Completely Plant-Based Diets That Meet Energy Requirements for Resistance Training Can Supply Enough Protein and Leucine to Maximize Hypertrophy and Strength in Male Bodybuilders: A Modeling Study
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Energy Requirements
3.2. Protein Requirements and Levels
3.3. Leucine Levels
3.4. Micronutrient and Other Key Nutrient Levels
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jonason, P.K. An evolutionary psychology perspective on sex differences in exercise behaviors and motivations. J. Soc. Psychol. 2007, 147, 5–14. [Google Scholar] [CrossRef] [PubMed]
- Nagata, J.M.; Ganson, K.T.; Griffiths, S.; Mitchison, D.; Garber, A.K.; Vittinghoff, E.; Bibbins-Domingo, K.; Murray, S.B. Prevalence and correlates of muscle-enhancing behaviors among adolescents and young adults in the United States. Int. J. Adolesc. Med. Health 2020, 34, 119–129. [Google Scholar] [CrossRef] [PubMed]
- Jäger, R.; Kerksick, C.M.; Campbell, B.I.; Cribb, P.J.; Wells, S.D.; Skwiat, T.M.; Purpura, M.; Ziegenfuss, T.N.; Ferrando, A.A.; Arent, S.M.; et al. International Society of Sports Nutrition Position Stand: Protein and exercise. J. Int. Soc. Sports Nutr. 2017, 14, 20. [Google Scholar] [CrossRef] [PubMed]
- Musiał, K.; Wiski, M.; Lipert, A. Protein intake among healthy adults undertaking regular muscle strength training. Med. Sci. Pulse 2020, 14, 23–29. [Google Scholar] [CrossRef]
- Sandoval, W.M.; Heyward, V.H. Food selection patterns of bodybuilders. Int. J. Sport. Nutr. Exerc. Metab. 1991, 1, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Panasiewicz, M.; Grochowicz, J. Ocena sposobu odżywiania i aktywności fizycznej w uprawianiu kulturystyki. Zesz. Naukowe. Tur. I Rekreac. 2016, 1, 53–68. [Google Scholar]
- Karpik, A.; Machniak, M.; Chwałczynska, A. Evaluation of protein content in the diet of amateur male bodybuilder. Am. J. Mens. Health 2020, 14, 1557988320970267. [Google Scholar] [CrossRef]
- Spendlove, J.; Mitchell, L.; Gifford, J.; Hackett, D.; Slater, G.; Cobley, S.; O’Connor, H. Dietary intake of competitive bodybuilders. Sports Med. 2015, 45, 1041–1063. [Google Scholar] [CrossRef]
- Bert, F.; Scaioli, G.; Tolomeo, M.; Lo Moro, G.; Gualano, M.R.; Siliquini, R. Knowledge, attitudes and eating habits red and processed meat among gym users: A cross-sectional survey. Perspect. Public. Health 2020, 140, 203–213. [Google Scholar] [CrossRef]
- U.S. Department of Agriculture; U.S. Department of Health and Human Services. Dietary Guidelines for Americans, 2020–2025; U.S. Department of Agriculture; U.S. Department of Health and Human Services: Washington, DC, USA, 2020.
- World Health Organization. Plant-Based Diets and Their Impact on Health, Sustainability and the Environment: A Review of the Evidence; Regional Office for Europe, Ed.; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Cara, K.C.; Goldman, D.M.; Kollman, B.K.; Amato, S.S.; Tull, M.D.; Karlsen, M.C. Commonalities among dietary recommendations from 2010 to 2021 clinical practice guidelines: A meta-epidemiological study from the American College of Lifestyle Medicine. Adv. Nutr. 2023, 14, 500–515. [Google Scholar] [CrossRef]
- Hartwell, M.; Torgerson, T.; Essex, R.; Campbell, B.; Belardo, D.; Vassar, M. Public awareness of a plant-based diet following the release of “Game Changers” and “What the Health” documentaries. Am. J. Lifestyle Med. 2022, 16, 190–196. [Google Scholar] [CrossRef] [PubMed]
- Wirnitzer, K. Vegan diet in sports and exercise—Health benefits and advantages to athletes and physically active people: A narrative review. Int. J. Sports Exerc. Med. 2020, 6, 165. [Google Scholar] [CrossRef]
- Karlsen, M.C.; Rogers, G.; Miki, A.; Lichtenstein, A.H.; Folta, S.C.; Economos, C.D.; Jacques, P.F.; Livingston, K.A.; McKeown, N.M. Theoretical food and nutrient composition of whole-food plant-based and vegan diets compared to current dietary recommendations. Nutrients 2019, 11, 625. [Google Scholar] [CrossRef] [PubMed]
