Functional Gastrointestinal Disorders and Childhood Obesity: The Role of Diet and Its Impact on Microbiota
Abstract
:1. Introduction
2. Methods
3. Functional Bowel Disorders in Children with Obesity: State of the Problem
4. Diet, Nutritional Education and Support
4.1. The Role of Diet in FBDs
4.1.1. FODMAP Diet
4.1.2. Fructose or Lactose-Restricted Diet
4.1.3. Gluten-Free Diet
4.2. Nutritional Education and Additional Strategies for Managing FBDs in Children with Obesity
5. Gut Implication
5.1. The Impact of Gut Microbiota
5.1.1. Dysbiosis in Functional Bowel Disorders and Obesity
5.1.2. Microbiota-Mediated Mechanisms and Therapeutic Implications
5.2. The Role of Biotics and Integrative Support
5.2.1. Biotics
5.2.2. Curcumin and Other Phytochemicals
6. Limitations
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Longstreth, G.F.; Thompson, W.G.; Chey, W.D.; Houghton, L.A.; Mearin, F.; Spiller, R.C. Functional Bowel Disorders. Gastroenterology 2006, 130, 1480–1491. [Google Scholar] [CrossRef]
- Hyams, J.S.; Di Lorenzo, C.; Saps, M.; Shulman, R.J.; Staiano, A.; van Tilburg, M. Childhood functional gastrointestinal disorders: Child/adolescent. Gastroenterology 2016, 150, 1456–1468.e2. [Google Scholar] [CrossRef]
- Boronat, A.C.; Ferreira-Maia, A.P.; Matijasevich, A.; Wang, Y.-P. Epidemiology of Functional Gastrointestinal Disorders in Children and Adolescents: A Systematic Review. World J. Gastroenterol. 2017, 23, 3915–3927. [Google Scholar] [CrossRef]
- Korterink, J.J.; Diederen, K.; Benninga, M.A.; Tabbers, M.M. Epidemiology of Pediatric Functional Abdominal Pain Disorders: A Meta-Analysis. PLoS ONE 2015, 10, e0126982. [Google Scholar] [CrossRef] [PubMed]
- Scarpato, E.; Kolacek, S.; Jojkic-Pavkov, D.; Konjik, V.; Živković, N.; Roman, E.; Kostovski, A.; Zdraveska, N.; Altamimi, E.; Papadopoulou, A.; et al. Prevalence of Functional Gastrointestinal Disorders in Children and Adolescents in the Mediterranean Region of Europe. Clin. Gastroenterol. Hepatol. 2018, 16, 870–876. [Google Scholar] [CrossRef]
- Tran, D.L.; Sintusek, P. Functional Constipation in Children: What Physicians Should Know. World J. Gastroenterol. 2023, 29, 1261–1288. [Google Scholar] [CrossRef]
- Mani, J.; Madani, S.; Thomas, R. Economic Impact and Prognostic Factors of Functional Dyspepsia in Children. J. Pediatr. Gastroenterol. Nutr. 2020, 70, E65–E70. [Google Scholar] [CrossRef] [PubMed]
- Hoekman, D.R.; Rutten, J.M.T.M.; Vlieger, A.M.; Benninga, M.A.; Dijkgraaf, M.G.W. Annual Costs of Care for Pediatric Irritable Bowel Syndrome, Functional Abdominal Pain, and Functional Abdominal Pain Syndrome. J. Pediatr. 2015, 167, 1103–1108.e2. [Google Scholar] [CrossRef]
- Nurko, S.; Di Lorenzo, C. Functional Abdominal Pain: Time to Get Together and Move Forward. J. Pediatr. Gastroenterol. Nutr. 2008, 47, 679–680. [Google Scholar] [CrossRef] [PubMed]
- Devanarayana, N.M.; Rajindrajith, S. Irritable Bowel Syndrome in Children: Current Knowledge, Challenges and Opportunities. World J. Gastroenterol. 2018, 24, 2211–2235. [Google Scholar] [CrossRef]
- Nightingale, S.; Sharma, A. Functional Gastrointestinal Disorders in Children: What Is New? J. Paediatr. Child. Health 2020, 56, 1724–1730. [Google Scholar] [CrossRef]
- Ganesh, M.; Nurko, S. Functional Dyspepsia in Children. Pediatr. Ann. 2014, 43, e101–e105. [Google Scholar] [CrossRef] [PubMed]
- Obesity and Overweight—World Health Organization (WHO). Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 10 October 2024).
