Prebiotic Strategies to Manage Lactose Intolerance Symptoms
Abstract
:1. Introduction
2. Lactose Biosynthesis and Lactase
3. Mechanisms of Lactose Malabsorption and Intolerance
4. Lactase Non-Persistence and Persistence
5. Diagnosis
6. Management of Symptoms
6.1. The Use of Prebiotics in the Management of LI Symptoms
6.2. Gut Microbiota and Lactose Intolerance
6.2.1. Prebiotics and Galactooligosaccharides (GOS)
6.2.2. Impact of GOS on Lactose Intolerance
6.2.3. Potential Mechanism for Lactose Utilization and Symptom Reduction
6.2.4. Lactose as a Prebiotic and Microbial Adaptation to Lactose Consumption
Study | Intervention | Subject Count | Condensed Findings |
---|---|---|---|
[15] | Study 1: lactose (incrementally increasing from 0.3 to 1.0 g/kg of body weight over 17 days vs. dextrose control periods (crossover) Study 2: Lactose dose increased from (0.6 to 1.0 g/kg of body wt/day) vs. dextrose control in a 10-day crossover study | Study 1: 9; Study 2: 20 | Study 1: Increased fecal β-galactosidase. Non-significant decrease in breath hydrogen post-lactose challenge. Study 2: No severe symptoms; significant reduction in flatulence and breath hydrogen during lactose phase in response to a lactose challenge. |
[14] | 17 g of lactose twice a day vs. sucrose control for 14 days | 46 (lactose n = 24; sucrose n = 22) | Increased fecal β-galactosidase, decreased breath hydrogen after lactose challenge; non-significant decrease in symptoms. |
[93] | Incremental lactose doses from 3 g to 12 g twice daily for 12 weeks | 25 | Bifidobacterium and fecal β-galactosidase activity increased; reduced post-lactose challenge breath hydrogen. Lactose well-tolerated. |
[97] | 33 g of lactose from 4 servings dairy food per day for 21 days | 14 | Significant decrease in breath hydrogen after lactose challenge; minimal LI symptoms without significant change over time. |
[16] | 15 g of lactose for six days | 24 | Decrease in Bacteroides and Clostridium; increase in Lactobacillus; no data on LI symptoms or hydrogen breath concentration. |
[98] | 25 g of lactose twice daily for two weeks | 41 (23 LI, 18 LP) | Significant increase in Bifidobacteria for LI group; non-significant increase in Lactobacilli; non-significant reductions in symptoms and hydrogen breath after a lactose challenge. |
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gaucheron, F. Milk and Dairy Products: A Unique Micronutrient Combination. J. Am. Coll. Nutr. 2011, 30, 400S–409S. [Google Scholar] [CrossRef] [PubMed]
- Oftedal, O.T. The Evolution of Milk Secretion and Its Ancient Origins. Animal 2012, 6, 355–368. [Google Scholar] [CrossRef] [PubMed]
- Misselwitz, B.; Butter, M.; Verbeke, K.; Fox, M.R. Update on Lactose Malabsorption and Intolerance: Pathogenesis, Diagnosis and Clinical Management. Gut 2019, 68, 2080–2091. [Google Scholar] [CrossRef]
- Silanikove, N.; Leitner, G.; Merin, U. The Interrelationships between Lactose Intolerance and the Modern Dairy Industry: Global Perspectives in Evolutional and Historical Backgrounds. Nutrients 2015, 7, 7312. [Google Scholar] [CrossRef]
- Gaskin, D.J.; Ilich, J.Z. Lactose Maldigestion Revisited: Diagnosis, Prevalence in Ethnic Minorities, and Dietary Recommendations to Overcome It. Am. J. Lifestyle Med. 2009, 3, 212–218. [Google Scholar] [CrossRef]
- Fassio, F.; Facioni, M.S.; Guagnini, F. Lactose Maldigestion, Malabsorption, and Intolerance: A Comprehensive Review with a Focus on Current Management and Future Perspectives. Nutrients 2018, 10, 1599. [Google Scholar] [CrossRef] [PubMed]
