Vitamin D Inadequacy and Its Relation to Body Fat and Muscle Mass in Adult Women of Childbearing Age
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. General Characterization of the Sample
3.2. Body Composition According to Vitamin D Serum Concentrations
3.3. Body Composition According to Vitamin D Serum Concentrations by BMI
3.4. Correlations of Vitamin D with Body Composition
4. Discussion
4.1. Prevalence of Vitamin D Inadequacy and Deficiency
4.2. Relationship between Serum Vitamin D Concentrations and Muscle Mass
4.3. Relationship between Serum Vitamin D Concentrations and Body Fat
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alzaheb, R.A. The Prevalence of Hypovitaminosis D and Its Associated Risk Factors Among Women of Reproductive Age in Saudi Arabia: A Systematic Review and Meta-Analysis. Clin. Med. Insights Women’s Health 2018, 11, 1179562X18767884. [Google Scholar] [CrossRef] [PubMed]
- Da Silveira, E.A.; Moura, L.d.A.N.E.; Castro, M.C.R.; Kac, G.; Hadler, M.C.C.M.; Noll, P.R.E.S.; Noll, M.; Rezende, A.T.d.O.; Delpino, F.M.; de Oliveira, C. Prevalence of Vitamin D and Calcium Deficiency and Insufficiency in Women of Childbearing Age and Associated Risk Factors: A Systematic Review and Meta-Analysis. Nutrients 2022, 14, 4351. [Google Scholar] [CrossRef] [PubMed]
- Sofi, N.Y.; Jain, M.; Kapil, U.; Seenu, V.; Ramakrishnan, L.; Yadav, C.P.; Pandey, R.M. Status of Serum Vitamin D and Calcium Levels in Women of Reproductive Age in National Capital Territory of India. Indian J. Endocrinol. Metab. 2017, 21, 731. [Google Scholar] [CrossRef] [PubMed]
- Ginde, A.A.; Sullivan, A.F.; Mansbach, J.M.; Camargo, C.A. Vitamin D Insufficiency in Pregnant and Nonpregnant Women of Childbearing Age in the United States. Am. J. Obstet. Gynecol. 2010, 202, 436.e1–436.e8. [Google Scholar] [CrossRef] [PubMed]
- Hedlund, L.; Brembeck, P.; Olausson, H. Determinants of Vitamin D Status in Fair-Skinned Women of Childbearing Age at Northern Latitudes. PLoS ONE 2013, 8, e60864. [Google Scholar] [CrossRef] [PubMed]
- Saeedian Kia, A.; Amani, R.; Cheraghian, B. The Association between the Risk of Premenstrual Syndrome and Vitamin D, Calcium, and Magnesium Status among University Students: A Case Control Study. Health Promot. Perspect. 2015, 5, 225–230. [Google Scholar] [CrossRef] [PubMed]
- Karlsson, T.; Osmancevic, A.; Jansson, N.; Hulthén, L.; Holmäng, A.; Larsson, I. Increased Vitamin D-Binding Protein and Decreased Free 25(OH)D in Obese Women of Reproductive Age. Eur. J. Nutr. 2014, 53, 259–267. [Google Scholar] [CrossRef] [PubMed]
- Halfon, M.; Phan, O.; Teta, D. Vitamin D: A Review on Its Effects on Muscle Strength, the Risk of Fall, and Frailty. BioMed. Res. Int. 2015, 2015, 953241. [Google Scholar] [CrossRef]
- Nimitphong, H.; Holick, M.F.; Fried, S.K.; Lee, M.-J. 25-Hydroxyvitamin D3 and 1,25-Dihydroxyvitamin D3 Promote the Differentiation of Human Subcutaneous Preadipocytes. PLoS ONE 2012, 7, e52171. [Google Scholar] [CrossRef]
- Xu, Y.; Lou, Y.; Kong, J. VDR Regulates Energy Metabolism by Modulating Remodeling in Adipose Tissue. Eur. J. Pharmacol. 2019, 865, 172761. [Google Scholar] [CrossRef]
- Ceglia, L.; da Silva Morais, M.; Park, L.K.; Morris, E.; Harris, S.S.; Bischoff-Ferrari, H.A.; Fielding, R.A.; Dawson-Hughes, B. Multi-Step Immunofluorescent Analysis of Vitamin D Receptor Loci and Myosin Heavy Chain Isoforms in Human Skeletal Muscle. J. Mol. Histol. 2010, 41, 137–142. [Google Scholar] [CrossRef]
- Bennour, I.; Haroun, N.; Sicard, F.; Mounien, L.; Landrier, J.-F. Vitamin D and Obesity/Adiposity-A Brief Overview of Recent Studies. Nutrients 2022, 14, 2049. [Google Scholar] [CrossRef] [PubMed]
- Muscogiuri, G.; Barrea, L.; Somma, C.D.; Laudisio, D.; Salzano, C.; Pugliese, G.; de Alteriis, G.; Colao, A.; Savastano, S. Sex Differences of Vitamin D Status across BMI Classes: An Observational Prospective Cohort Study. Nutrients 2019, 11, 3034. [Google Scholar] [CrossRef] [PubMed]
