquez, E.M.; Karoly, E.; Troja, T.; Doehring, O.; Carter, D.; et al. Once-Weekly Exenatide in Youth with Type 2 Diabetes. Diabetes Care 2022, 45, 1833–1840. [Google Scholar] [CrossRef]
- Arslanian, S.A.; Hannon, T.; Zeitler, P.; Chao, L.C.; Boucher-Berry, C.; Barrientos-Pérez, M.; Bismuth, E.; Dib, S.; Cho, J.I.; Cox, D. Once-Weekly Dulaglutide for the Treatment of Youths with Type 2 Diabetes. N. Engl. J. Med. 2022, 387, 433–443. [Google Scholar] [CrossRef]
- Weghuber, D.; Barrett, T.; Barrientos-Pérez, M.; Gies, I.; Hesse, D.; Jeppesen, O.K.; Kelly, A.S.; Mastrandrea, L.D.; Sørrig, R.; Arslanian, S. Once-Weekly Semaglutide in Adolescents with Obesity. N. Engl. J. Med. 2022, 387, 2245–2257. [Google Scholar] [CrossRef]
- Cooper, D.M.; Rothstein, M.A.; Amin, A.; Hirsch, J.D.; Cooper, E. Unintended Consequences of Glucagon-like Peptide-1 Receptor Agonists Medications in Children and Adolescents: A Call to Action. J. Clin. Transl. Sci. 2023, 7, e184. [Google Scholar] [CrossRef]
- Tamborlane, W.; Shehadeh, N. Unmet Needs in the Treatment of Childhood Type 2 Diabetes: A Narrative Review. Adv. Ther. 2023, 40, 4711–4720. [Google Scholar] [CrossRef] [PubMed]
- Currie, B.M.; Howell, T.A.; Matza, L.S.; Cox, D.A.; Johnston, J.A. A Review of Interventional Trials in Youth-Onset Type 2 Diabetes: Challenges and Opportunities. Diabetes Ther. 2021, 12, 2827–2856. [Google Scholar] [CrossRef] [PubMed]
- Zeitler, P.; Chou, H.S.; Copeland, K.C.; Geffner, M. Clinical Trials in Youth-Onset Type 2 Diabetes: Needs, Barriers, and Options. Curr. Diabetes Rep. 2015, 15, 28. [Google Scholar] [CrossRef] [PubMed]
- Crume, T.L.; Hamman, R.F.; Isom, S.; Talton, J.; Divers, J.; Mayer-Davis, E.J.; Zhong, V.W.; Liese, A.D.; Saydah, S.; Standiford, D.A.; et al. Factors Influencing Time to Case Registration for Youth with Type 1 and Type 2 Diabetes: SEARCH for Diabetes in Youth Study. Ann. Epidemiol. 2016, 26, 631–637. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, E.; Perez, R.; Hernandez, A.; Tejada, P.; Arteta, M.; Ramos, J.T. Factors and Mechanisms for Pharmacokinetic Differences between Pediatric Population and Adults. Pharmaceutics 2011, 3, 53. [Google Scholar] [CrossRef]
- Serbis, A.; Giapros, V.; Kotanidou, E.P.; Galli-Tsinopoulou, A.; Siomou, E. Diagnosis, Treatment and Prevention of Type 2 Diabetes Mellitus in Children and Adolescents. World J. Diabetes 2021, 12, 344–365. [Google Scholar] [CrossRef] [PubMed]
- Sabolic, L.L.G.; Marusic, S.; Berkovic, M.C. Challenges and Pitfalls of Youth-Onset Type 2 Diabetes. World J. Diabetes 2024, 15, 876. [Google Scholar] [CrossRef]
- Patel, S.; Abreu, M.; Tumyan, A.; Adams-Huet, B.; Li, X.; Lingvay, I. Effect of Medication Adherence on Clinical Outcomes in Type 2 Diabetes: Analysis of the SIMPLE Study. BMJ Open Diabetes Res. Care 2019, 7, e000761. [Google Scholar] [CrossRef]
- Egede, L.E.; Gebregziabher, M.; Dismuke, C.E.; Lynch, C.P.; Axon, R.N.; Zhao, Y.; Mauldin, P.D. Medication Nonadherence in Diabetes: Longitudinal Effects on Costs and Potential Cost Savings from Improvement. Diabetes Care 2012, 35, 2533–2539. [Google Scholar] [CrossRef]
- Niechciał, E.; Acerini, C.L.; Chiesa, S.T.; Stevens, T.; Neil Dalton, R.; Daneman, D.; Deanfield, J.E.; Jones, T.W.; Mahmud, F.H.; Marshall, S.M.; et al. Medication Adherence During Adjunct Therapy with Statins and ACE Inhibitors in Adolescents with Type 1 Diabetes. Diabetes Care 2020, 43, 1070–1076. [Google Scholar] [CrossRef]