- Barnard, N.D.; Alwarith, J.; Rembert, E.; Brandon, L.; Nguyen, M.; Goergen, A.; Horne, T.; do Nascimento, G.F.; Lakkadi, K.; Tura, A.; et al. A Mediterranean diet and low-fat vegan diet to improve body weight and cardiometabolic risk factors: A randomized, cross-over trial. J. Am. Nutr. Assoc. 2022, 41, 127–139. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, N.S.; Jaceldo-Siegl, K.; Sabate, J.; Fraser, G.E. Nutrient profiles of vegetarian and nonvegetarian dietary patterns. J. Acad. Nutr. Diet. 2013, 113, 1610–1619. [Google Scholar] [CrossRef] [PubMed]
- Wright, N.; Wilson, L.; Smith, M.; Duncan, B.; McHugh, P. The BROAD study: A randomised controlled trial using a whole food plant-based diet in the community for obesity, ischaemic heart disease or diabetes. Nutr. Diabetes 2017, 7, e256. [Google Scholar] [CrossRef]
- Melina, V.; Craig, W.; Levin, S. Position of the Academy of Nutrition and Dietetics: Vegetarian diets. J. Acad. Nutr. Diet. 2016, 116, 1970–1980. [Google Scholar] [CrossRef] [PubMed]
- Fogelholm, M. Dairy products, meat and sports performance. Sports Med. 2003, 33, 615–631. [Google Scholar] [CrossRef]
- Venderley, A.M.; Campbell, W.W. Vegetarian diets: Nutritional considerations for athletes. Sports Med. 2006, 36, 293–305. [Google Scholar] [CrossRef]
- Lynch, H.; Johnston, C.; Wharton, C. Plant-based diets: Considerations for environmental impact, protein quality, and exercise performance. Nutrients 2018, 10, 1841. [Google Scholar] [CrossRef]
- Messina, M.; Lynch, H.; Dickinson, J.M.; Reed, K.E. No difference between the effects of supplementing with soy protein versus animal protein on gains in muscle mass and strength in response to resistance exercise. Int. J. Sport. Nutr. Exerc. Metab. 2018, 28, 674–685. [Google Scholar] [CrossRef] [PubMed]
- Burd, N.A.; McKenna, C.F.; Salvador, A.F.; Paulussen, K.J.M.; Moore, D.R. Dietary protein quantity, quality, and exercise are key to healthy living: A muscle-centric perspective across the lifespan. Front. Nutr. 2019, 6, 83. [Google Scholar] [CrossRef] [PubMed]
- Ciuris, C.; Lynch, H.M.; Wharton, C.; Johnston, C.S. A comparison of dietary protein digestibility, based on DIAAS scoring, in vegetarian and non-vegetarian athletes. Nutrients 2019, 11, 3016. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Li, J.; Campbell, W.W. Vegetarian athletes. In Nutrition and Enhanced Sports Performance; Elsevier: Amsterdam, The Netherlands, 2019; pp. 99–108. [Google Scholar]
- Neufingerl, N.; Eilander, A. Nutrient intake and status in adults consuming plant-based diets compared to meat-eaters: A systematic review. Nutrients 2021, 14, 29. [Google Scholar] [CrossRef] [PubMed]
- Mariotti, F. Vegetarian and Plant-Based Diets in Health and Disease Prevention; Academic Press: Cambridge, MA, USA, 2017. [Google Scholar]
- Gorissen, S.H.M.; Witard, O.C. Characterising the muscle anabolic potential of dairy, meat and plant-based protein sources in older adults. Proc. Nutr. Soc. 2018, 77, 20–31. [Google Scholar] [CrossRef] [PubMed]
- Phillips, S.M. The impact of protein quality on the promotion of resistance exercise-induced changes in muscle mass. Nutr. Metab. 2016, 13, 64. [Google Scholar] [CrossRef] [PubMed]
- Li, C.Y.; Fang, A.P.; Ma, W.J.; Wu, S.L.; Li, C.L.; Chen, Y.M.; Zhu, H.L. Amount rather than animal vs plant protein intake is associated with skeletal muscle mass in community-dwelling middle-aged and older Chinese adults: Results from the Guangzhou Nutrition and Health Study. J. Acad. Nutr. Diet. 2019, 119, 1501–1510. [Google Scholar] [CrossRef] [PubMed]
- Atherton, P.J.; Smith, K. Muscle protein synthesis in response to nutrition and exercise. J. Physiol. 2012, 590, 1049–1057. [Google Scholar] [CrossRef]
- Maughan, R.J. Nutrition in Sport; John Wiley & Sons: Hoboken, NJ, USA, 2008; Volume 7. [Google Scholar]
- Wolinsky, I.; Driskell, J.A. Nutritional Applications in Exercise and Sport; CRC Press: Boca Raton, FL, USA, 2000. [Google Scholar]
- Rogerson, D. Vegan diets: Practical advice for athletes and exercisers. J. Int. Soc. Sports Nutr. 2017, 14, 36. [Google Scholar] [CrossRef]
- Bagchi, D.; Nair, S.; Sen, C.K. Nutrition and Enhanced Sports Performance: Muscle Building, Endurance, and Strength; Academic Press: Cambridge, MA, USA, 2018. [Google Scholar]