- Leiu, K.H.; Chin, Y.S.; Mohd Shariff, Z.; Arumugam, M.; Chan, Y.M. High Body Fat Percentage and Low Consumption of Dairy Products Were Associated with Vitamin D Inadequacy among Older Women in Malaysia. PLoS ONE 2020, 15, e0228803. [Google Scholar] [CrossRef] [PubMed]
- De Pergola, G.; Martino, T.; Zupo, R.; Caccavo, D.; Pecorella, C.; Paradiso, S.; Silvestris, F.; Triggiani, V. 25 Hydroxyvitamin D Levels Are Negatively and Independently Associated with Fat Mass in a Cohort of Healthy Overweight and Obese Subjects. Endocr. Metab. Immune Disord. Drug Targets 2019, 19, 838–844. [Google Scholar] [CrossRef] [PubMed]
- Rafiq, S.; Jeppesen, P.B. Body Mass Index, Vitamin D, and Type 2 Diabetes: A Systematic Review and Meta-Analysis. Nutrients 2018, 10, 1182. [Google Scholar] [CrossRef] [PubMed]
- Al Hayek, S.; Matar Bou Mosleh, J.; Ghadieh, R.; El Hayek Fares, J. Vitamin D Status and Body Composition: A Cross-Sectional Study among Employees at a Private University in Lebanon. BMC Nutr. 2018, 4, 31. [Google Scholar] [CrossRef] [PubMed]
- Delle Monache, S.; Di Fulvio, P.; Iannetti, E.; Valerii, L.; Capone, L.; Nespoli, M.G.; Bologna, M.; Angelucci, A. Body Mass Index Represents a Good Predictor of Vitamin D Status in Women Independently from Age. Clin. Nutr. Edinb. Scotl. 2019, 38, 829–834. [Google Scholar] [CrossRef] [PubMed]
- Shoemaker, M.E.; Salmon, O.F.; Smith, C.M.; Duarte-Gardea, M.O.; Cramer, J.T. Influences of Vitamin D and Iron Status on Skeletal Muscle Health: A Narrative Review. Nutrients 2022, 14, 2717. [Google Scholar] [CrossRef]
- Fernando, M.; Ellery, S.J.; Marquina, C.; Lim, S.; Naderpoor, N.; Mousa, A. Vitamin D-Binding Protein in Pregnancy and Reproductive Health. Nutrients 2020, 12, 1489. [Google Scholar] [CrossRef]
- Pilz, S.; Zittermann, A.; Obeid, R.; Hahn, A.; Pludowski, P.; Trummer, C.; Lerchbaum, E.; Pérez-López, F.R.; Karras, S.N.; März, W. The Role of Vitamin D in Fertility and during Pregnancy and Lactation: A Review of Clinical Data. Int. J. Environ. Res. Public. Health 2018, 15, 2241. [Google Scholar] [CrossRef] [PubMed]
- Lucchetta, R.C.; Lemos, I.H.; Gini, A.L.R.; Cavicchioli, S.d.A.; Forgerini, M.; Varallo, F.R.; de Nadai, M.N.; Fernandez-Llimos, F.; Mastroianni, P. de C. Deficiency and Insufficiency of Vitamin D in Women of Childbearing Age: A Systematic Review and Meta-Analysis. Rev. Bras. Ginecol. E Obstet. Rev. Fed. Bras. Soc. Ginecol. E Obstet. 2022, 44, 409–424. [Google Scholar] [CrossRef]
- Dorsey, J.G. Introduction to Modern Liquid Chromatography, 3rd ed. J. Am. Chem. Soc. 2010, 132, 9220. [Google Scholar] [CrossRef]
- Holick, M.F.; Binkley, N.C.; Bischoff-Ferrari, H.A.; Gordon, C.M.; Hanley, D.A.; Heaney, R.P.; Murad, M.H.; Weaver, C.M. Endocrine Society Evaluation, Treatment, and Prevention of Vitamin D Deficiency: An Endocrine Society Clinical Practice Guideline. J. Clin. Endocrinol. Metab. 2011, 96, 1911–1930. [Google Scholar] [CrossRef] [PubMed]
- Lohman, T.G.; Roche, A.F.; Martorell, R. Anthropometric Standardization Reference Manual; Human Kinetics Books: Champaign, IL, USA, 1988; ISBN 978-0-87322-121-4. [Google Scholar]
- WHO. Obesity: Preventing and Managing the Global Epidemic: Report of a WHO Consultation; World Health Organization: Geneva, Switzerland, 2000. [Google Scholar]
- Jelliffe, D.B. ; WHO. The Assessment of the Nutritional Status of the Community (with Special Reference to Field Surveys in Developing Regions of the World; World Health Organization: Geneva, Switzerland, 1966; ISBN 978-92-4-140053-4. [Google Scholar]
- Frisancho, A.R. Triceps Skin Fold and Upper Arm Muscle Size Norms for Assessment of Nutrition Status. Am. J. Clin. Nutr. 1974, 27, 1052–1058. [Google Scholar] [CrossRef] [PubMed]