- Troelsen, J.T. Adult-Type Hypolactasia and Regulation of Lactase Expression. Biochim. Biophys. Acta 2005, 1723, 19–32. [Google Scholar] [CrossRef]
- Montgomery, R.K.; Krasinski, S.D.; Hirschhorn, J.N.; Grand, R.J. Lactose and Lactase--Who Is Lactose Intolerant and Why? J. Pediatr. Gastroenterol. Nutr. 2007, 45 (Suppl. S2), S131–S137. [Google Scholar] [CrossRef]
- Gerbault, P.; Liebert, A.; Itan, Y.; Powell, A.; Currat, M.; Burger, J.; Swallow, D.M.; Thomas, M.G. Evolution of Lactase Persistence: An Example of Human Niche Construction. Philos. Trans. R. Soc. B Biol. Sci. 2011, 366, 863. [Google Scholar] [CrossRef]
- Ingram, C.J.E.; Mulcare, C.A.; Itan, Y.; Thomas, M.G.; Swallow, D.M. Lactose Digestion and the Evolutionary Genetics of Lactase Persistence. Hum. Genet. 2009, 124, 579–591. [Google Scholar] [CrossRef]
- Forsgård, R.A. Lactose Digestion in Humans: Intestinal Lactase Appears to Be Constitutive Whereas the Colonic Microbiome Is Adaptable. Am. J. Clin. Nutr. 2019, 110, 273–279. [Google Scholar] [CrossRef] [PubMed]
- Azcarate-Peril, M.A.; Ritter, A.J.; Savaiano, D.; Monteagudo-Mera, A.; Anderson, C.; Magness, S.T.; Klaenhammer, T.R. Impact of Short-Chain Galactooligosaccharides on the Gut Microbiome of Lactose-Intolerant Individuals. Proc. Natl. Acad. Sci. USA 2017, 114, E367–E375. [Google Scholar] [CrossRef] [PubMed]
- Chey, W.; Sandborn, W.; Ritter, A.J.; Foyt, H.; Azcarate-Peril, M.A.; Savaiano, D.A. Galacto-Oligosaccharide RP-G28 Improves Multiple Clinical Outcomes in Lactose-Intolerant Patients. Nutrients 2020, 12, 1058. [Google Scholar] [CrossRef] [PubMed]
- Briet, F.; Pochart, P.; Marteau, P.; Flourie, B.; Arrigoni, E.; Rambaud, J.C. Improved Clinical Tolerance to Chronic Lactose Ingestion in Subjects with Lactose Intolerance: A Placebo Effect? Gut 1997, 41, 632–635. [Google Scholar] [CrossRef] [PubMed]
- Hertzler, S.R.; Savaiano, D.A. Colonic Adaptation to Daily Lactose Feeding in Lactose Maldigesters Reduces Lactose Intolerance. Am. J. Clin. Nutr. 1996, 64, 232–236. [Google Scholar] [CrossRef] [PubMed]
- Ito, M.; Kimura, M. Influence of Lactose on Faecal Microflora in Lactose Maldigestors. Microb. Ecol. Health Dis. 1993, 6, 73–76. [Google Scholar] [CrossRef]
- Savaiano, D.A.; Ritter, A.J.; Klaenhammer, T.R.; James, G.M.; Longcore, A.T.; Chandler, J.R.; Walker, W.A.; Foyt, H.L. Improving Lactose Digestion and Symptoms of Lactose Intolerance with a Novel Galacto-Oligosaccharide (RP-G28): A Randomized, Double-Blind Clinical Trial. Nutr. J. 2013, 12, 160. [Google Scholar] [CrossRef] [PubMed]
- Brüssow, H. Nutrition, Population Growth and Disease: A Short History of Lactose. Environ. Microbiol. 2013, 15, 2154–2161. [Google Scholar] [CrossRef] [PubMed]
- Adam, A.C.; Rubio-Texeira, M.; Polaina, J. Lactose: The Milk Sugar from a Biotechnological Perspective. Crit. Rev. Food Sci. Nutr. 2004, 44, 553–557. [Google Scholar] [CrossRef]
- Ségurel, L.; Bon, C. On the Evolution of Lactase Persistence in Humans. Annu. Rev. Genom. Hum. Genet. 2017, 18, 297–319. [Google Scholar] [CrossRef]
- McNeilly, A.S. Breastfeeding and the Suppression of Fertility. Food Nutr. Bull. 1996, 17, 340–345. [Google Scholar] [CrossRef]
- Sequeira, E.; Kaur, G.; Chintamaneni, M.; Buttar, H.S. Lactose Intolerance: Genetics of Lactase Polymorphisms, Diagnosis and Novel Therapy. Biomed. Rev. 2014, 25, 35–44. [Google Scholar] [CrossRef]
- DI Costanzo, M.; Berni Canani, R. Lactose Intolerance: Common Misunderstandings. Ann. Nutr. Metab. 2018, 73 (Suppl. S4), 30–37. [Google Scholar] [CrossRef] [PubMed]
- Usai-Satta, P. Lactose Malabsorption and Intolerance: What Should Be the Best Clinical Management? World J. Gastrointest. Pharmacol. Ther. 2012, 3, 29. [Google Scholar] [CrossRef] [PubMed]