- Nebl, J.; Schuchardt, J.P.; Wasserfurth, P.; Haufe, S.; Eigendorf, J.; Tegtbur, U.; Hahn, A. Characterization, dietary habits and nutritional intake of omnivorous, lacto-ovo vegetarian and vegan runners—A pilot study. BMC Nutr. 2019, 5, 51. [Google Scholar] [CrossRef]
- Hevia-Larraín, V.; Gualano, B.; Longobardi, I.; Gil, S.; Fernandes, A.L.; Costa, L.A.R.; Pereira, R.M.R.; Artioli, G.G.; Phillips, S.M.; Roschel, H. High-protein plant-based diet versus a protein-matched omnivorous diet to support resistance training adaptations: A comparison between habitual vegans and omnivores. Sports Med. 2021, 51, 1317–1330. [Google Scholar] [CrossRef] [PubMed]
- Wirnitzer, K.; Wagner, K.H.; Motevalli, M.; Tanous, D.; Wirnitzer, G.; Leitzmann, C.; Rosemann, T.; Knechtle, B. Dietary intake of vegan and non-vegan endurance runners-Results from the NURMI Study (Step 2). Nutrients 2022, 14, 3151. [Google Scholar] [CrossRef]
- Amatori, S.; Callarelli, C.; Gobbi, E.; Bertuccioli, A.; Donati Zeppa, S.; Sisti, D.; Rocchi, M.B.L.; Perroni, F. Going vegan for the gain: A cross-sectional study of vegan diets in bodybuilders during different preparation phases. Int. J. Environ. Res. Public. Health 2023, 20, 5187. [Google Scholar] [CrossRef] [PubMed]
- Craddock, J.C.; Probst, Y.C.; Neale, E.P.; Geraghty, N.; Peoples, G.E. A comparison of diet quality and cardiovascular and inflammatory responses between aerobically trained male adults following either a long-term vegan or omnivorous dietary pattern. Nutr. Bull. 2023, 48, 227–242. [Google Scholar] [CrossRef]
- Monteyne, A.J.; Coelho, M.O.C.; Murton, A.J.; Abdelrahman, D.R.; Blackwell, J.R.; Koscien, C.P.; Knapp, K.M.; Fulford, J.; Finnigan, T.J.A.; Dirks, M.L.; et al. Vegan and omnivorous high protein diets support comparable daily myofibrillar protein synthesis rates and skeletal muscle hypertrophy in young adults. J. Nutr. 2023, 153, 1680–1695. [Google Scholar] [CrossRef] [PubMed]
- Nunes, E.A.; Colenso-Semple, L.; McKellar, S.R.; Yau, T.; Ali, M.U.; Fitzpatrick-Lewis, D.; Sherifali, D.; Gaudichon, C.; Tomé, D.; Atherton, P.J.; et al. Systematic review and meta-analysis of protein intake to support muscle mass and function in healthy adults. J. Cachexia Sarcopenia Muscle 2022, 13, 795–810. [Google Scholar] [CrossRef] [PubMed]
- Slater, G.; Phillips, S.M. Nutrition guidelines for strength sports: Sprinting, weightlifting, throwing events, and bodybuilding. J. Sports Sci. 2011, 29 (Suppl. S1), S67–S77. [Google Scholar] [CrossRef] [PubMed]
- Alves, R.C.; Prestes, J.; Enes, A.; de Moraes, W.M.A.; Trindade, T.B.; de Salles, B.F.; Aragon, A.A.; Souza-Junior, T.P. Training programs designed for muscle hypertrophy in bodybuilders: A narrative review. Sports 2020, 8, 149. [Google Scholar] [CrossRef] [PubMed]
- Schoenfeld, B.; Fisher, J.; Grgic, J.; Haun, C.; Helms, E.; Phillips, S.; Steele, J.; Vigotsky, A. Resistance training recommendations to maximize muscle hypertrophy in an athletic population: Position stand of the IUSCA. Int. J. Strength Cond. 2021, 1, 1–30. [Google Scholar] [CrossRef]
- Morton, R.W.; Murphy, K.T.; McKellar, S.R.; Schoenfeld, B.J.; Henselmans, M.; Helms, E.; Aragon, A.A.; Devries, M.C.; Banfield, L.; Krieger, J.W.; et al. A systematic review, meta-analysis and meta-regression of the effect of protein supplementation on resistance training-induced gains in muscle mass and strength in healthy adults. Br. J. Sports Med. 2018, 52, 376–384. [Google Scholar] [CrossRef]
- Bauer, P.; Majisik, A.; Mitter, B.; Csapo, R.; Tschan, H.; Hume, P.; Martínez-Rodríguez, A.; Makivic, B. Body composition of competitive bodybuilders: A systematic review of published data and recommendations for future work. J. Strength Cond. Res. 2023, 37, 726–732. [Google Scholar] [CrossRef] [PubMed]
- Clem, J.; Barthel, B. A look at plant-based diets. Mo. Med. 2021, 118, 233–238. [Google Scholar] [PubMed]
- Appleton, T.; Masters, M. 10 Best Vegan Protein Powders for Muscle Building in 2024, Tested by Experts. 14 February 2024. Available online: https://www.menshealth.com/nutrition/a19541471/best-vegan-protein-powders/ (accessed on 16 March 2024).