- Gurney, J.M.; Jelliffe, D.B. Arm Anthropometry in Nutritional Assessment: Nomogram for Rapid Calculation of Muscle Circumference and Cross-Sectional Muscle and Fat Areas. Am. J. Clin. Nutr. 1973, 26, 912–915. [Google Scholar] [CrossRef] [PubMed]
- WHO. Waist Circumference and Waist-Hip Ratio: Report of a WHO Expert Consultation, Geneva, 8–11 December 2008; World Health Organization: Geneva, Switzerland, 2008; ISBN 978-92-4-150149-1. [Google Scholar]
- Valdez, R. A Simple Model-Based Index of Abdominal Adiposity. J. Clin. Epidemiol. 1991, 44, 955–956. [Google Scholar] [CrossRef]
- Ashwell, M.; Lejeune, S.; McPherson, K. Ratio of Waist Circumference to Height May Be Better Indicator of Need for Weight Management. BMJ 1996, 312, 377. [Google Scholar] [CrossRef] [PubMed]
- Amato, M.C.; Giordano, C.; Galia, M.; Criscimanna, A.; Vitabile, S.; Midiri, M.; Galluzzo, A. Visceral Adiposity Index. Diabetes Care 2010, 33, 920–922. [Google Scholar] [CrossRef]
- Bergman, R.N.; Stefanovski, D.; Buchanan, T.A.; Sumner, A.E.; Reynolds, J.C.; Sebring, N.G.; Xiang, A.H.; Watanabe, R.M. A Better Index of Body Adiposity. Obesity 2011, 19, 1083–1089. [Google Scholar] [CrossRef]
- Krakauer, N.Y.; Krakauer, J.C. A New Body Shape Index Predicts Mortality Hazard Independently of Body Mass Index. PLoS ONE 2012, 7, e39504. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Ambrosi, J.; Silva, C.; Catalán, V.; Rodríguez, A.; Galofré, J.C.; Escalada, J.; Valentí, V.; Rotellar, F.; Romero, S.; Ramírez, B.; et al. Clinical Usefulness of a New Equation for Estimating Body Fat. Diabetes Care 2012, 35, 383–388. [Google Scholar] [CrossRef] [PubMed]
- Belarmino, G.; Torrinhas, R.S.; Sala, P.; Horie, L.M.; Damiani, L.; Lopes, N.C.; Heymsfield, S.B.; Waitzberg, D.L. A New Anthropometric Index for Body Fat Estimation in Patients with Severe Obesity. BMC Obes. 2018, 5, 25. [Google Scholar] [CrossRef] [PubMed]
- Schutz, Y.; Kyle, U.U.G.; Pichard, C. Fat-Free Mass Index and Fat Mass Index Percentiles in Caucasians Aged 18-98 y. Int. J. Obes. Relat. Metab. Disord. J. Int. Assoc. Study Obes. 2002, 26, 953–960. [Google Scholar] [CrossRef] [PubMed]
- Xu, K.; Zhu, H.J.; Chen, S.; Chen, L.; Wang, X.; Zhang, L.Y.; Pan, L.; Wang, L.; Feng, K.; Wang, K.; et al. Fat-to-Muscle Ratio: A New Anthropometric Indicator for Predicting Metabolic Syndrome in the Han and Bouyei Populations from Guizhou Province, China. Biomed. Environ. Sci. BES 2018, 31, 261–271. [Google Scholar] [CrossRef] [PubMed]
- Baumgartner, R.N.; Koehler, K.M.; Gallagher, D.; Romero, L.; Heymsfield, S.B.; Ross, R.R.; Garry, P.J.; Lindeman, R.D. Epidemiology of Sarcopenia among the Elderly in New Mexico. Am. J. Epidemiol. 1998, 147, 755–763. [Google Scholar] [CrossRef] [PubMed]
- Janssen, I.; Heymsfield, S.B.; Ross, R. Low Relative Skeletal Muscle Mass (Sarcopenia) in Older Persons Is Associated with Functional Impairment and Physical Disability. J. Am. Geriatr. Soc. 2002, 50, 889–896. [Google Scholar] [CrossRef] [PubMed]
- Cawthon, P.M.; Peters, K.W.; Shardell, M.D.; McLean, R.R.; Dam, T.-T.L.; Kenny, A.M.; Fragala, M.S.; Harris, T.B.; Kiel, D.P.; Guralnik, J.M.; et al. Cutpoints for Low Appendicular Lean Mass That Identify Older Adults with Clinically Significant Weakness. J. Gerontol. A Biol. Sci. Med. Sci. 2014, 69, 567–575. [Google Scholar] [CrossRef] [PubMed]
- Becker, W.; Lindroos, A.K.; Nälsén, C.; Warensjö Lemming, E.; Öhrvik, V. Dietary Habits, Nutrient Intake and Biomarkers for Folate, Vitamin D, Iodine and Iron Status among Women of Childbearing Age in Sweden. Ups. J. Med. Sci. 2016, 121, 271–275. [Google Scholar] [CrossRef]
- Burke, N.L.; Harville, E.W.; Wickliffe, J.K.; Shankar, A.; Lichtveld, M.Y.; McCaskill, M.L. Determinants of Vitamin D Status among Black and White Low-Income Pregnant and Non-Pregnant Reproductive-Aged Women from Southeast Louisiana. BMC Pregnancy Childbirth 2019, 19, 111. [Google Scholar] [CrossRef]