- Mattar, R.; Mazo, D.F.d.C.; Carrilho, F.J. Lactose Intolerance: Diagnosis, Genetic, and Clinical Factors. Clin. Exp. Gastroenterol. 2012, 5, 113. [Google Scholar] [CrossRef] [PubMed]
- Firrman, J.; Liu, L.S.; Mahalak, K.; Hu, W.; Bittinger, K.; Moustafa, A.; Jones, S.M.; Narrowe, A.; Tomasula, P. An in Vitro Analysis of How Lactose Modifies the Gut Microbiota Structure and Function of Adults in a Donor-Independent Manner. Front. Nutr. 2023, 9, 1040744. [Google Scholar] [CrossRef]
- McKay, L.F.; Holbrook, W.P.; Eastwood, M.A. Methane and Hydrogen Production by Human Intestinal Anaerobic Bacteria. Acta Pathol. Microbiol. Immunol. Scand. B 1982, 90, 257–260. [Google Scholar] [CrossRef] [PubMed]
- Chia, L.W.; Mank, M.; Blijenberg, B.; Aalvink, S.; Bongers, R.S.; Stahl, B.; Knol, J.; Belzer, C. Bacteroides Thetaiotaomicron Fosters the Growth of Butyrate-Producing Anaerostipes Caccae in the Presence of Lactose and Total Human Milk Carbohydrates. Microorganisms 2020, 8, 1513. [Google Scholar] [CrossRef] [PubMed]
- Delwiche, E.A.; Pestka, J.J.; Tortorello, M.L. The Veillonellae: Gram-Negative Cocci with a Unique Physiology. Annu. Rev. Microbiol. 1985, 39, 175–193. [Google Scholar] [CrossRef]
- Vesth, T.; Ozen, A.; Andersen, S.C.; Sommer Kaas, R.; Lukjancenko, O.; Bohlin, J.; Nookaew, I.; Wassenaar, T.M.; Ussery, D.W. Veillonella, Firmicutes: Microbes Disguised as Gram Negatives. Stand. Genomic Sci. 2013, 9, 431–448. [Google Scholar] [CrossRef]
- Miller, T.L.; Wolin, M.J.; De Macario, E.C.; Macario, A.J.L. Isolation of Methanobrevibacter Smithii from Human Feces. Appl. Environ. Microbiol. 1982, 43, 227–232. [Google Scholar] [CrossRef] [PubMed]
- Dridi, B.; Henry, M.; El Khéchine, A.; Raoult, D.; Drancourt, M. High Prevalence of Methanobrevibacter Smithii and Methanosphaera Stadtmanae Detected in the Human Gut Using an Improved DNA Detection Protocol. PLoS ONE 2009, 4, e7063. [Google Scholar] [CrossRef]
- De Lacy Costello, B.P.J.; Ledochowski, M.; Ratcliffe, N.M. The Importance of Methane Breath Testing: A Review. J. Breath. Res. 2013, 7, 024001. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Misselwitz, B.; Dai, N.; Fox, M. Lactose Intolerance in Adults: Biological Mechanism and Dietary Management. Nutrients 2015, 7, 8020. [Google Scholar] [CrossRef] [PubMed]
- Ranciaro, A.; Campbell, M.C.; Hirbo, J.B.; Ko, W.Y.; Froment, A.; Anagnostou, P.; Kotze, M.J.; Ibrahim, M.; Nyambo, T.; Omar, S.A.; et al. Genetic Origins of Lactase Persistence and the Spread of Pastoralism in Africa. Am. J. Hum. Genet. 2014, 94, 496–510. [Google Scholar] [CrossRef] [PubMed]
- Cook, G.C. Lactase Activity in Newborn and Infant Baganda. Br. Med. J. 1967, 1, 527. [Google Scholar] [CrossRef] [PubMed]
- Tadesse, K.; Leung, D.; Yuen, R. The Status of Lactose Absorption in Hong Kong Chinese Children. Acta Paediatr. 1992, 81, 598–600. [Google Scholar] [CrossRef]
- Tishkoff, S.A.; Reed, F.A.; Ranciaro, A.; Voight, B.F.; Babbitt, C.C.; Silverman, J.S.; Powell, K.; Mortensen, H.M.; Hirbo, J.B.; Osman, M.; et al. Convergent Adaptation of Human Lactase Persistence in Africa and Europe. Nat. Genet. 2006, 39, 31–40. [Google Scholar] [CrossRef]
- Simoons, F.J. Primary Adult Lactose Intolerance and the Milking Habit: A Problem in Biologic and Cultural Interrelations. II. A Culture Historical Hypothesis. Am. J. Dig. Dis. 1970, 15, 695–710. [Google Scholar] [CrossRef]
- Ugidos-Rodríguez, S.; Matallana-González, M.C.; Sánchez-Mata, M.C. Lactose Malabsorption and Intolerance: A Review. Food Funct. 2018, 9, 4056–4068. [Google Scholar] [CrossRef]