- Baby, D.P. Are Vegan Protein Powders Good for You? 2022. Available online: https://www.medicinenet.com/are_vegan_protein_powders_good_for_you/article.htm (accessed on 16 March 2024).
- Hackett, D.A. Training, supplementation, and pharmacological practices of competitive male bodybuilders across training phases. J. Strength Cond. Res. 2022, 36, 963–970. [Google Scholar] [CrossRef]
- Li, J.; Davies, T.B.; Hackett, D.A. Self-reported training and supplementation practices between performance-enhancing drug-user bodybuilders compared with natural bodybuilders. J. Strength Cond. Res. 2023, 37, 1079–1088. [Google Scholar] [CrossRef] [PubMed]
- Slater, G.J.; Dieter, B.P.; Marsh, D.J.; Helms, E.R.; Shaw, G.; Iraki, J. Is an energy surplus required to maximize skeletal muscle hypertrophy associated with resistance training. Front. Nutr. 2019, 6, 131. [Google Scholar] [CrossRef] [PubMed]
- Aragon, A.A.; Schoenfeld, B.J. Magnitude and composition of the energy surplus for maximizing muscle hypertrophy: Implications for bodybuilding and physique athletes. Strength Cond. J. 2020, 42, 79–86. [Google Scholar] [CrossRef]
- O’Neill, J.E.R.; Corish, C.A.; Horner, K. Accuracy of resting metabolic rate prediction equations in athletes: A systematic review with meta-analysis. Sports Med. 2023, 53, 2373–2398. [Google Scholar] [CrossRef]
- Tinsley, G.M.; Graybeal, A.J.; Moore, M.L. Resting metabolic rate in muscular physique athletes: Validity of existing methods and development of new prediction equations. Appl. Physiol. Nutr. Metab. 2019, 44, 397–406. [Google Scholar] [CrossRef] [PubMed]
- Karpinski, C.; Rosenbloom, C.A. Sports Nutrition: A Handbook for Professionals; Academy of Nutrition and Dietetics: Chicago, IL, USA, 2017. [Google Scholar]
- Schoenfeld, B.J.; Ogborn, D.; Krieger, J.W. Dose-response relationship between weekly resistance training volume and increases in muscle mass: A systematic review and meta-analysis. J. Sports Sci. 2017, 35, 1073–1082. [Google Scholar] [CrossRef]
- Maughan, R.J.; Burke, L.M.; Dvorak, J.; Larson-Meyer, D.E.; Peeling, P.; Phillips, S.M.; Rawson, E.S.; Walsh, N.P.; Garthe, I.; Geyer, H.; et al. IOC consensus statement: Dietary supplements and the high-performance athlete. Int. J. Sport. Nutr. Exerc. Metab. 2018, 28, 104–125. [Google Scholar] [CrossRef]
- Glynn, E.L.; Fry, C.S.; Drummond, M.J.; Timmerman, K.L.; Dhanani, S.; Volpi, E.; Rasmussen, B.B. Excess leucine intake enhances muscle anabolic signaling but not net protein anabolism in young men and women. J. Nutr. 2010, 140, 1970–1976. [Google Scholar] [CrossRef]
- Pinckaers, P.J.M.; Kouw, I.W.K.; Hendriks, F.K.; van Kranenburg, J.M.X.; de Groot, L.; Verdijk, L.B.; Snijders, T.; van Loon, L.J.C. No differences in muscle protein synthesis rates following ingestion of wheat protein, milk protein, and their protein blend in healthy, young males. Br. J. Nutr. 2021, 126, 1832–1842. [Google Scholar] [CrossRef] [PubMed]
- Reidy, P.T.; Rasmussen, B.B. Role of ingested amino acids and protein in the promotion of resistance exercise-induced muscle protein anabolism. J. Nutr. 2016, 146, 155–183. [Google Scholar] [CrossRef]