- Lopes, V.M.; Lopes, J.R.C.; Brasileiro, J.P.B.; Oliveira, I.d.; Lacerda, R.P.; Andrade, M.R.D.; Tierno, N.I.Z.; Souza, R.C.C.d.; Motta, L.A.C.R. da Highly Prevalence of Vitamin D Deficiency among Brazilian Women of Reproductive Age. Arch. Endocrinol. Metab. 2017, 61, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Bahat, G.; Kilic, C.; Ilhan, B.; Karan, M.A.; Cruz-Jentoft, A. Association of Different Bioimpedanciometry Estimations of Muscle Mass with Functional Measures. Geriatr. Gerontol. Int. 2019, 19, 593–597. [Google Scholar] [CrossRef]
- Arazi, H.; Eghbali, E. 25-Hydroxyvitamin D Levels and Its Relation to Muscle Strength, Maximal Oxygen Consumption, and Body Mass Index in Young and Middle Adulthood Women. Int. J. Womens Health 2019, 11, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Shantavasinkul, P.C.; Phanachet, P.; Puchaiwattananon, O.; Chailurkit, L.; Lepananon, T.; Chanprasertyotin, S.; Ongphiphadhanakul, B.; Warodomwichit, D. Vitamin D Status Is a Determinant of Skeletal Muscle Mass in Obesity According to Body Fat Percentage. Nutrition 2015, 31, 801–806. [Google Scholar] [CrossRef] [PubMed]
- Lila, D.; Susana, Z.; Ricardo, B. Induction of a Calbindin-D9K-like Protein in Avian Muscle Cells by 1,25-Dihydroxy-Vitamin D3. Biochem. Mol. Biol. Int. 1994, 32, 859–867. [Google Scholar] [PubMed]
- Girgis, C.M.; Clifton-Bligh, R.J.; Hamrick, M.W.; Holick, M.F.; Gunton, J.E. The Roles of Vitamin D in Skeletal Muscle: Form, Function, and Metabolism. Endocr. Rev. 2013, 34, 33–83. [Google Scholar] [CrossRef]
- Domingues-Faria, C.; Boirie, Y.; Walrand, S. Vitamin D and Muscle Trophicity. Curr. Opin. Clin. Nutr. Metab. Care 2017, 20, 169–174. [Google Scholar] [CrossRef] [PubMed]
- Garcia, L.A.; King, K.K.; Ferrini, M.G.; Norris, K.C.; Artaza, J.N. 1,25(OH)2vitamin D3 Stimulates Myogenic Differentiation by Inhibiting Cell Proliferation and Modulating the Expression of Promyogenic Growth Factors and Myostatin in C2C12 Skeletal Muscle Cells. Endocrinology 2011, 152, 2976–2986. [Google Scholar] [CrossRef] [PubMed]
- Garcia, L.A.; Ferrini, M.G.; Norris, K.C.; Artaza, J.N. 1,25(OH)(2)Vitamin D(3) Enhances Myogenic Differentiation by Modulating the Expression of Key Angiogenic Growth Factors and Angiogenic Inhibitors in C(2)C(12) Skeletal Muscle Cells. J. Steroid Biochem. Mol. Biol. 2013, 133, 1–11. [Google Scholar] [CrossRef]
- Braga, M.; Simmons, Z.; Norris, K.C.; Ferrini, M.G.; Artaza, J.N. Vitamin D Induces Myogenic Differentiation in Skeletal Muscle Derived Stem Cells. Endocr. Connect. 2017, 6, 139–150. [Google Scholar] [CrossRef]
- Ryan, Z.C.; Craig, T.A.; Folmes, C.D.; Wang, X.; Lanza, I.R.; Schaible, N.S.; Salisbury, J.L.; Nair, K.S.; Terzic, A.; Sieck, G.C.; et al. 1α,25-Dihydroxyvitamin D3 Regulates Mitochondrial Oxygen Consumption and Dynamics in Human Skeletal Muscle Cells. J. Biol. Chem. 2016, 291, 1514–1528. [Google Scholar] [CrossRef] [PubMed]
- Chang, E. 1,25-Dihydroxyvitamin D Decreases Tertiary Butyl-Hydrogen Peroxide-Induced Oxidative Stress and Increases AMPK/SIRT1 Activation in C2C12 Muscle Cells. Molecules 2019, 24, 3903. [Google Scholar] [CrossRef] [PubMed]
- Dzik, K.P.; Kaczor, J.J. Mechanisms of Vitamin D on Skeletal Muscle Function: Oxidative Stress, Energy Metabolism and Anabolic State. Eur. J. Appl. Physiol. 2019, 119, 825–839. [Google Scholar] [CrossRef] [PubMed]
- Mousa, A.; Naderpoor, N.; de Courten, M.P.J.; Scragg, R.; de Courten, B. 25-Hydroxyvitamin D Is Associated with Adiposity and Cardiometabolic Risk Factors in a Predominantly Vitamin D-Deficient and Overweight/Obese but Otherwise Healthy Cohort. J. Steroid Biochem. Mol. Biol. 2017, 173, 258–264. [Google Scholar] [CrossRef] [PubMed]
- Nikolova, M.G.; Boyanov, M.A.; Tsakova, A.D. Correlations of serum vitamin D with metabolic parameters in adult outpatients with different degrees of overweight/obesity coming from an urban community. Acta Endocrinol. 2018, 14, 375–383. [Google Scholar] [CrossRef] [PubMed]