- Jebeile, H.; Kelly, A.S.; O’Malley, G.; Baur, L.A. Obesity in Children and Adolescents: Epidemiology, Causes, Assessment, and Management. Lancet Diabetes Endocrinol. 2022, 10, 351–365. [Google Scholar] [CrossRef]
- Phatak, U.P.; Pashankar, D.S. Obesity and Gastrointestinal Disorders in Children. J. Pediatr. Gastroenterol. Nutr. 2015, 60, 441–445. [Google Scholar] [CrossRef] [PubMed]
- Rajindrajith, S.; Devanarayana, N.M.; Benninga, M.A. Obesity and Functional Gastrointestinal Diseases in Children. J. Neurogastroenterol. Motil. 2014, 20, 414–416. [Google Scholar] [CrossRef]
- Pogodina, A.; Romanitsa, A.; Rychkova, L. Functional Bowel Disorders and Obesity in Children: State of the Problem. IJBM 2020, 10, 316–323. [Google Scholar] [CrossRef]
- NCD Risk Factor Collaboration (NCD-RisC). Worldwide Trends in Body-Mass Index, Underweight, Overweight, and Obesity from 1975 to 2016: A Pooled Analysis of 2416 Population-Based Measurement Studies in 128·9 Million Children, Adolescents, and Adults. Lancet 2017, 390, 2627–2642. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.D.; Fu, E.; Kobayashi, M.A. Prevention and Management of Childhood Obesity and Its Psychological and Health Comorbidities. Annu. Rev. Clin. Psychol. 2020, 16, 351–378. [Google Scholar] [CrossRef]
- Leung, A.K.C.; Wong, A.H.C.; Hon, K.L. Childhood Obesity: An Updated Review. Curr. Pediatr. Rev. 2024, 20, 2–26. [Google Scholar] [CrossRef]
- Kumar, S.; Kelly, A.S. Review of Childhood Obesity: From Epidemiology, Etiology, and Comorbidities to Clinical Assessment and Treatment. Mayo Clin. Proc. 2017, 92, 251–265. [Google Scholar] [CrossRef]
- Teitelbaum, J.E.; Sinha, P.; Micale, M.; Yeung, S.; Jaeger, J. Obesity Is Related to Multiple Functional Abdominal Diseases. J. Pediatr. 2009, 154, 444–446. [Google Scholar] [CrossRef] [PubMed]
- Jackson, S.J.; Leahy, F.E.; McGowan, A.A.; Bluck, L.J.C.; Coward, W.A.; Jebb, S.A. Delayed Gastric Emptying in the Obese: An Assessment Using the Non-Invasive (13)C-Octanoic Acid Breath Test. Diabetes Obes. Metab. 2004, 6, 264–270. [Google Scholar] [CrossRef]
- Di Ciaula, A.; Wang, D.Q.-H.; Portincasa, P. Gallbladder and Gastric Motility in Obese Newborns, Pre-Adolescents and Adults. J. Gastroenterol. Hepatol. 2012, 27, 1298–1305. [Google Scholar] [CrossRef] [PubMed]
- Yoon, K.; Kim, N. Roles of Sex Hormones and Gender in the Gut Microbiota. J. Neurogastroenterol. Motil. 2021, 27, 314–325. [Google Scholar] [CrossRef] [PubMed]
- Galai, T.; Moran-Lev, H.; Cohen, S.; Ben-Tov, A.; Levy, D.; Weintraub, Y.; Amir, A.; Segev, O.; Yerushalmy-Feler, A. Higher Prevalence of Obesity among Children with Functional Abdominal Pain Disorders. BMC Pediatr. 2020, 20, 193. [Google Scholar] [CrossRef] [PubMed]