- Lynch, H.M.; Buman, M.P.; Dickinson, J.M.; Ransdell, L.B.; Johnston, C.S.; Wharton, C.M. No significant differences in muscle growth and strength development when consuming soy and whey protein supplements matched for leucine following a 12 week resistance training program in men and women: A randomized trial. Int. J. Environ. Res. Public. Health 2020, 17, 3871. [Google Scholar] [CrossRef]
- Olaniyan, E.T.; O’Halloran, F.; McCarthy, A.L. Dietary protein considerations for muscle protein synthesis and muscle mass preservation in older adults. Nutr. Res. Rev. 2021, 34, 147–157. [Google Scholar] [CrossRef]
- Iraki, J.; Fitschen, P.; Espinar, S.; Helms, E. Nutrition recommendations for bodybuilders in the off-season: A narrative review. Sports 2019, 7, 154. [Google Scholar] [CrossRef] [PubMed]
- Schoenfeld, B.J.; Aragon, A.A. How much protein can the body use in a single meal for muscle-building? Implications for daily protein distribution. J. Int. Soc. Sports Nutr. 2018, 15, 10. [Google Scholar] [CrossRef] [PubMed]
- Kerksick, C.M.; Arent, S.; Schoenfeld, B.J.; Stout, J.R.; Campbell, B.; Wilborn, C.D.; Taylor, L.; Kalman, D.; Smith-Ryan, A.E.; Kreider, R.B.; et al. International Society of Sports Nutrition Position Stand: Nutrient timing. J. Int. Soc. Sports Nutr. 2017, 14, 33. [Google Scholar] [CrossRef]
- Berrazaga, I.; Micard, V.; Gueugneau, M.; Walrand, S. The role of the anabolic properties of plant- versus animal-based protein sources in supporting muscle mass maintenance: A critical review. Nutrients 2019, 11, 1825. [Google Scholar] [CrossRef]
- Institute of Medicine. Dietary Reference Intakes: The Essential Guide to Nutrient Requirements; The National Academies Press: Washington, DC, USA, 2011. [Google Scholar]
- United States Department of Health and Human Services. Dietary Reference Intakes. 2023. Available online: https://health.gov/our-work/nutrition-physical-activity/dietary-guidelines/dietary-reference-intakes (accessed on 21 January 2024).
- Institute of Medicine. Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline; National Academy Press: Washington, DC, USA, 1998. [Google Scholar]
- McKenzie, B.L.; Coyle, D.H.; Santos, J.A.; Burrows, T.; Rosewarne, E.; Peters, S.A.E.; Carcel, C.; Jaacks, L.M.; Norton, R.; Collins, C.E.; et al. Investigating sex differences in the accuracy of dietary assessment methods to measure energy intake in adults: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2021, 113, 1241–1255. [Google Scholar] [CrossRef]
- Baroni, L.; Pelosi, E.; Giampieri, F.; Battino, M. The VegPlate for Sports: A plant-based food guide for athletes. Nutrients 2023, 15, 1746. [Google Scholar] [CrossRef] [PubMed]
- Antonio, J.; Ellerbroek, A. Case reports on well-trained bodybuilders: Two years on a high protein diet. J. Exerc. Physiol. Online 2018, 21, 14–24. [Google Scholar]
- Hernández-Martínez, C.; Fernández-Rodríguez, L.; Soriano, M.A.; Martínez-Sanz, J.M. Case study: Body composition changes resulting from a nutritional intervention on a professional vegan powerlifter. Appl. Sci. 2020, 10, 8675. [Google Scholar] [CrossRef]
- Karlsen, M.C. (American College of Lifestyle Medicine, Chesterfield, MO, USA; University of New England, Biddeford, ME, USA); Goldman, D.M. (Metabite, Inc. New York, NY, USA). Personal Communication, 2023.