- Bayless, T.M.; Brown, E.; Paige, D.M. Lactase Non-Persistence and Lactose Intolerance. Curr. Gastroenterol. Rep. 2017, 19, 23. [Google Scholar] [CrossRef] [PubMed]
- Anguita-Ruiz, A.; Aguilera, C.M.; Gil, Á. Genetics of Lactose Intolerance: An Updated Review and Online Interactive World Maps of Phenotype and Genotype Frequencies. Nutrients 2020, 12, 2689. [Google Scholar] [CrossRef] [PubMed]
- Swallow, D.M. Genetics of Lactase Persistence and Lactose Intolerance. Annu. Rev. Genet. 2003, 37, 197–219. [Google Scholar] [CrossRef] [PubMed]
- Vesa, T.H.; Korpela, R.; Marteau, P. Lactose Intolerance. J. Am. Coll. Nutr. 2000, 19, 165S–175S. [Google Scholar] [CrossRef] [PubMed]
- Gerbault, P. The Onset of Lactase Persistence in Europe. Hum. Hered. 2014, 76, 154–161. [Google Scholar] [CrossRef] [PubMed]
- Lactose Intolerance Prevalence in Saudi Arabia: A Cross-Sectional Analytic Study | International Journal of Medicine in Developing Countries. Available online: https://ijmdc.com/?mno=168304 (accessed on 14 March 2024).
- Aoki, K. A Stochastic Model of Gene-Culture Coevolution Suggested by the “culture Historical Hypothesis” for the Evolution of Adult Lactose Absorption in Humans. Proc. Natl. Acad. Sci. USA 1986, 83, 2929–2933. [Google Scholar] [CrossRef]
- Poulter, M.; Hollox, E.; Harvey, C.B.; Mulcare, C.; Peuhkuri, K.; Kajander, K.; Sarner, M.; Korpela, R.; Swallow, D.M. The Causal Element for the Lactase Persistence/Non-Persistence Polymorphism Is Located in a 1 Mb Region of Linkage Disequilibrium in Europeans. Ann. Hum. Genet. 2003, 67, 298–311. [Google Scholar] [CrossRef] [PubMed]
- Enattah, N.S.; Sahi, T.; Savilahti, E.; Terwilliger, J.D.; Peltonen, L.; Järvelä, I. Identification of a Variant Associated with Adult-Type Hypolactasia. Nat. Genet. 2002, 30, 233–237. [Google Scholar] [CrossRef] [PubMed]
- Olds, L.C.; Sibley, E. Lactase Persistence DNA Variant Enhances Lactase Promoter Activity in Vitro: Functional Role as a Cis Regulatory Element. Hum. Mol. Genet. 2003, 12, 2333–2340. [Google Scholar] [CrossRef]
- Lewinsky, R.H.; Jensen, T.G.K.; Møller, J.; Stensballe, A.; Olsen, J.; Troelsen, J.T. T-13910 DNA Variant Associated with Lactase Persistence Interacts with Oct-1 and Stimulates Lactase Promoter Activity in Vitro. Hum. Mol. Genet. 2005, 14, 3945–3953. [Google Scholar] [CrossRef]
- Cavichio, M.W.E.; Quaio, C.R.D.C.; Baratela, W.A.d.R.; de Oliveira, P.M.C.; Tahan, S. Evaluation of agreement between c/t-13910 polymorphism genotyping results and lactose tolerance test results: A retrospective population-based study in brazil. Arq. Gastroenterol. 2024, 61, e23104. [Google Scholar] [CrossRef] [PubMed]
- Domínguez Jiménez, J.L.; Fernández Suárez, A.; Muñoz Colmenero, A.Ú.; Fatela Cantillo, D.; López Pelayo, I. Primary Hypolactasia Diagnosis: Comparison between the Gaxilose Test, Shortened Lactose Tolerance Test, and Clinical Parameters Corresponding to the C/T-13910 Polymorphism. Clin. Nutr. 2017, 36, 471–476. [Google Scholar] [CrossRef] [PubMed]
- Mattar, R.; Monteiro, M.d.S.; da Silva, J.M.K.; Carrilho, F.J. LCT-22018G>A Single Nucleotide Polymorphism Is a Better Predictor of Adult-Type Hypolactasia/Lactase Persistence in Japanese-Brazilians than LCT-13910C>T. Clinics 2010, 65, 1399. [Google Scholar] [CrossRef] [PubMed]
- Catanzaro, R.; Sciuto, M.; Marotta, F. Lactose Intolerance: An Update on Its Pathogenesis, Diagnosis, and Treatment. Nutr. Res. 2021, 89, 23–34. [Google Scholar] [CrossRef] [PubMed]