- Tambucci, R.; Quitadamo, P.; Ambrosi, M.; De Angelis, P.; Angelino, G.; Stagi, S.; Verrotti, A.; Staiano, A.; Farello, G. Association Between Obesity/Overweight and Functional Gastrointestinal Disorders in Children. J. Pediatr. Gastroenterol. Nutr. 2019, 68, 517–520. [Google Scholar] [CrossRef]
- Phatak, U.P.; Pashankar, D.S. Prevalence of Functional Gastrointestinal Disorders in Obese and Overweight Children. Int. J. Obes. 2014, 38, 1324–1327. [Google Scholar] [CrossRef] [PubMed]
- Pashankar, D.S.; Loening-Baucke, V. Increased Prevalence of Obesity in Children with Functional Constipation Evaluated in an Academic Medical Center. Pediatrics 2005, 116, e377–e380. [Google Scholar] [CrossRef] [PubMed]
- Zia, J.K.; Lenhart, A.; Yang, P.-L.; Heitkemper, M.M.; Baker, J.; Keefer, L.; Saps, M.; Cuff, C.; Hungria, G.; Videlock, E.J.; et al. Risk Factors for Abdominal Pain-Related Disorders of Gut-Brain Interaction in Adults and Children: A Systematic Review. Gastroenterology 2022, 163, 995–1023.e3. [Google Scholar] [CrossRef] [PubMed]
- Elitsur, Y.; Dementieva, Y.; Elitsur, R.; Rewalt, M. Obesity Is Not a Risk Factor in Children with Reflux Esophagitis: A Retrospective Analysis of 738 Children. Metab. Syndr. Relat. Disord. 2009, 7, 211–214. [Google Scholar] [CrossRef]
- Bonilla, S.; Wang, D.; Saps, M. Obesity Predicts Persistence of Pain in Children with Functional Gastrointestinal Disorders. Int. J. Obes. 2011, 35, 517–521. [Google Scholar] [CrossRef] [PubMed]
- Patel, N.R.; Ward, M.J.; Beneck, D.; Cunningham-Rundles, S.; Moon, A. The Association between Childhood Overweight and Reflux Esophagitis. J. Obes. 2010, 2010, 136909. [Google Scholar] [CrossRef]
- Meng, D.; Ai, S.; Spanos, M.; Shi, X.; Li, G.; Cretoiu, D.; Zhou, Q.; Xiao, J. Exercise and Microbiome: From Big Data to Therapy. Comput. Struct. Biotechnol. J. 2023, 21, 5434–5445. [Google Scholar] [CrossRef] [PubMed]
- Tan, S.; Santolaya, J.L.; Wright, T.F.; Liu, Q.; Fujikawa, T.; Chi, S.; Bergstrom, C.P.; Lopez, A.; Chen, Q.; Vale, G.; et al. Interaction between the Gut Microbiota and Colonic Enteroendocrine Cells Regulates Host Metabolism. Nat. Metab. 2024, 6, 1076–1091. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Yi, D.Y.; Lee, Y.M.; Choi, Y.J.; Kim, J.Y.; Hong, Y.H.; Park, J.Y.; Kim, S.Y.; Lee, N.M.; Yun, S.W.; et al. Association between Body Mass Index and Fecal Calprotectin Levels in Children and Adolescents with Irritable Bowel Syndrome. Medicine 2022, 101, e29968. [Google Scholar] [CrossRef] [PubMed]
- Rainone, V.; Schneider, L.; Saulle, I.; Ricci, C.; Biasin, M.; Al-Daghri, N.M.; Giani, E.; Zuccotti, G.V.; Clerici, M.; Trabattoni, D. Upregulation of Inflammasome Activity and Increased Gut Permeability Are Associated with Obesity in Children and Adolescents. Int. J. Obes. 2016, 40, 1026–1033. [Google Scholar] [CrossRef]