- Trommelen, J.; Betz, M.W.; van Loon, L.J.C. The muscle protein synthetic response to meal ingestion following resistance-type exercise. Sports Med. 2019, 49, 185–197. [Google Scholar] [CrossRef] [PubMed]
- Burd, N.A.; Beals, J.W.; Martinez, I.G.; Salvador, A.F.; Skinner, S.K. Food-first approach to enhance the regulation of post-exercise skeletal muscle protein synthesis and remodeling. Sports Med. 2019, 49, 59–68. [Google Scholar] [CrossRef]
- Zaromskyte, G.; Prokopidis, K.; Ioannidis, T.; Tipton, K.D.; Witard, O.C. Evaluating the leucine trigger hypothesis to explain the post-prandial regulation of muscle protein synthesis in young and older adults: A systematic review. Front. Nutr. 2021, 8, 685165. [Google Scholar] [CrossRef]
- Schmidt, J.A.; Rinaldi, S.; Scalbert, A.; Ferrari, P.; Achaintre, D.; Gunter, M.J.; Appleby, P.N.; Key, T.J.; Travis, R.C. Plasma concentrations and intakes of amino acids in male meat-eaters, fish-eaters, vegetarians and vegans: A cross-sectional analysis in the EPIC-Oxford cohort. Eur. J. Clin. Nutr. 2016, 70, 306–312. [Google Scholar] [CrossRef] [PubMed]
- Aguiar, A.F.; Grala, A.P.; da Silva, R.A.; Soares-Caldeira, L.F.; Pacagnelli, F.L.; Ribeiro, A.S.; da Silva, D.K.; de Andrade, W.B.; Balvedi, M.C.W. Free leucine supplementation during an 8-week resistance training program does not increase muscle mass and strength in untrained young adult subjects. Amino Acids 2017, 49, 1255–1262. [Google Scholar] [CrossRef] [PubMed]
- De Andrade, I.; Gualano, B.; Hevia-Larraín, V.; Neves-Junior, J.; Cajueiro, M.; Jardim, F.; Gomes, R.L.; Artioli, G.G.; Phillips, S.M.; Campos-Ferraz, P.; et al. Leucine supplementation has no further effect on training-induced muscle adaptations. Med. Sci. Sports Exerc. 2020, 52, 1809–1814. [Google Scholar] [CrossRef]
- Pinckaers, P.J.M.; Trommelen, J.; Snijders, T.; van Loon, L.J.C. The anabolic response to plant-based protein ingestion. Sports Med. 2021, 51 (Suppl. S1), 59–74. [Google Scholar] [CrossRef]
- Ismaeel, A.; Weems, S.; Willoughby, D.S. A comparison of the nutrient intakes of macronutrient-based dieting and strict dieting bodybuilders. Int. J. Sport. Nutr. Exerc. Metab. 2018, 28, 502–508. [Google Scholar] [CrossRef] [PubMed]
- Knapik, J.J.; Steelman, R.A.; Hoedebecke, S.S.; Austin, K.G.; Farina, E.K.; Lieberman, H.R. Prevalence of dietary supplement use by athletes: Systematic review and meta-analysis. Sports Med. 2016, 46, 103–123. [Google Scholar] [CrossRef]
- West, S.; Monteyne, A.J.; van der Heijden, I.; Stephens, F.B.; Wall, B.T. Nutritional considerations for the vegan athlete. Adv. Nutr. 2023, 14, 774–795. [Google Scholar] [CrossRef] [PubMed]
- McLean, R.M.; Farmer, V.L.; Nettleton, A.; Cameron, C.M.; Cook, N.R.; Campbell, N.R.C. Assessment of dietary sodium intake using a food frequency questionnaire and 24-hour urinary sodium excretion: A systematic literature review. J. Clin. Hyperte. 2017, 19, 1214–1230. [Google Scholar] [CrossRef]
- Barnes, K.A.; Anderson, M.L.; Stofan, J.R.; Dalrymple, K.J.; Reimel, A.J.; Roberts, T.J.; Randell, R.K.; Ungaro, C.T.; Baker, L.B. Normative data for sweating rate, sweat sodium concentration, and sweat sodium loss in athletes: An update and analysis by sport. J. Sports Sci. 2019, 37, 2356–2366. [Google Scholar] [CrossRef] [PubMed]
- Eckel, R.H.; Jakicic, J.M.; Ard, J.D.; de Jesus, J.M.; Houston Miller, N.; Hubbard, V.S.; Lee, I.M.; Lichtenstein, A.H.; Loria, C.M.; Millen, B.E.; et al. 2013 AHA/ACC guideline on lifestyle management to reduce cardiovascular risk: A report of the American College of Cardiology/American Heart Association Task Force on practice guidelines. J. Am. Coll. Cardiol. 2014, 63, 2960–2984. [Google Scholar] [CrossRef]