- Lucas, K.H.; Kaplan-Machlis, B. Orlistat—A Novel Weight Loss Therapy. Ann. Pharmacother. 2001, 35, 314–328. [Google Scholar] [CrossRef] [PubMed]
- Chanoine, J.P.; Hampl, S.; Jensen, C.; Boldrin, M.; Hauptman, J. Effect of Orlistat on Weight and Body Composition in Obese Adolescents: A Randomized Controlled Trial. JAMA 2005, 293, 2873–2883. [Google Scholar] [CrossRef] [PubMed]
- Nuffer, W. Pharmacologic Agents Chapter for Abdominal Obesity. In Nutrition in the Prevention and Treatment of Abdominal Obesity; Academic Press: Cambridge, MA, USA, 2019; pp. 51–66. [Google Scholar] [CrossRef]
- Smith, S.M.; Meyer, M.; Trinkley, K.E. Phentermine/Topiramate for the Treatment of Obesity. Ann. Pharmacother. 2013, 47, 340–349. [Google Scholar] [CrossRef]
- Ryder, J.R.; Kaizer, A.; Rudser, K.D.; Gross, A.; Kelly, A.S.; Fox, C.K. Effect of Phentermine on Weight Reduction in a Pediatric Weight Management Clinic. Int. J. Obes. 2017, 41, 90–93. [Google Scholar] [CrossRef] [PubMed]
- Richard, D.; Picard, F.; Lemieux, C.; Lalonde, J.; Samson, P.; Deshaies, Y. The Effects of Topiramate and Sex Hormones on Energy Balance of Male and Female Rats. Int. J. Obes. Relat. Metab. Disord. 2002, 26, 344–353. [Google Scholar] [CrossRef] [PubMed]
- Eliasson, B.; Gudbjörnsdottir, S.; Cederholm, J.; Liang, Y.; Vercruysse, F.; Smith, U. Weight Loss and Metabolic Effects of Topiramate in Overweight and Obese Type 2 Diabetic Patients: Randomized Double-Blind Placebo-Controlled Trial. Int. J. Obes. 2007, 31, 1140–1147. [Google Scholar] [CrossRef]
- Kelly, A.S.; Bensignor, M.O.; Hsia, D.S.; Shoemaker, A.H.; Shih, W.; Peterson, C.; Varghese, S.T. Phentermine/Topiramate for the Treatment of Adolescent Obesity. NEJM Evid. 2022, 1, EVIDoa2200014. [Google Scholar] [CrossRef]
- Nobili, V.; Vajro, P.; Dezsofi, A.; Fischler, B.; Hadzic, N.; Jahnel, J.; Lamireau, T.; McKiernan, P.; McLin, V.; Socha, P.; et al. Indications and Limitations of Bariatric Intervention in Severely Obese Children and Adolescents with and without Nonalcoholic Steatohepatitis: ESPGHAN Hepatology Committee Position Statement. J. Pediatr. Gastroenterol. Nutr. 2015, 60, 550–561. [Google Scholar] [CrossRef]
- Eisenberg, D.; Shikora, S.A.; Aarts, E.; Aminian, A.; Angrisani, L.; Cohen, R.V.; De Luca, M.; Faria, S.L.; Goodpaster, K.P.S.; Haddad, A.D.; et al. 2022 American Society for Metabolic and Bariatric Surgery (ASMBS) and International Federation for the Surgery of Obesity and Metabolic Disorders (IFSO): Indications for Metabolic and Bariatric Surgery. Surg. Obes. Relat. Dis. 2022, 18, 1345–1356. [Google Scholar] [CrossRef]
- Inge, T.H.; Courcoulas, A.P.; Jenkins, T.M.; Michalsky, M.P.; Helmrath, M.A.; Brandt, M.L.; Harmon, C.M.; Zeller, M.H.; Chen, M.K.; Xanthakos, S.A.; et al. Weight Loss and Health Status 3 Years after Bariatric Surgery in Adolescents. N. Engl. J. Med. 2016, 374, 113–123. [Google Scholar] [CrossRef]
- Inge, T.H.; Laffel, L.M.; Jenkins, T.M.; Marcus, M.D.; Leibel, N.I.; Brandt, M.L.; Haymond, M.; Urbina, E.M.; Dolan, L.M.; Zeitler, P.S.; et al. Comparison of Surgical and Medical Therapy for Type 2 Diabetes in Severely Obese Adolescents. JAMA Pediatr. 2018, 172, 452–460. [Google Scholar] [CrossRef] [PubMed]