- Nemchenko, U.M.; Grigorova, E.V.; Pogodina, A.V.; Belkova, N.L.; Voropaeva, N.M.; Romanitsa, A.I.; Grigoryeva, E.A.; Savelkaeva, M.V.; Rychkova, L.V. The Relationship between the Composition of the Microbiota and Functional Intestinal Disorders in Obese Adolescents. Klin. Lab. Diagn. 2022, 67, 106–109. [Google Scholar] [CrossRef]
- Chen, J.; Liu, X.; Zou, Y.; Gong, J.; Ge, Z.; Lin, X.; Zhang, W.; Huang, H.; Zhao, J.; Saw, P.E.; et al. A High-Fat Diet Promotes Cancer Progression by Inducing Gut Microbiota-Mediated Leucine Production and PMN-MDSC Differentiation. Proc. Natl. Acad. Sci. USA 2024, 121, e2306776121. [Google Scholar] [CrossRef]
- DiBaise, J.K.; Zhang, H.; Crowell, M.D.; Krajmalnik-Brown, R.; Decker, G.A.; Rittmann, B.E. Gut Microbiota and Its Possible Relationship with Obesity. Mayo Clin. Proc. 2008, 83, 460–469. [Google Scholar] [CrossRef] [PubMed]
- Brenchley, J.M.; Douek, D.C. Microbial Translocation across the GI Tract. Annu. Rev. Immunol. 2012, 30, 149–173. [Google Scholar] [CrossRef]
- Vermeire, S.; Van Assche, G.; Rutgeerts, P. C-Reactive Protein as a Marker for Inflammatory Bowel Disease. Inflamm. Bowel Dis. 2004, 10, 661–665. [Google Scholar] [CrossRef] [PubMed]
- Hollander, D.; Vadheim, C.M.; Brettholz, E.; Petersen, G.M.; Delahunty, T.; Rotter, J.I. Increased Intestinal Permeability in Patients with Crohn’s Disease and Their Relatives. A Possible Etiologic Factor. Ann. Intern. Med. 1986, 105, 883–885. [Google Scholar] [CrossRef] [PubMed]
- Gardiner, K.R.; Halliday, M.I.; Barclay, G.R.; Milne, L.; Brown, D.; Stephens, S.; Maxwell, R.J.; Rowlands, B.J. Significance of Systemic Endotoxaemia in Inflammatory Bowel Disease. Gut 1995, 36, 897–901. [Google Scholar] [CrossRef] [PubMed]
- Mulders, R.J.; de Git, K.C.G.; Schéle, E.; Dickson, S.L.; Sanz, Y.; Adan, R.A.H. Microbiota in Obesity: Interactions with Enteroendocrine, Immune and Central Nervous Systems. Obes. Rev. 2018, 19, 435–451. [Google Scholar] [CrossRef] [PubMed]
- Duan, M.; Wang, Y.; Zhang, Q.; Zou, R.; Guo, M.; Zheng, H. Characteristics of Gut Microbiota in People with Obesity. PLoS ONE 2021, 16, e0255446. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Jiang, W.; Huang, W.; Lin, Y.; Chan, F.K.L.; Ng, S.C. Gut Microbiota in Patients with Obesity and Metabolic Disorders—A Systematic Review. Genes. Nutr. 2022, 17, 2. [Google Scholar] [CrossRef]
- Scheithauer, T.P.M.; Rampanelli, E.; Nieuwdorp, M.; Vallance, B.A.; Verchere, C.B.; van Raalte, D.H.; Herrema, H. Gut Microbiota as a Trigger for Metabolic Inflammation in Obesity and Type 2 Diabetes. Front. Immunol. 2020, 11, 571731. [Google Scholar] [CrossRef]
- Zeevenhooven, J.; Browne, P.D.; L’Hoir, M.P.; De Weerth, C.; Benninga, M.A. Infant Colic: Mechanisms and Management. Nat. Rev. Gastroenterol. Hepatol. 2018, 15, 479–496. [Google Scholar] [CrossRef]