- Brito, A.P.; Rêgo, A.S.; Sousa, L.M.; Ewerton, F.A.; Bragança, M.L.; Silva, F.M.; Barbosa, J.M. Cardiovascular risk in bodybuilders in gyms in São Luís, state of Maranhão. Rev. Atenção Saúde 2020, 19, 107–121. [Google Scholar] [CrossRef]
- Coraucci-Neto, B.; Bertani, R.F.; Campos, G.O.; Bonardi, J.M.; Lima, N.K. Health aspects of active bodybuilders: Monitoring by multidisciplinary team. Rev. Bras. Ciências Esporte 2021, 43, e007321. [Google Scholar] [CrossRef]
- Kleiner, S.M.; Calabrese, L.H.; Fiedler, K.M.; Naito, H.K.; Skibinski, C.I. Dietary influences on cardiovascular disease risk in anabolic steroid-using and nonusing bodybuilders. J. Am. Coll. Nutr. 1989, 8, 109–119. [Google Scholar] [CrossRef]
- Smoliga, J.M.; Wilber, Z.T.; Robinson, B.T. Premature death in bodybuilders: What do we know? Sports Med. 2023, 53, 933–948. [Google Scholar] [CrossRef]
- Andrade, C. Sample size and its importance in research. Indian. J. Psychol. Med. 2020, 42, 102–103. [Google Scholar] [CrossRef] [PubMed]
- Wolinsky, I. Nutrition in Exercise and Sport; CRC Press: Boca Raton, FL, USA, 1997; Volume 13. [Google Scholar]
- Jeukendrup, A.E. Training the gut for athletes. Sports Med. 2017, 47 (Suppl. S1), 101–110. [Google Scholar] [CrossRef] [PubMed]
- Craddock, J.C.; Genoni, A.; Strutt, E.F.; Goldman, D.M. Limitations with the Digestible Indispensable Amino Acid Score (DIAAS) with special attention to plant-based diets: A review. Curr. Nutr. Rep. 2021, 10, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Vliet, S.V.; Beals, J.W.; Martinez, I.G.; Skinner, S.K.; Burd, N.A. Achieving optimal post-exercise muscle protein remodeling in physically active adults through whole food consumption. Nutrients 2018, 10, 224. [Google Scholar] [CrossRef]
- Goldman, D.M.; Stiegmann, R.A.; Craddock, J.C. Supplemental creatine, not dietary creatine, appears to improve exercise performance in individuals following omnivorous or meat-free diets: A narrative review. Int. J. Dis. Rev. Prev. 2022, 4, 15. [Google Scholar] [CrossRef]
- Lanhers, C.; Pereira, B.; Naughton, G.; Trousselard, M.; Lesage, F.X.; Dutheil, F. Creatine supplementation and lower limb strength performance: A systematic review and meta-analyses. Sports Med. 2015, 45, 1285–1294. [Google Scholar] [CrossRef] [PubMed]
- Lanhers, C.; Pereira, B.; Naughton, G.; Trousselard, M.; Lesage, F.X.; Dutheil, F. Creatine supplementation and upper limb strength performance: A systematic review and meta-analysis. Sports Med. 2017, 47, 163–173. [Google Scholar] [CrossRef]
- Delpino, F.M.; Figueiredo, L.M.; Forbes, S.C.; Candow, D.G.; Santos, H.O. Influence of age, sex, and type of exercise on the efficacy of creatine supplementation on lean body mass: A systematic review and meta-analysis of randomized clinical trials. Nutrition 2022, 103–104, 111791. [Google Scholar] [CrossRef] [PubMed]
- Chappell, A.J.; Simper, T.; Barker, M.E. Nutritional strategies of high level natural bodybuilders during competition preparation. J. Int. Soc. Sports Nutr. 2018, 15, 4. [Google Scholar] [CrossRef]
- Witard, O.C.; Wardle, S.L.; Macnaughton, L.S.; Hodgson, A.B.; Tipton, K.D. Protein considerations for optimising skeletal muscle mass in healthy young and older adults. Nutrients 2016, 8, 181. [Google Scholar] [CrossRef]
- Finger, D.; Goltz, F.R.; Umpierre, D.; Meyer, E.; Rosa, L.H.; Schneider, C.D. Effects of protein supplementation in older adults undergoing resistance training: A systematic review and meta-analysis. Sports Med. 2015, 45, 245–255. [Google Scholar] [CrossRef] [PubMed]