- Inge, T.H.; Courcoulas, A.P.; Jenkins, T.M.; Michalsky, M.P.; Brandt, M.L.; Xanthakos, S.A.; Dixon, J.B.; Harmon, C.M.; Chen, M.K.; Xie, C.; et al. Five-Year Outcomes of Gastric Bypass in Adolescents as Compared with Adults. N. Engl. J. Med. 2019, 380, 2136–2145. [Google Scholar] [CrossRef] [PubMed]
- Tamborlane, W.V.; Laffel, L.M.; Shehadeh, N.; Isganaitis, E.; Van Name, M.; Ratnayake, J.; Karlsson, C.; Norjavaara, E. Efficacy and Safety of Dapagliflozin in Children and Young Adults with Type 2 Diabetes: A Prospective, Multicentre, Randomised, Parallel Group, Phase 3 Study. Lancet Diabetes Endocrinol. 2022, 10, 341–350. [Google Scholar] [CrossRef] [PubMed]
- Santos Cavaiola, T.; Pettus, J. Cardiovascular Effects of Sodium Glucose Cotransporter 2 Inhibitors. Diabetes Metab. Syndr. Obes. 2018, 11, 133. [Google Scholar] [CrossRef] [PubMed]
- Kristensen, S.L.; Jensen, J.; Schou, M. SGLT2 Inhibitors in Patients with Heart Failure and Chronic Kidney Disease: Jigsaw Falling into Place. J. Am. Coll. Cardiol. 2023, 81, 1915–1917. [Google Scholar] [CrossRef] [PubMed]
- Berman, C.; Vidmar, A.P.; Chao, L.C. Glucagon-like Peptide-1 Receptor Agonists for the Treatment of Type 2 Diabetes in Youth. Touchreviews Endocrinol. 2023, 19, 38. [Google Scholar] [CrossRef] [PubMed]
- Lamoshi, A.; Chernoguz, A.; Harmon, C.M.; Helmrath, M. Complications of Bariatric Surgery in Adolescents. Semin. Pediatr. Surg. 2020, 29, 150888. [Google Scholar] [CrossRef]
Biguanides (Metformin) | SGLT2 Receptor Agonists (Empagliflozin/Dapagliflozin) | GLP-1 Agonists (Liraglutide/Exenatide) | |
---|---|---|---|
Effects/Mechanism of actions | Acts via AMP kinase in liver, muscle, and fat. Inhibit hepatic gluconeogenesis and increase peripheral glucose uptake and insulin sensitivity. | Inhibit renal tubular reabsorption of glucose and lower the renal threshold for glucose, thereby increasing urinary glucose excretion. | Increase insulin secretion proportionate to blood glucose concentrations, suppressing glucagon, prolonging gastric emptying, and promoting satiety. |
Percent HbA1c lowering | 1–2% | 1–2% Dapagliflozin use in youth with T2D did not show benefit relative to metformin ± insulin, although subanalysis presented a 1.1% HbA1c drop in adolescents that reported consistent use. | Ellipse trial showed the liraglutide group had 1% and 1.5% HbA1c reduction at 26 and 52 weeks, respectively. Exenetide (Bydureon) 2 mg once a week lowered HbA1c by 0.85% compared to a placebo. |
Cardiovascular benefits and risk | Reduce MI by 39% and coronary deaths by 50%. | Positive CV effect due to reduction in Na and UA absorption and reduction in BP. | Reduce CV risk. |
Effect on lipid profile | |||
HDL cholesterol level | ↑ | ↑ | ↑ |
LDL cholesterol level | ↓ | ↔ or ↑ | ↓ |
Triglycerides level | ↓ | ↔ | ↓ |
Weight loss | ↔ or ↓ | ↓ | ↓↓ |
Risk of hypoglycemia | ↔ | ↔ | ↔ |
Study ID | Drug | Study Design | Endpoints | Outcome |
---|---|---|---|---|
Zeitler et al. [34] | Metformin (biguanides) | N = 699 youth with overweight and T2D receiving metformin (1000 mg b.i.d.) with HbA1c up to 8% aged 10–17 years Group 1: Metformin (1000 mg × 2/24 h) for 6 months Group 2: Metformin plus RZ (4 mg × 2/24 h) Group 3: Metformin plus lifestyle program | The primary endpoint was a loss of glycemic control, defined as HbA1c > 8% for 6 months or sustained metabolic decompensation requiring insulin | Metformin failed to control T2D in 51.7% of participants. Metformin plus RZ was more effective than metformin alone (51.7% vs. 38.6%). Metformin plus lifestyle intervention significantly differed from metformin alone or metformin plus RZ (46.6%). |