- Patriota, P.; Rezzi, S.; Guessous, I.; Marques-Vidal, P. Association between Anthropometric Markers of Adiposity, Adipokines and Vitamin D Levels. Sci. Rep. 2022, 12, 15435. [Google Scholar] [CrossRef] [PubMed]
- Carrelli, A.; Bucovsky, M.; Horst, R.; Cremers, S.; Zhang, C.; Bessler, M.; Schrope, B.; Evanko, J.; Blanco, J.; Silverberg, S.J.; et al. Vitamin D Storage in Adipose Tissue of Obese and Normal Weight Women. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. 2017, 32, 237–242. [Google Scholar] [CrossRef] [PubMed]
- Beckman, L.M.; Earthman, C.P.; Thomas, W.; Compher, C.W.; Muniz, J.; Horst, R.L.; Ikramuddin, S.; Kellogg, T.A.; Sibley, S.D. Serum 25(OH) Vitamin D Concentration Changes after Roux-En-Y Gastric Bypass Surgery. Obesity 2013, 21, E599–E606. [Google Scholar] [CrossRef] [PubMed]
- Fontana, L.; Eagon, J.C.; Trujillo, M.E.; Scherer, P.E.; Klein, S. Visceral Fat Adipokine Secretion Is Associated with Systemic Inflammation in Obese Humans. Diabetes 2007, 56, 1010–1013. [Google Scholar] [CrossRef]
- Wronska, A.; Kmiec, Z. Structural and Biochemical Characteristics of Various White Adipose Tissue Depots. Acta Physiol. 2012, 205, 194–208. [Google Scholar] [CrossRef]
- Le Jemtel, T.H.; Samson, R.; Milligan, G.; Jaiswal, A.; Oparil, S. Visceral Adipose Tissue Accumulation and Residual Cardiovascular Risk. Curr. Hypertens. Rep. 2018, 20, 77. [Google Scholar] [CrossRef] [PubMed]
- Matsha, T.E.; Ismail, S.; Speelman, A.; Hon, G.M.; Davids, S.; Erasmus, R.T.; Kengne, A.P. Visceral and Subcutaneous Adipose Tissue Association with Metabolic Syndrome and Its Components in a South African Population. Clin. Nutr. ESPEN 2019, 32, 76–81. [Google Scholar] [CrossRef] [PubMed]
- Sato, F.; Maeda, N.; Yamada, T.; Namazui, H.; Fukuda, S.; Natsukawa, T.; Nagao, H.; Murai, J.; Masuda, S.; Tanaka, Y.; et al. Association of Epicardial, Visceral, and Subcutaneous Fat with Cardiometabolic Diseases. Circ. J. 2018, 82, 502–508. [Google Scholar] [CrossRef] [PubMed]
- Jung, U.J.; Choi, M.-S. Obesity and Its Metabolic Complications: The Role of Adipokines and the Relationship between Obesity, Inflammation, Insulin Resistance, Dyslipidemia and Nonalcoholic Fatty Liver Disease. Int. J. Mol. Sci. 2014, 15, 6184–6223. [Google Scholar] [CrossRef] [PubMed]
- Neeland, I.J.; Turer, A.T.; Ayers, C.R.; Powell-Wiley, T.M.; Vega, G.L.; Farzaneh-Far, R.; Grundy, S.M.; Khera, A.; McGuire, D.K.; de Lemos, J.A. Dysfunctional Adiposity and the Risk of Prediabetes and Type 2 Diabetes in Obese Adults. JAMA 2012, 308, 1150–1159. [Google Scholar] [CrossRef] [PubMed]
- Fox, C.S.; Massaro, J.M.; Hoffmann, U.; Pou, K.M.; Maurovich-Horvat, P.; Liu, C.-Y.; Vasan, R.S.; Murabito, J.M.; Meigs, J.B.; Cupples, L.A.; et al. Abdominal Visceral and Subcutaneous Adipose Tissue Compartments: Association with Metabolic Risk Factors in the Framingham Heart Study. Circulation 2007, 116, 39–48. [Google Scholar] [CrossRef] [PubMed]
- Wortsman, J.; Matsuoka, L.Y.; Chen, T.C.; Lu, Z.; Holick, M.F. Decreased Bioavailability of Vitamin D in Obesity. Am. J. Clin. Nutr. 2000, 72, 690–693. [Google Scholar] [CrossRef] [PubMed]
- Heaney, R.P.; Recker, R.R.; Grote, J.; Horst, R.L.; Armas, L.A.G. Vitamin D(3) Is More Potent than Vitamin D(2) in Humans. J. Clin. Endocrinol. Metab. 2011, 96, E447–E452. [Google Scholar] [CrossRef] [PubMed]
- Brouwer, D.A.; van Beek, J.; Ferwerda, H.; Brugman, A.M.; van der Klis, F.R.; van der Heiden, H.J.; Muskiet, F.A. Rat Adipose Tissue Rapidly Accumulates and Slowly Releases an Orally-Administered High Vitamin D Dose. Br. J. Nutr. 1998, 79, 527–532. [Google Scholar] [CrossRef]
- Drincic, A.T.; Armas, L.A.G.; Van Diest, E.E.; Heaney, R.P. Volumetric Dilution, Rather than Sequestration Best Explains the Low Vitamin D Status of Obesity. Obesity 2012, 20, 1444–1448. [Google Scholar] [CrossRef]