- Corsello, A.; Pugliese, D.; Gasbarrini, A.; Armuzzi, A. Diet and Nutrients in Gastrointestinal Chronic Diseases. Nutrients 2020, 12, 2693. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Zogg, H.; Ghoshal, U.C.; Ro, S. Current Treatment Options and Therapeutic Insights for Gastrointestinal Dysmotility and Functional Gastrointestinal Disorders. Front. Pharmacol. 2022, 13, 808195. [Google Scholar] [CrossRef] [PubMed]
- Tuck, C.J.; Reed, D.E.; Muir, J.G.; Vanner, S.J. Implementation of the Low FODMAP Diet in Functional Gastrointestinal Symptoms: A Real-world Experience. Neurogastroenterol. Motil. 2020, 32, e13730. [Google Scholar] [CrossRef] [PubMed]
- Wirth, S.; Klodt, C.; Wintermeyer, P.; Berrang, J.; Hensel, K.; Langer, T.; Heusch, A. Positive or Negative Fructose Breath Test Results do not Predict Response to Fructose Restricted Diet in Children with Recurrent Abdominal Pain: Results from a Prospective Randomized Trial. Klin. Padiatr. 2014, 226, 268–273. [Google Scholar] [CrossRef] [PubMed]
- Rej, A.; Avery, A.; Aziz, I.; Black, C.J.; Bowyer, R.K.; Buckle, R.L.; Seamark, L.; Shaw, C.C.; Thompson, J.; Trott, N.; et al. Diet and Irritable Bowel Syndrome: An Update from a UK Consensus Meeting. BMC Med. 2022, 20, 287. [Google Scholar] [CrossRef]
- Hua, C.; Chen, Y.-L.; Tao, Q.-F.; Shi, Y.-Z.; Li, L.-W.; Xie, C.-R.; Chen, M.; Zhou, Z.-L.; Zheng, H. Dietary Interventions for Pediatric Patients with Functional Abdominal Pain Disorders: A Systematic Review and Network Meta-Analysis. Eur. J. Pediatr. 2023, 182, 2943–2956. [Google Scholar] [CrossRef]
- Usai Satta, P.; Mocci, G.; Lai, M. FODMAP Diet in Celiac Disease and Gluten-Related Disorders. Nutrients 2024, 16, 4190. [Google Scholar] [CrossRef]
- Roncoroni, L.; Elli, L.; Doneda, L.; Bascuñán, K.A.; Vecchi, M.; Morreale, F.; Scricciolo, A.; Lombardo, V.; Pellegrini, N. A Retrospective Study on Dietary FODMAP Intake in Celiac Patients Following a Gluten-Free Diet. Nutrients 2018, 10, 1769. [Google Scholar] [CrossRef] [PubMed]
- Lucas Zapata, P.; García Navarro, E.; Ribes Koninckx, C. The Low-FODMAP Diet. An. Pediatría (Engl. Ed.) 2024, 101, 36–45. [Google Scholar] [CrossRef]
- Thomassen, R.A.; Luque, V.; Assa, A.; Borrelli, O.; Broekaert, I.; Dolinsek, J.; Martin-de-Carpi, J.; Mas, E.; Miele, E.; Norsa, L.; et al. An ESPGHAN Position Paper on the Use of Low-FODMAP Diet in Pediatric Gastroenterology. J. Pediatr. Gastroenterol. Nutr. 2022, 75, 356–368. [Google Scholar] [CrossRef] [PubMed]
- Katsagoni, C.N.; Karagianni, V.-M.; Papadopoulou, A. Efficacy of Different Dietary Patterns in the Treatment of Functional Gastrointestinal Disorders in Children and Adolescents: A Systematic Review of Intervention Studies. Nutrients 2023, 15, 2708. [Google Scholar] [CrossRef] [PubMed]