Laffel et al. [37] | Empagliflozin (SGLT2 receptor agonists) | N = 157 adolescents with uncontrolled T2D (HbA1c ≥ 6.5 to ≤10.5%) despite metformin and/or insulin aged 10–17 years Group 1: Empagliflozin 10 mg (o.d.) for 26 weeks. At week 12, when HbA1c ≤ 7.0%, individuals were again randomized to remain on 10 mg or increase to 25 mg Group 2: Linagliptin 5 mg (o.d.) Group 3: placebo (o.d.) | The primary outcome was a change from baseline in HbA1c at 26 weeks | Empagliflozin as an adjunct to other treatment methods (diet, exercise, metformin, and/or insulin) significantly reduced HbA1c by 0.8% at week 26 compared with the placebo. |
Shehadeh et al. [87] | Dapagliflozin (SGLT2 receptor agonists) | N = 256 adolescents with uncontrolled T2D (HbA1c ≤ 10.5%) despite diet and exercise and/or metformin and/or insulin aged 10–17 years Group 1: Dapagliflozin 5 mg (o.d.) for 26 weeks. At week 12, when HbA1c ≤ 7.0%, individuals were again randomized to remain on 5 mg or increase to 10 mg Group 2: Saxagliptin 2.5 mg (o.d.) for 26 weeks. At week 12, when HbA1c ≤ 7.0%, individuals were again randomized to remain on 2.5 mg or increase to 5 mg. Group 3: placebo for 26 weeks | The primary endpoint was a change in HbA1c at week 26 | At 26 weeks, participants assigned to dapagliflozin had a 0.62% point reduction in HbA1c compared with a 0.41% point increase for the placebo group. |
Tamborlane et al. [56] | Liraglutide (GLP-1 agonists) | N = 134 adolescents with BMI ≥ 85th percentile and uncontrolled T2D [HbA1c < 7.0 to ≤11.0% if participants treated with diet and exercise or HbA1c < 6.5 to ≤11.0% if they were on metformin (with or without insulin)] aged 10–17 years Group 1: S.C. liraglutide (dose increased 0.6, 0.9, 1.2, and 1.8 mg/24 h) for 26 weeks Group 2: placebo (26 weeks blinded and 26 weeks unblinded) | The primary outcome was a change from baseline in HbA1c at 26 weeks. Secondary endpoints included the change in FPG | At week 26, the mean HbA1c level decreased to 0.64% from a baseline in those on liraglutide and only 0.42% in the placebo group. FPG had reduced at both time points in the liraglutide group but had increased in the placebo group. |
Tamborlane et al. [58] | Exenatide (an extended -release version of GLP-1 agonist) | N = 83 adolescents with uncontrolled T2D (HbA1c < 6.5 ≤ 11.0% if participants were not taking insulin, or HbA1c% < 6.5 ≤ 12.0% if they were insulin, or treated with diet and exercise or in combination with a stable dose of an oral antidiabetic drug and/or insulin for at least 2 months. Group 1: S.C. exenatide (2 mg q.w.) for 24 weeks Group 2: placebo for 24 weeks | The primary endpoint was a change in HbA1c at week 24 | At 24 weeks, the least squares mean change in HbA1c was −0.36% for the exenatide and +0.49% for the placebo. |