- Shields, C.L., Jr.; Whitney, F.E.; Zomar, V.D. Exercise performance of professional football players. Am. J. Sports Med. 1984, 12, 455–459. [Google Scholar] [CrossRef] [PubMed]
- Secora, C.A.; Latin, R.W.; Berg, K.E.; Noble, J.M. Comparison of physical and performance characteristics of NCAA Division I football players: 1987 and 2000. J. Strength Cond. Res. 2004, 18, 286–291. [Google Scholar] [CrossRef] [PubMed]
- Pasin, F.; Caroli, B.; Spigoni, V.; Dei Cas, A.; Volpi, R.; Galli, C.; Passeri, G. Performance and antrhropometric characteristics of elite rugby players. Acta Biomed. 2017, 88, 172–177. [Google Scholar] [CrossRef]
- Vaz, L.; Kraak, W.; Batista, M.; Honório, S.; Miguel Fernandes, H. Using anthropometric data and physical fitness scores to predict selection in a national U19 rugby union team. Int. J. Environ. Res. Public. Health 2021, 18, 1499. [Google Scholar] [CrossRef]
Parameter | Range | Median Value |
---|---|---|
Age (y) | 22–35 | 28.5 |
Body mass (kg) | 75–94 | 84.5 |
RMR: 2106 kcal/day |
ES: 553 kcal/day |
EER: 4239 kcal/day |
Total protein requirements: 135 g/day |
Total protein levels: 151 g/day |
Relative protein levels: 1.8 g/kg/day |
AHS-2 Strict Vegetarians | Male Bodybuilders ‡ | Nutrient Target | Recommendation | Target Met? | |
---|---|---|---|---|---|
Calories (kcal) | 2000 | 4239 | - | - | N/A |
Saturated Fat (% kcal) | 5 | 5 | <10 | DGA | ✓ |
ω3 PUFA (g) | 2 | 4.2 | 1.6 | AI | ✓ |
Linoleic Acid (g) | 19.5 | 41 | 17 | AI | ✓ |
Fiber (g) | 47 | 99 | 59 † | AI | ✓ |
Vitamin A (mcg RAE *) | 1108 | 2348 | 900 | RDA | ✓ |
Vitamin B6 (mg) | 14.4 | 30.5 | 1.3 | RDA | ✓ |
Folate (mcg) | 888 | 1882 | 400 | RDA | ✓ |
Vitamin B12 (mcg) | 23.3 | 49.4 | 2.4 | RDA | ✓ |
Vitamin C (mg) | 531 | 1125 | 90 | RDA | ✓ |
Vitamin D (IU) | 252 | 536 | 600 | RDA | ✗ |
Vitamin E (mg) | 101 | 214 | 15 | RDA | ✓ |
Calcium (mg) | 1156 | 2450 | 1000 | RDA | ✓ |
Iron (mg) | 32 | 67 | 8 | RDA | ✓ |
Magnesium (mg) | 652 | 1382 | 400 | RDA | ✓ |
Phosphorus (mg) | 1371 | 2906 | 700 | RDA | ✓ |
Potassium (mg) | 4234 | 8973 | 3400 | AI | ✓ |
Sodium (mg) | 3531 | 7484 | 2300 | CDRR | ✗ |
Zinc (mg) | 16 | 35 | 11 | RDA | ✓ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goldman, D.M.; Warbeck, C.B.; Karlsen, M.C. Completely Plant-Based Diets That Meet Energy Requirements for Resistance Training Can Supply Enough Protein and Leucine to Maximize Hypertrophy and Strength in Male Bodybuilders: A Modeling Study. Nutrients 2024, 16, 1122. https://doi.org/10.3390/nu16081122
Goldman DM, Warbeck CB, Karlsen MC. Completely Plant-Based Diets That Meet Energy Requirements for Resistance Training Can Supply Enough Protein and Leucine to Maximize Hypertrophy and Strength in Male Bodybuilders: A Modeling Study. Nutrients. 2024; 16(8):1122. https://doi.org/10.3390/nu16081122
Chicago/Turabian StyleGoldman, David M., Cassandra B. Warbeck, and Micaela C. Karlsen. 2024. "Completely Plant-Based Diets That Meet Energy Requirements for Resistance Training Can Supply Enough Protein and Leucine to Maximize Hypertrophy and Strength in Male Bodybuilders: A Modeling Study" Nutrients 16, no. 8: 1122. https://doi.org/10.3390/nu16081122
APA StyleGoldman, D. M., Warbeck, C. B., & Karlsen, M. C. (2024). Completely Plant-Based Diets That Meet Energy Requirements for Resistance Training Can Supply Enough Protein and Leucine to Maximize Hypertrophy and Strength in Male Bodybuilders: A Modeling Study. Nutrients, 16(8), 1122. https://doi.org/10.3390/nu16081122