- Walsh, J.S.; Bowles, S.; Evans, A.L. Vitamin D in Obesity. Curr. Opin. Endocrinol. Diabetes Obes. 2017, 24, 389–394. [Google Scholar] [CrossRef] [PubMed]
- Roizen, J.D.; Long, C.; Casella, A.; O’Lear, L.; Caplan, I.; Lai, M.; Sasson, I.; Singh, R.; Makowski, A.J.; Simmons, R.; et al. Obesity Decreases Hepatic 25-Hydroxylase Activity Causing Low Serum 25-Hydroxyvitamin D. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. 2019, 34, 1068–1073. [Google Scholar] [CrossRef] [PubMed]
- Mutt, S.J.; Hyppönen, E.; Saarnio, J.; Järvelin, M.-R.; Herzig, K.-H. Vitamin D and Adipose Tissue-More than Storage. Front. Physiol. 2014, 5, 228. [Google Scholar] [CrossRef] [PubMed]
- Wong, K.E.; Kong, J.; Zhang, W.; Szeto, F.L.; Ye, H.; Deb, D.K.; Brady, M.J.; Li, Y.C. Targeted Expression of Human Vitamin D Receptor in Adipocytes Decreases Energy Expenditure and Induces Obesity in Mice. J. Biol. Chem. 2011, 286, 33804–33810. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.; Norman, A.W.; Okamura, W.H.; Sen, A.; Zemel, M.B. 1alpha,25-Dihydroxyvitamin D3 Modulates Human Adipocyte Metabolism via Nongenomic Action. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2001, 15, 2751–2753. [Google Scholar] [CrossRef]
- Ionica, M.; Aburel, O.M.; Vaduva, A.; Petrus, A.; Rațiu, S.; Olariu, S.; Sturza, A.; Muntean, D.M. Vitamin D Alleviates Oxidative Stress in Adipose Tissue and Mesenteric Vessels from Obese Patients with Subclinical Inflammation. Can. J. Physiol. Pharmacol. 2020, 98, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Park, C.Y.; Kim, T.Y.; Yoo, J.S.; Seo, Y.; Pae, M.; Han, S.N. Effects of 1,25-Dihydroxyvitamin D3 on the Inflammatory Responses of Stromal Vascular Cells and Adipocytes from Lean and Obese Mice. Nutrients 2020, 12, 364. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Zemel, M.B. Role of Uncoupling Protein 2 (UCP2) Expression and 1alpha, 25-Dihydroxyvitamin D3 in Modulating Adipocyte Apoptosis. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2004, 18, 1430–1432. [Google Scholar] [CrossRef]
- Sergeev, I.N.; Song, Q. High Vitamin D and Calcium Intakes Reduce Diet-Induced Obesity in Mice by Increasing Adipose Tissue Apoptosis. Mol. Nutr. Food Res. 2014, 58, 1342–1348. [Google Scholar] [CrossRef]
Index | Formula | Reference |
---|---|---|
Body mass index (BMI) | BMI (kg/m2) = | WHO, 2000 [26] |
Waist-to-hip ratio (WHR) | WHO, 2008 [30] | |
Waist-to-height ratio (WHtR) | Ashwell; Lejeune; Mcpherson, 1996 [32] | |
Conicity index (CI) | CI = | Valdez, 1991 [31] |
Body adiposity index (BAI) | BAI (%) = | Bergman et al., 2011 [34] |
A body shape index (ABSI) | ABSI (m11/6 kg−2/3) = | Krakauer; Krakauer, 2012 [35] |
Clínica Universidad de Navarra—Body Adiposity Estimator (CUN-BAE) | CUN-BAE (%) = −44.988 + (0.503 × age (years)) + (10.689 × sex) + (3172 × BMI (kg/m2)) − (0.026 × BMI (kg/m2) 2) + (0.181 × BMI (kg/m2) × sex) − (0.02 × BMI (kg/m2) × age (years)) − (0.005 × BMI (kg/m2) 2 × sex) + (0.00021 × BMI (kg/m2) 2 × age (years)) Sex: female = 1 | Gómez-Ambrosi et al., 2012 [36] |
Belarmino–Waitzberg index (BeW) | Woman BeW (%) = −48.8 + 0.087 × WC (cm) + 1.147 × HC (cm) − 0.003 × HC (cm) 2 | Belarmino et al., 2018 [37] |
Visceral adiposity index (VAI) | Amato et al., 2010 [33] | |
Fat mass index (FMI) | FMI (kg/m2) = | Schutz; Kyle; Pichard, 2002 [38] |
Fat-to-muscle ratio (FMR) | Xu et al., 2018 [39] |
Index | Formula | Reference |
---|---|---|
Arm muscle circumference (AMC) | AMC (cm) = AC (cm) − (DCT (mm) × 0.3142) | Frisancho, 1974 [28] |
Arm muscle area (AMA) | AMA (cm2) = | Gurney; Jelliffe, 1973 [29] |
Fat-free mass index (FFMI) | Schutz; Kyle; Pichard, 2002 [38] | |
Muscle mass index adjusted by height2 (SMI height) | Baumgartner et al., 1998 [40] | |
Muscle mass index adjusted by weight (SMI weight) | Janssen; Heymsfield; Ross, 2002 [41] | |
Muscle mass index adjusted by BMI (SMI BMI) | Cawthon et al., 2014 [42] |