Arslanian et al. [59] | Dulaglutide (GLP-1 agonists) | N = 154 adolescents with uncontrolled T2D, HbA1c > 6.5% to <11%, treated with diet and exercise, with or without metformin and/or basal insulin, aged 10–17 years Group 1: S.C. dulaglutide (0.75 mg q.w.) for 26 weeks Group 2: S.C. dulaglutide (1.5 mg q.w) Group 3: placebo | The primary endpoint was the change from baseline in HbA1c level at 26 weeks; secondary endpoints included HbA1c < 7.0% and changes from baseline in the FPG and BMI | At 26 weeks, more participants on dulaglutide achieved HbA1c < 7% than in the placebo group (51% vs. 14%). FPG increased in the placebo group and decreased in the pooled dulaglutide groups, and there were no between-group differences in the change in BMI. |
Study ID | Drug | Study Design | Endpoints | Outcome |
---|---|---|---|---|
Kelly et al. [57] | Liraglutide (GLP-1 agonists) | N = 251 adolescents with BMI ≥ 95th percentile and a poor response to lifestyle therapy aged 12–17 years Group 1: S.C. liraglutide (3 mg/24 h) for 26 weeks, followed by a 26-week observational period Group 2: placebo in addition to lifestyle intervention for a 56-week treatment period | The primary endpoint was the change from baseline in the BMI-SD at week 56 | Participants on liraglutide had a greater decrease in BMI-SD than those from the placebo group (43.3% vs. 18.7%). |
Weghuber et al. [60] | Semaglutide (GLP-1 agonists) | N = 201 adolescents with BMI ≥95th percentile or >85th percentile with 1 or more weight-related comorbidities: HA, dyslipidemia, obstructive sleep apnea, or T2D, and a poor response to lifestyle, aged 12–17 years Group 1: S.C. semaglutide (2.4 mg q.w.) for 68 weeks Group 2: placebo in conjunction with diet and physical activity modifications for a 68-week period | The primary endpoint was the percentage change in BMI from baseline to week 68; the secondary endpoint was a decrease in body weight of at least 5% | The mean change in BMI was −16.1% with semaglutide and 0.6% with placebo. At the end of the study, 73% of participants on semaglutide had a weight loss of 5% or more, as compared with 18% in the placebo group. |
Chanoine et al. [73] | Orlistat (lipase inhibitor) | N = 593 adolescents with BMI ≥ 2 units above the 95th percentile, aged 12–16 years Group 1: a 120 mg dose of orlistat 3 times daily for 1 year, as an adjunct to a hypocaloric diet (30% fat calories) and lifestyle modifications Group 2: placebo for 1 year, as an adjunct to hypocaloric diet (30% fat calories) and lifestyle modifications | The primary endpoint was the percentage change in BMI from baseline to the end of the study; secondary measures included changes in WHR, weight loss, lipid measurements, and glucose and insulin responses to the OGTT | At the end of the study, BMI had decreased by 0.55 with orlistat but increased by 0.31 with placebo. WHR decreased in the orlistat group but increased in the placebo group. |
Kelly et al. [79] | PHEN/TPM (anorectics/ anticonvulsants) | N = 223 adolescents with obesity, BMI ≥ 95th percentile, and a poor response to lifestyle therapy alone aged 12–16 Group 1: mid-dose PHEN/TPM (7.5 mg/46 mg, o.d.) plus lifestyle therapy for 56 weeks Group 2: top-dose PHEN/TPM (15 mg/92 mg, o.d.) plus lifestyle therapy for 56 weeks Group 3: placebo plus lifestyle therapy for 56 weeks | The primary endpoint was the mean percent change in BMI from baseline to week 56 | The primary outcome of percent change in BMI at week 56 showed differences from placebo of −10.44 percentage points and −8.11 percentage points for the top and mid doses of PHEN/TPM, respectively. |