- Rasinperä, H.; Savilahti, E.; Enattah, N.S.; Kuokkanen, M.; Tötterman, N.; Lindahl, H.; Järvelä, I.; Kolho, K.L. A Genetic Test Which Can Be Used to Diagnose Adult-Type Hypolactasia in Children. Gut 2004, 53, 1571. [Google Scholar] [CrossRef]
- Furnari, M.; Bonfanti, D.; Parodi, A.; Franzè, J.; Savarino, E.; Bruzzone, L.; Moscatelli, A.; Di Mario, F.; Dulbecco, P.; Savarino, V. A Comparison between Lactose Breath Test and Quick Test on Duodenal Biopsies for Diagnosing Lactase Deficiency in Patients with Self-Reported Lactose Intolerance. J. Clin. Gastroenterol. 2013, 47, 148–152. [Google Scholar] [CrossRef] [PubMed]
- Kuokkanen, M.; Myllyniemi, M.; Vauhkonen, M.; Helske, T.; Kääriäinen, I.; Karesvuori, S.; Linnala, A.; Härkönen, M.; Järvelä, I.; Sipponen, P. A Biopsy-Based Quick Test in the Diagnosis of Duodenal Hypolactasia in Upper Gastrointestinal Endoscopy. Endoscopy 2006, 38, 708–712. [Google Scholar] [CrossRef] [PubMed]
- Rana, S.V.; Malik, A. Hydrogen Breath Tests in Gastrointestinal Diseases. Indian. J. Clin. Biochem. 2014, 29, 398–405. [Google Scholar] [CrossRef]
- Simrén, M.; Stotzer, P.O. Use and Abuse of Hydrogen Breath Tests. Gut 2006, 55, 297–303. [Google Scholar] [CrossRef]
- Marton, A.; Xue, X.; Szilagyi, A. Meta-Analysis: The Diagnostic Accuracy of Lactose Breath Hydrogen or Lactose Tolerance Tests for Predicting the North European Lactase Polymorphism C/T-13910. Aliment. Pharmacol. Ther. 2012, 35, 429–440. [Google Scholar] [CrossRef]
- Robles, L.; Priefer, R. Lactose Intolerance: What Your Breath Can Tell You. Diagnostics 2020, 10, 412. [Google Scholar] [CrossRef] [PubMed]
- Rivière, A.; Selak, M.; Lantin, D.; Leroy, F.; De Vuyst, L. Bifidobacteria and Butyrate-Producing Colon Bacteria: Importance and Strategies for Their Stimulation in the Human Gut. Front. Microbiol. 2016, 7, 206602. [Google Scholar] [CrossRef] [PubMed]
- Thompson, D.G.; Binfield, P.; De Belder, A.; O’Brien, J.; Warren, S.; Wilson, M. Extra Intestinal Influences on Exhaled Breath Hydrogen Measurements during the Investigation of Gastrointestinal Disease. Gut 1985, 26, 1349. [Google Scholar] [CrossRef] [PubMed]
- Casellas, F.; Malagelada, J.R. Applicability of Short Hydrogen Breath Test for Screening of Lactose Malabsorption. Dig. Dis. Sci. 2003, 48, 1333–1338. [Google Scholar] [CrossRef] [PubMed]
- Monsalve-Hernando, C.; Crespo, L.; Ferreiro, B.; Martín, V.; Aldeguer, X.; Opio, V.; Fernández-Gil, P.L.; Gaspar, M.J.; Romero, E.; Lara, C.; et al. Phase IV Noninferiority Controlled Randomized Trial to Evaluate the Impact on Diagnostic Thinking and Patient Management and the Test-Retest Reproducibility of the Gaxilose Test for Hypolactasia Diagnosis. Medicine 2018, 97, e13136. [Google Scholar] [CrossRef] [PubMed]
- Saad, R.J.; Chey, W.D. Perspectives in Clinical Gastroenterology and Hepatology Breath Testing for Small Intestinal Bacterial Overgrowth: Maximizing Test Accuracy. Clin. Gastroenterol. Hepatol. 2014, 12, 1964–1972. [Google Scholar] [CrossRef] [PubMed]
- De Geyter, C.; Van de Maele, K.; Hauser, B.; Vandenplas, Y. Hydrogen and Methane Breath Test in the Diagnosis of Lactose Intolerance. Nutrients 2021, 13, 3261. [Google Scholar] [CrossRef] [PubMed]
- Katoch, G.K.; Nain, N.; Kaur, S.; Rasane, P. Lactose Intolerance and Its Dietary Management: An Update. J. Am. Nutr. Assoc. 2022, 41, 424–434. [Google Scholar] [CrossRef] [PubMed]
- Facioni, M.S.; Raspini, B.; Pivari, F.; Dogliotti, E.; Cena, H. Nutritional Management of Lactose Intolerance: The Importance of Diet and Food Labelling. J. Transl. Med. 2020, 18, 1–9. [Google Scholar] [CrossRef]
- Porzi, M.; Burton-Pimentel, K.J.; Walther, B.; Vergères, G. Development of Personalized Nutrition: Applications in Lactose Intolerance Diagnosis and Management. Nutrients 2021, 13, 1503. [Google Scholar] [CrossRef]