- El Ezaby, S.A.; Manzour, A.F.; Eldeeb, M.; El Gendy, Y.G.; Abdel Hamid, D.M. Effect of the Low Fermentable Oligosaccharides, Disaccharides, Monosaccharides, and Polyols (FODMAP) Diet on Control of Pediatric Irritable Bowel Syndrome and Quality of Life Among a Sample of Egyptian Children: A Randomized Controlled Clinical Trial. Cureus 2024, 16, e61017. [Google Scholar] [CrossRef]
- Tenenbaum, R.B.; Czyzewski, D.; McMeans, A.; Narayana, V.; Chumpitazi, B.P.; Levy, R.L.; Shulman, R.J.; Musaad, S.; Mirabile, Y.Z.; Self, M. Factors Associated with Adherence to a Low Fermentable Carbohydrate Diet in Children with Functional Gastrointestinal Disorders. J. Acad. Nutr. Diet. 2024, 124, 757–762. [Google Scholar] [CrossRef]
- Posovszky, C.; Roesler, V.; Becker, S.; Iven, E.; Hudert, C.; Ebinger, F.; Calvano, C.; Warschburger, P. Roles of Lactose and Fructose Malabsorption and Dietary Outcomes in Children Presenting with Chronic Abdominal Pain. Nutrients 2019, 11, 3063. [Google Scholar] [CrossRef] [PubMed]
- Kwiecień, J.; Hajzler, W.; Kosek, K.; Balcerowicz, S.; Grzanka, D.; Gościniak, W.; Górowska-Kowolik, K. No Correlation between Positive Fructose Hydrogen Breath Test and Clinical Symptoms in Children with Functional Gastrointestinal Disorders: A Retrospective Single-Centre Study. Nutrients 2021, 13, 2891. [Google Scholar] [CrossRef] [PubMed]
- Haiden, N.; Savino, F.; Hill, S.; Kivelä, L.; De Koning, B.; Köglmeier, J.; Luque, V.; Moltu, S.J.; Norsa, L.; De Pipaon, M.S.; et al. Infant Formulas for the Treatment of Functional Gastrointestinal Disorders: A Position Paper of the ESPGHAN Nutrition Committee. J. Pediatr. Gastroenterol. Nutr. 2024, 79, 168–180. [Google Scholar] [CrossRef] [PubMed]
- Black, R.E.; Williams, S.M.; Jones, I.E.; Goulding, A. Children Who Avoid Drinking Cow Milk Have Low Dietary Calcium Intakes and Poor Bone Health. Am. J. Clin. Nutr. 2002, 76, 675–680. [Google Scholar] [CrossRef]
- Lizzi, M.; Sgrazzutti, L.; Porreca, A.; Di Filippo, P.; Cauzzo, C.; Di Pillo, S.; Chiarelli, F.; Attanasi, M. Longitudinal Prospective Anthropometric Evaluation in Caucasian Prepubertal Children with Lactose Intolerance. Front. Pediatr. 2023, 11, 1219195. [Google Scholar] [CrossRef] [PubMed]
- Pienar, C.; Pop, L.; Lăzărescu, M.; Costăchescu, R.; Șeclăman, E. Anthropometric and Metabolic Profile of Children with Gene Polymorphisms for Primary Lactose Intolerance. Exp. Ther. Med. 2021, 22, 1333. [Google Scholar] [CrossRef]
- Lehtimäki, T.; Hemminki, J.; Rontu, R.; Mikkilä, V.; Räsänen, L.; Laaksonen, M.; Hutri-Kähönen, N.; Kähönen, M.; Viikari, J.; Raitakari, O. The Effects of Adult-Type Hypolactasia on Body Height Growth and Dietary Calcium Intake from Childhood into Young Adulthood: A 21-Year Follow-up Study--the Cardiovascular Risk in Young Finns Study. Pediatrics 2006, 118, 1553–1559. [Google Scholar] [CrossRef]