Medication | Indication | Benefits | Potential Side Effects | Approval FDA/EMA |
---|---|---|---|---|
SGLT2 inhibitors (empagliflozin/dapagliflozin) | As an adjunct to diet and exercise to improve glycemic control in children aged 10 years and older with T2D | Beneficial effect on HbA1c | UTI, female/male genital mycotic infections, URTIs, polyuria, back pain, nausea, dyslipidemia, increases serum creatinine and decreases eGFR, renal impairment, necrotizing fasciitis of the perineum, and DKA. | FDA/EMA |
Liraglutide (Victoza, 0.6–1.8 mg daily): T2D in children ≥ 10 years | Beneficial effect on HbA1c and weight loss, reduction in the risk of T2D complications | Gastrointestinal nausea, vomiting, and diarrhea. Hypoglycemia (S). Warnings: personal or family history of medullary thyroid carcinoma or in patients with MEN2, pregnancy. | FDA/EMA | |
GLP-1 receptor agonist | Liraglutide (Saxenda, 3 mg a day): weight management in adolescents ≥ 12 years | Beneficial effect on weight loss | Cautions: acute pancreatitis, acute events of gallbladder disease, and renal impairment related to dehydration. | |
Exenatide (BYDUREON BCise): T2D in children ≥ 10 years | Beneficial effect on HbA1c | The same as liraglutide plus injection site nodule. | ||
Dulaglutide (Trulicity): T2D in children ≥ 10 years | Beneficial effect on glycemic control | The same as liraglutide plus DR progression among patients with a history of DR. | ||
Semaglutide (Wegovy): weight management in adolescents ≥ 12 yrs | Beneficial effect on weight loss | The same as liraglutide plus hypoglycemia. | ||
Orlistat (Xenical) | Weight management for adolescents 12 years and older | Beneficial effect on weight loss | Oily spotting, abdominal pain, nausea, fatty/oil stool, reduced absorption of fat-soluble vitamins, and liver failure. Contraindications: chronic malabsorption syndrome, cholestasis. Cautions: If a meal is missed or contains no fat, the dose should be omitted, and a multivitamin supplement is recommended. | FDA |
Phentermine/ topiramate (Qsymia) | Weight management for adolescents 12 years and older | Beneficial effect on weight loss | Insomnia, dry mouth, increased heart rate, anxiety, increased blood pressure, cognitive dysfunction, metabolic acidosis, teratogenicity, and kidney stones. Contraindications: history of CVD, glaucoma, agitated states, hyperthyroidism, history of DA, use of MAOIs within the preceding 14 days. | FDA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niechciał, E.; Wais, P.; Bajtek, J.; Kędzia, A. Current Perspectives for Treating Adolescents with Obesity and Type 2 Diabetes: A Review. Nutrients 2024, 16, 4084. https://doi.org/10.3390/nu16234084
Niechciał E, Wais P, Bajtek J, Kędzia A. Current Perspectives for Treating Adolescents with Obesity and Type 2 Diabetes: A Review. Nutrients. 2024; 16(23):4084. https://doi.org/10.3390/nu16234084
Chicago/Turabian StyleNiechciał, Elżbieta, Paulina Wais, Jan Bajtek, and Andrzej Kędzia. 2024. "Current Perspectives for Treating Adolescents with Obesity and Type 2 Diabetes: A Review" Nutrients 16, no. 23: 4084. https://doi.org/10.3390/nu16234084
APA StyleNiechciał, E., Wais, P., Bajtek, J., & Kędzia, A. (2024). Current Perspectives for Treating Adolescents with Obesity and Type 2 Diabetes: A Review. Nutrients, 16(23), 4084. https://doi.org/10.3390/nu16234084