- Ibrahim, S.A.; Gyawali, R.; Awaisheh, S.S.; Ayivi, R.D.; Silva, R.C.; Subedi, K.; Aljaloud, S.O.; Anusha Siddiqui, S.; Krastanov, A. Fermented Foods and Probiotics: An Approach to Lactose Intolerance. J. Dairy. Res. 2021, 88, 357–365. [Google Scholar] [CrossRef] [PubMed]
- Leis, R.; de Castro, M.J.; de Lamas, C.; Picáns, R.; Couce, M.L. Effects of Prebiotic and Probiotic Supplementation on Lactase Deficiency and Lactose Intolerance: A Systematic Review of Controlled Trials. Nutrients 2020, 12, 1487. [Google Scholar] [CrossRef] [PubMed]
- Szilagyi, A. Redefining Lactose as a Conditional Prebiotic. Can. J. Gastroenterol. 2004, 18, 163–167. [Google Scholar] [CrossRef] [PubMed]
- Thursby, E.; Juge, N. Introduction to the Human Gut Microbiota. Biochem. J. 2017, 474, 1823–1836. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhang, W.; Wang, C.; Yu, Q.; Dai, R.; Pei, X. Lactococcus Lactis Expressing Food-Grade β-Galactosidase Alleviates Lactose Intolerance Symptoms in Post-Weaning Balb/c Mice. Appl. Microbiol. Biotechnol. 2012, 96, 1499–1506. [Google Scholar] [CrossRef] [PubMed]
- Davis, L.M.G.; Martínez, I.; Walter, J.; Hutkins, R. A Dose Dependent Impact of Prebiotic Galactooligosaccharides on the Intestinal Microbiota of Healthy Adults. Int. J. Food Microbiol. 2010, 144, 285–292. [Google Scholar] [CrossRef] [PubMed]
- Swennen, K.; Courtin, C.M.; Delcour, J.A. Non-Digestible Oligosaccharides with Prebiotic Properties. Crit. Rev. Food Sci. Nutr. 2006, 46, 459–471. [Google Scholar] [CrossRef] [PubMed]
- Andersen, J.M.; Barrangou, R.; Hachem, M.A.; Lahtinen, S.; Goh, Y.J.; Svensson, B.; Klaenhammer, T.R. Transcriptional and Functional Analysis of Galactooligosaccharide Uptake by LacS in Lactobacillus Acidophilus. Proc. Natl. Acad. Sci. USA 2011, 108, 17785–17790. [Google Scholar] [CrossRef] [PubMed]
- Arnold, J.W.; Simpson, J.B.; Roach, J.; Bruno-Barcena, J.M.; Azcarate-Peril, M.A. Prebiotics for Lactose Intolerance: Variability in Galacto-Oligosaccharide Utilization by Intestinal Lactobacillus Rhamnosus. Nutrients 2018, 10, 1517. [Google Scholar] [CrossRef]
- Torres, D.P.M.; Gonçalves, M.d.P.F.; Teixeira, J.A.; Rodrigues, L.R. Galacto-Oligosaccharides: Production, Properties, Applications, and Significance as Prebiotics. Compr. Rev. Food Sci. Food Saf. 2010, 9, 438–454. [Google Scholar] [CrossRef]
- Bode, L. Human Milk Oligosaccharides: Every Baby Needs a Sugar Mama. Glycobiology 2012, 22, 1147–1162. [Google Scholar] [CrossRef] [PubMed]
- Sela, D.A.; Chapman, J.; Adeuya, A.; Kim, J.H.; Chen, F.; Whitehead, T.R.; Lapidus, A.; Rokhsar, D.S.; Lebrilla, C.B.; German, J.B.; et al. The Genome Sequence of Bifidobacterium Longum Subsp. Infantis Reveals Adaptations for Milk Utilization within the Infant Microbiome. Proc. Natl. Acad. Sci. USA 2008, 105, 18964–18969. [Google Scholar] [CrossRef] [PubMed]
- Ward, R.E.; Niñonuevo, M.; Mills, D.A.; Lebrilla, C.B.; German, J.B. In Vitro Fermentation of Breast Milk Oligosaccharides by Bifidobacterium Infantis and Lactobacillus Gasseri. Appl. Environ. Microbiol. 2006, 72, 4497–4499. [Google Scholar] [CrossRef] [PubMed]
- Davis, L.M.G.; Martínez, I.; Walter, J.; Goin, C.; Hutkins, R.W. Barcoded Pyrosequencing Reveals That Consumption of Galactooligosaccharides Results in a Highly Specific Bifidogenic Response in Humans. PLoS ONE 2011, 6, e25200. [Google Scholar] [CrossRef] [PubMed]