Vitamin D (25(OH)D) | Vitamin D (25(OH)D) | ||||||
---|---|---|---|---|---|---|---|
Sufficient (n = 45) | Insufficient (n = 55) | Deficient (n = 24) | p a | Adequate (n = 45) | Inadequate (n = 79) | p | |
25(OH)D (ng/mL) | 40.07 ± 8.24 b,c | 24.56 ± 2.68 b,d | 17.55 ± 1.60 c,d | <0.001 | 40.07 ± 8.24 | 22.43 ± 4.03 | <0.001 |
Age (years) | 33.78 ± 7.54 | 33.33 ± 6.50 | 36.33 ± 7.55 | 0.200 | 33.78 ± 7.54 | 34.24 ± 6.93 | 0.660 |
Weight (kg) | 63.07 ± 7.87 | 66.62 ± 13.47 | 65.36 ± 9.87 | 0.496 | 63.07 ± 7.87 | 66.24 ± 12.44 | 0.239 |
WC (cm) | 78.83 ± 7.02 | 81.89 ± 10.49 | 82.46 ± 8.88 | 0.249 | 78.83 ± 7.02 | 82.06 ± 9.97 | 0.114 |
HC (cm) | 99.63 ± 6.14 | 102.67 ± 9.45 | 101.52 ± 8.08 | 0.382 | 99.63 ± 6.14 | 102.31 ± 9.01 | 0.181 |
AC (cm) | 27.57 ± 2.43 | 27.32 ± 3.05 | 27.98 ± 2.67 | 0.607 | 27.56 ± 2.43 | 27.54 ± 2.93 | 0.900 |
TSF (mm) | 26.75 ± 6.71 | 27.45 ± 7.67 | 27.68 ± 6.99 | 0.918 | 26.75 ± 6.71 | 27.53 ± 7.39 | 0.680 |
AMC (cm) | 19.16 ± 1.22 | 18.70 ± 1.80 | 19.29 ± 1.48 | 0.166 | 19.16 ± 1.22 | 18.89 ± 1.71 | 0.256 |
AMA (cm2) | 29.34 ± 3.78 | 28.09 ± 5.54 | 29.78 ± 4.62 | 0.166 | 29.34 ± 3.78 | 28.65 ± 5.28 | 0.256 |
BMI (kg/m2) | 23.45 ± 2.85 | 24.80 ± 4.02 | 24.24 ± 3.03 | 0.284 | 23.44 ± 2.85 | 24.63 ± 3.73 | 0.115 |
WHR | 0.79 ± 0.05 | 0.80 ± 0.06 | 0.81 ± 0.06 | 0.307 | 0.79 ± 0.05 | 0.80 ± 0.06 | 0.302 |
CI | 1.17 ± 0.06 | 1.18 ± 0.07 | 1.20 ± 0.08 | 0.144 | 1.17 ± 0.58 | 1.19 ± 0.73 | 0.116 |
WHtR | 0.48 ± 0.05 b,c | 0.50 ± 0.06 b | 0.50 ± 0.05 c | 0.062 | 0.48 ± 0.05 | 0.50 ± 0.05 | 0.021 |
VAI | 1.26 ± 0.88 | 1.00 ± 0.46 | 1.50 ± 1.12 | 0.291 | 1.26 ± 0.88 | 1.14 ± 0.74 | 0.688 |
BAI (%) | 29.49 ± 3.44 b | 31.24 ± 3.86 b | 30.26 ± 3.60 | 0.034 | 29.49 ± 3.44 | 30.97 ± 3.78 | 0.019 |
ABSI (m11/6 kg−2/3) | 0.12 ± 0.01 | 0.12 ± 0.01 | 0.13 ± 0.01 | 0.434 | 0.12 ± 0.01 | 0.12 ± 0.01 | 0.514 |
CUN-BAE (%) | 32.12 ± 4.36 | 33.95 ± 5.79 | 33.68 ± 4.68 | 0.192 | 32.12 ± 4.36 | 33.87 ± 5.45 | 0.074 |
BeW (%) | 42.45 ± 3.80 | 44.21 ± 5.72 | 43.71 ± 4.88 | 0.378 | 42.45 ± 3.80 | 44.06 ± 5.45 | 0.166 |
BF (kg) | 19.51 ± 6.13 | 22.31 ± 9.36 | 22.21 ± 6.59 | 0.336 | 19.51 ± 6.13 | 22.29 ± 8.58 | 0.202 |
FFM (kg) | 42.98 ± 4.31 | 43.12 ± 6.07 | 42.66 ± 4.73 | 0.984 | 42.98 ± 4.31 | 42.99 ± 5.67 | 0.958 |
SMM (kg) | 23.45 ± 2.55 | 23.30 ± 4.14 | 23.16 ± 2.77 | 0.974 | 23.45 ± 2.55 | 23.25 ± 3.77 | 0.890 |
% BF (%) | 30.73 ± 6.37 | 33.00 ± 7.53 | 33.69 ± 6.51 | 0.203 | 30.73 ± 6.37 | 33.20 ± 7.20 | 0.094 |
FMI (kg/m2) | 7.27 ± 2.34 | 8.33 ± 3.24 | 8.21 ± 2.45 | 0.270 | 7.27 ± 2.34 | 8.39 ± 3.01 | 0.132 |
FFMI (kg/m2) | 15.98 ± 1.25 | 16.17 ± 1.47 | 15.75 ± 1.16 | 0.511 | 15.98 ± 1.25 | 16.04 ± 1.39 | 0.692 |
FMR | 0.84 ± 0.26 | 0.95 ± 0.32 | 0.96 ± 0.28 | 0.166 | 0.84 ± 0.26 | 0.95 ± 0.30 | 0.065 |
SMI height (kg/m2) | 8.72 ± 0.76 | 8.73 ± 1.20 | 8.55 ± 0.71 | 0.522 | 8.72 ± 0.76 | 8.68 ± 1.08 | 0.846 |
SMI weight (%) | 37.78 ± 3.56 | 36.02 ± 4.69 | 35.97 ± 3.69 | 0.141 | 37.78 ± 3.56 | 36.01 ± 4.39 | 0.051 |
SMI BMI | 1.02 ± 0.13 b | 0.96 ± 0.15 b | 0.97 ± 0.12 | 0.106 | 1.02 ± 0.13 | 0.96 ± 0.14 | 0.039 |
Adequate Vitamin D | Inadequate Vitamin D | p * | |||
---|---|---|---|---|---|
BMI Normal Weight (n = 35) | BMI Overweight (n = 10) | BMI Normal Weight (n = 48) | BMI Overweight (n = 31) | ||
25(OH)D (ng/mL) | 40.89 ± 8.12 c,e | 37.17 ± 8.41 d,f | 22.66 ± 4.16 c,f | 22.08 ± 3.87 d,e | <0.001 |
Age (years) | 33.14 ± 7.52 | 36.00 ± 7.59 | 34.63 ± 6.62 | 33.65 ± 7.45 | 0.619 |
Weight (kg) | 60.79 ± 6.52 a,e | 71.03 ± 7.18 a,d,f | 58.60 ± 7.27 b,f | 78.07 ± 9.01 b,d,e | <0.001 |
WC (cm) | 76.03 ± 4.96 a,e | 88.65 ± 3.16 a,f | 76.33 ± 6.20 b,f | 90.94 ± 8.03 b,e | <0.001 |
HC (cm) | 97.77 ± 5.20 a,e | 106.15 ± 4.66 a,d,f | 96.59 ± 5.24 b,f | 111.00 ± 6.08 b,d,e | <0.001 |
AC (cm) | 26.79 ± 1.92 a,e | 30.56 ± 1.83 a,f | 26.23 ± 2.17 b,f | 30.76 ± 1.86 b,e | <0.001 |
TSF (mm) | 25.34 ± 6.37 a,e | 32.22 ± 5.24 a,f | 24.62 ± 6.02 b,f | 34.74 ± 5.27 b,e | <0.001 |