- Depeint, F.; Tzortzis, G.; Vulevic, J.; Anson, K.I’.; Gibson, G.R. Prebiotic Evaluation of a Novel Galactooligosaccharide Mixture Produced by the Enzymatic Activity of Bifidobacterium Bifidum NCIMB 41171, in Healthy Humans: A Randomized, Double-Blind, Crossover, Placebo-Controlled Intervention Study. Am. J. Clin. Nutr. 2008, 87, 785–791. [Google Scholar] [CrossRef] [PubMed]
- Alles, M.S.; Hartemink, R.; Meyboom, S.; Harryvan, J.L.; Van Laere, K.M.J.; Nagengast, F.M.; Hautvast, J.G.A.J. Effect of Transgalactooligosaccharides on the Composition of the Human Intestinal Microflora and on Putative Risk Markers for Colon Cancer. Am. J. Clin. Nutr. 1999, 69, 980–991. [Google Scholar] [CrossRef] [PubMed]
- Bouhnik, Y.; Flourié, B.; D’Agay-Abensour, L.; Pochart, P.; Gramet, G.; Durand, M.; Rambaud, J.C. Administration of Transgalacto-Oligosaccharides Increases Fecal Bifidobacteria and Modifies Colonic Fermentation Metabolism in Healthy Humans. J. Nutr. 1997, 127, 444–448. [Google Scholar] [CrossRef] [PubMed]
- O’Callaghan, A.; van Sinderen, D. Bifidobacteria and Their Role as Members of the Human Gut Microbiota. Front. Microbiol. 2016, 7, 925. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.; Mansbridge, S.C.; Liang, L.; Connerton, I.F.; Mellits, K.H. Galacto-Oligosaccharides Increase the Abundance of Beneficial Probiotic Bacteria and Improve Gut Architecture and Goblet Cell Expression in Poorly Performing Piglets, but Not Performance. Animals 2023, 13, 230. [Google Scholar] [CrossRef] [PubMed]
- Mysore Saiprasad, S.; Moreno, O.G.; Savaiano, D.A. A Narrative Review of Human Clinical Trials to Improve Lactose Digestion and Tolerance by Feeding Bifidobacteria or Galacto-Oligosacharides. Nutrients 2023, 15, 3559. [Google Scholar] [CrossRef]
- González-Rodríguez, I.; Gaspar, P.; Sánchez, B.; Gueimonde, M.; Margolles, A.; Neves, A.R. Catabolism of Glucose and Lactose in Bifidobacterium Animalis Subsp. Lactis, Studied by 13C Nuclear Magnetic Resonance. Appl. Environ. Microbiol. 2013, 79, 7628–7638. [Google Scholar] [CrossRef]
- Fushinobu, S. Unique Sugar Metabolic Pathways of Bifidobacteria. Biosci. Biotechnol. Biochem. 2010, 74, 2374–2384. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.S.; Nanda, A.; Khadka, B. Novel Molecular, Structural and Evolutionary Characteristics of the Phosphoketolases from Bifidobacteria and Coriobacteriales. PLoS ONE 2017, 12, e0172176. [Google Scholar] [CrossRef] [PubMed]
- Jiang, T.; Savaiano, D.A. In Vitro Lactose Fermentation by Human Colonic Bacteria Is Modified by Lactobacillus Acidophilus Supplementation. J. Nutr. 1997, 127, 1489–1495. [Google Scholar] [CrossRef] [PubMed]
- JanssenDuijghuijsen, L.; Looijesteijn, E.; van den Belt, M.; Gerhard, B.; Ziegler, M.; Ariens, R.; Tjoelker, R.; Geurts, J. Changes in Gut Microbiota and Lactose Intolerance Symptoms before and after Daily Lactose Supplementation in Individuals with the Lactase Nonpersistent Genotype. Am. J. Clin. Nutr. 2024, 119, 702–710. [Google Scholar] [CrossRef] [PubMed]
- Pribila, B.A.; Hertzler, S.R.; Martin, B.R.; Weaver, C.M.; Savaiano, D.A. Improved Lactose Digestion and Intolerance among African-American Adolescent Girls Fed a Dairy-Rich Diet. J. Am. Diet. Assoc. 2000, 100, 524–528. [Google Scholar] [CrossRef]
- Szilagyi, A.; Shrier, I.; Heilpern, D.; Je, J.S.; Park, S.; Chong, G.; Lalonde, C.; Cote, L.F.; Lee, B. Differential Impact of Lactose/Lactase Phenotype on Colonic Microflora. Can. J. Gastroenterol. 2010, 24, 373–379. [Google Scholar] [CrossRef]
Diagnostic Approach | Type of Sample | Analyte or Focus of Detection | Expected Variation in Lactose Intolerant Individuals | Benefits | Limitations |
---|---|---|---|---|---|
Lactose Tolerance Test | Blood | Blood glucose levels at 30, 60, and 120 min post-lactose consumption | Glycemia remains steady | Minimally intrusive; economical | Results affected by subject-specific factors (e.g., gastric clearance) |
Genomic analysis | DNA from blood | LCT gene mutations | Existence of known LNP-associated mutations | Can verify or rule out primary intolerance; minimally intrusive | Does not detect secondary intolerance |
Lactase quantification in duodenal biopsies | Biopsy of post-bulbar duodenal mucosa | Enzyme lactase levels | Diminished or absent enzyme levels | Accurate diagnosis of lactase deficiency | Invasive; requires technical expertise during endoscopy; costly |
Hydrogen Breath Test | Breath | Hydrogen levels before and after ingesting 25 g lactose challenge | Minimum 20 ppm rise in breath hydrogen from the baseline | Affordable; non-invasive; highly sensitive and precise; straightforward execution and interpretation | Time-consuming (3–6 h); requires avoiding a large array of foods and behaviors prior to testing to avoid false positives |
Gaxilose Test | Blood and urine | Xylose concentration after gaxilose ingestion | Xylose levels not elevated indicating reduced lactase activity | Non-invasive; direct assessment of lactase activity; patient comfort | Relatively new test; lower specificity than lactose tolerance test |
Study | Treatment | Subject Count | Findings |
---|---|---|---|
[17] | Administered GOS or placebo (corn syrup) from 1.5 g/day to 15 g/day over 35 days | 85 (GOS: 57; placebo: 28) | Trends toward symptom improvement such as less abdominal discomfort and bloating after a lactose challenge in the GOS group compared to placebo. Significantly lower flatulence after lactose challenge compared with placebo. |
[12] | Administered GOS starting at 1.5 g/day, escalating to 15 g/day over 35 days without dairy vs. placebo control | 85 (GOS: 57; placebo: 28) | GOS intake increased levels of lactose-metabolizing bacteria (Bifidobacteria, Faecalibacterium, Lactobacillus) relative to the baseline and to placebo. After dairy reintroduction for 1 month, microbial diversity was lower than baseline, likely due to the dominance of Bifidobacteria and Lactobacillus. A negative correlation was shown between increased Bifidobacterium and reduced cramping post-dairy. |
[13] | Lower dose GOS (5 g twice daily for 10 days, 7.5 g twice daily for 20 days), higher dose GOS (7.5 g twice daily for 10 days, 10 g twice daily for 20 days) or placebo over 30 days | 377 (lower dose: 126; higher dose: 121; placebo: 121) | Higher fecal Bifidobacterium species in both GOS groups. Decreased post-lactose challenge cramping and bloating in the pooled GOS groups. Tendency for decreased abdominal pain and gas movement in the GOS groups post-lactose challenge. Increased voluntary dairy consumption days 32 to 60 in GOS groups. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Angima, G.; Qu, Y.; Park, S.H.; Dallas, D.C. Prebiotic Strategies to Manage Lactose Intolerance Symptoms. Nutrients 2024, 16, 1002. https://doi.org/10.3390/nu16071002
Angima G, Qu Y, Park SH, Dallas DC. Prebiotic Strategies to Manage Lactose Intolerance Symptoms. Nutrients. 2024; 16(7):1002. https://doi.org/10.3390/nu16071002
Chicago/Turabian StyleAngima, Gloria, Yunyao Qu, Si Hong Park, and David C. Dallas. 2024. "Prebiotic Strategies to Manage Lactose Intolerance Symptoms" Nutrients 16, no. 7: 1002. https://doi.org/10.3390/nu16071002
APA StyleAngima, G., Qu, Y., Park, S. H., & Dallas, D. C. (2024). Prebiotic Strategies to Manage Lactose Intolerance Symptoms. Nutrients, 16(7), 1002. https://doi.org/10.3390/nu16071002