AMC (cm) | 18.83 ± 1.01 a,e | 20.44 ± 1.18 a,f | 18.50 ± 1.62 b,f | 19.86 ± 1.59 b,e | <0.001 |
AMA (cm2) | 28.30 ± 3.02 a,e | 33.35 ± 3.88 a,f | 27.47 ± 4.95 b,f | 31.58 ± 5.03 b,e | <0.001 |
BMI (kg/m2) | 22.20 ± 1.37 a,e | 27.80 ± 2.36 a,f | 22.15 ± 1.59 b,f | 28.46 ± 2.70 b,e | <0.001 |
WHR | 0.78 ± 0.05 a,e | 0.84 ± 0.04 a,f | 0.79 ± 0.05 b | 0.82 ± 0.06 b,e | 0.001 |
CI | 1.15 ± 0.05 a,e | 1.22 ± 0.05 a,f | 1.17 ± 0.06 b,f | 1.22 ± 0.08 b,e | <0.001 |
WHtR | 0.46 ± 0.03 a,c,e | 0.56 ± 0.03 a,f | 0.47 ± 0.03 b,c,f | 0.55 ± 0.05 b,e | <0.001 |
VAI | 1.08 ± 0.55 | 1.83 ± 1.41 | 1.02 ± 0.61 | 1.30 ± 0.86 | 0.142 |
BAI (%) | 28.04 ± 1.95 a,e | 34.58 ± 2.55 a,f | 28.86 ± 2.44 b,f | 34.17 ± 3.17 b,e | <0.001 |
ABSI (m11/6kg−2/3) | 0.12 ± 0.01 | 0.12 ± 0.01 | 0.12 ± 0.01 | 0.13 ± 0.01 | 0.530 |
CUN-BAE (%) | 30.23 ± 2.27 a,e | 38.75 ± 3.30 a,f | 30.33 ± 2.93 b,f | 39.34 ± 3.59 b,e | <0.001 |
BeW (%) | 41.20 ± 3.15 a,e | 46.80 ± 2.44 a,d,f | 40.56 ± 3.34 b,f | 49.36 ± 3.29 b,d,e | <0.001 |
FM (kg) | 1768 ± 4.41 a,e | 27.10 ± 6.73 a,f | 17.33 ± 4.23 b,f | 31.72 ± 6.59 b,e | <0.001 |
AMC (kg) | 42.74 ± 4.55 e | 43.96 ± 3.18 | 41.33 ± 5.37 b | 46.15 ± 4.92 b,e | 0.005 |
SMM (kg) | 23.28 ± 2.68 e | 24.16 ± 1.91 | 22.14 ± 3.69b | 25.38 ± 2.96 b,e | 0.003 |
% BF (%) | 29.02 ± 5.39 a,e | 37.77 ± 5.40 a,f | 29.39 ± 5.18 b,f | 40.47 ± 4.32 b,e | <0.001 |
FMI (kg/m2) | 6.48 ± 1.49 a,e | 10.55 ± 2.44 a,f | 6.53 ± 1.40 b,f | 11.66 ± 2.28 b,e | <0.001 |
FFMI (kg/m2) | 15.70 ± 1.12 a,e | 17.15 ± 1.15 a,f | 15.58 ± 1.25 b,f | 16.94 ± 1.21 b,e | <0.001 |
FMR | 0.77 ± 0.21 a,e | 1.12 ± 0.25 a,f | 0.80 ± 0.20 b,f | 1.25 ± 0.23 b,e | <0.001 |
SMI height (kg/m2) | 8.55 ± 0.68 a,e | 9.42 ± 0.72 a,f | 8.35 ± 1.08 b,f | 9.31 ± 0.77 b,e | <0.001 |
SMI weight (%) | 38.64 ± 3.13 a,e | 34.19 ± 3.06 a,f | 37.74 ± 4.22 b,f | 32.71 ± 2.40 b,e | <0.001 |
SMI BMI | 1.05 ± 0.11 a,e | 0.88 ± 0.08 a,f | 1.00 ± 0.15 b,f | 0.89 ± 0.09 b,e | <0.001 |
Correlation (r) | p | |
---|---|---|
Age (years) | −0.068 | 0.451 |
Weight (kg) | −0.111 | 0.221 |
WC (cm) | −0.194 | 0.031 |
HC (cm) | −0.123 | 0.174 |
AC (cm) | −0.073 | 0.451 |
TSF (mm) | −0.132 | 0.170 |
AMC (cm) | 0.063 | 0.514 |
AMA (cm2) | 0.050 | 0.605 |
BMI (kg/m2) | −0.151 | 0.094 |
WHR | −0.175 | 0.053 |
CI | −0.207 | 0.021 |
WHtR | −0.218 | 0.015 |
VAI | −0.024 | 0.802 |
BAI (%) | −0.172 | 0.057 |
ABSI (m11/6 kg−2/3) | −0.093 | 0.304 |
CUN-BAE (%) | −0.161 | 0.073 |
BeW (%) | −0.132 | 0.145 |
FM (kg) | −0.189 | 0.063 |
FFM (kg) | 0.050 | 0.627 |
SMM (kg) | −0.044 | 0.666 |
% BF (%) | −0.214 | 0.035 |
FMI (kg/m2) | −0.210 | 0.039 |
FFMI (kg/m2) | −0.008 | 0.940 |
FMR | −0.226 | 0.026 |
SMI height (kg/m2) | −0.003 | 0.980 |
SMI weight (%) | 0.199 | 0.051 |
SMI BMI | 0.219 | 0.031 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Magalhães, P.M.; Cruz, S.P.d.; Carneiro, O.A.; Teixeira, M.T.; Ramalho, A. Vitamin D Inadequacy and Its Relation to Body Fat and Muscle Mass in Adult Women of Childbearing Age. Nutrients 2024, 16, 1267. https://doi.org/10.3390/nu16091267
Magalhães PM, Cruz SPd, Carneiro OA, Teixeira MT, Ramalho A. Vitamin D Inadequacy and Its Relation to Body Fat and Muscle Mass in Adult Women of Childbearing Age. Nutrients. 2024; 16(9):1267. https://doi.org/10.3390/nu16091267
Chicago/Turabian StyleMagalhães, Paula Moreira, Sabrina Pereira da Cruz, Orion Araújo Carneiro, Michelle Teixeira Teixeira, and Andréa Ramalho. 2024. "Vitamin D Inadequacy and Its Relation to Body Fat and Muscle Mass in Adult Women of Childbearing Age" Nutrients 16, no. 9: 1267. https://doi.org/10.3390/nu16091267
APA StyleMagalhães, P. M., Cruz, S. P. d., Carneiro, O. A., Teixeira, M. T., & Ramalho, A. (2024). Vitamin D Inadequacy and Its Relation to Body Fat and Muscle Mass in Adult Women of Childbearing Age. Nutrients, 16(9), 1267. https://doi.org/10.3390/nu16091267