- Jin, R.; Welsh, J.A.; Le, N.-A.; Holzberg, J.; Sharma, P.; Martin, D.R.; Vos, M.B. Dietary Fructose Reduction Improves Markers of Cardiovascular Disease Risk in Hispanic-American Adolescents with NAFLD. Nutrients 2014, 6, 3187–3201. [Google Scholar] [CrossRef] [PubMed]
- Farías, C.; Cisternas, C.; Gana, J.C.; Alberti, G.; Echeverría, F.; Videla, L.A.; Mercado, L.; Muñoz, Y.; Valenzuela, R. Dietary and Nutritional Interventions in Nonalcoholic Fatty Liver Disease in Pediatrics. Nutrients 2023, 15, 4829. [Google Scholar] [CrossRef] [PubMed]
- Staltner, R.; Burger, K.; Baumann, A.; Bergheim, I. Fructose: A Modulator of Intestinal Barrier Function and Hepatic Health? Eur. J. Nutr. 2023, 62, 3113–3124. [Google Scholar] [CrossRef] [PubMed]
- Beleli, C.A.V.; Antonio, M.A.R.G.M.; Dos Santos, R.; Pastore, G.M.; Lomazi, E.A. Effect of 4′galactooligosaccharide on Constipation Symptoms. J. Pediatr. 2015, 91, 567–573. [Google Scholar] [CrossRef] [PubMed]
- Dehghani, S.M.; Bahroloolomifard, M.S.; Yousefi, G.; Pasdaran, A.; Hamedi, A. A Randomized Controlled Double Blinded Trial to Evaluate Efficacy of Oral Administration of Black Strap Molasses (Sugarcane Extract) in Comparison with Polyethylene Glycol on Pediatric Functional Constipation. J. Ethnopharmacol. 2019, 238, 111845. [Google Scholar] [CrossRef]
- Tajik, P.; Goudarzian, A.H.; Shadnoush, M.; Bagheri, B. Effect of Red Sugar on Functional Constipation in Children Compared to Figs Syrup; a Randomized Controlled Trial Study. Gastroenterol. Hepatol. Bed Bench 2018, 11, 313–318. [Google Scholar]
- Llanos-Chea, A.; Fasano, A. Gluten and Functional Abdominal Pain Disorders in Children. Nutrients 2018, 10, 1491. [Google Scholar] [CrossRef] [PubMed]
- Francavilla, R.; Cristofori, F.; Verzillo, L.; Gentile, A.; Castellaneta, S.; Polloni, C.; Giorgio, V.; Verduci, E.; D’Angelo, E.; Dellatte, S.; et al. Randomized Double-Blind Placebo-Controlled Crossover Trial for the Diagnosis of Non-Celiac Gluten Sensitivity in Children. Am. J. Gastroenterol. 2018, 113, 421–430. [Google Scholar] [CrossRef] [PubMed]
- Piwowarczyk, A.; Horvath, A.; Pisula, E.; Kawa, R.; Szajewska, H. Gluten-Free Diet in Children with Autism Spectrum Disorders: A Randomized, Controlled, Single-Blinded Trial. J. Autism Dev. Disord. 2020, 50, 482–490. [Google Scholar] [CrossRef] [PubMed]
- Ghalichi, F.; Ghaemmaghami, J.; Malek, A.; Ostadrahimi, A. Effect of Gluten Free Diet on Gastrointestinal and Behavioral Indices for Children with Autism Spectrum Disorders: A Randomized Clinical Trial. World J. Pediatr. 2016, 12, 436–442. [Google Scholar] [CrossRef] [PubMed]
- Fiori, F.; Bravo, G.; Neuhold, S.; Bartolone, G.; Pilo, C.; Parpinel, M.; Pellegrini, N. Compliance and Attitudes towards the Gluten-Free Diet in Celiac Patients in Italy: What Has Changed after a Decade? Nutrients 2024, 16, 2493. [Google Scholar] [CrossRef]
- Wang, X.; Anders, S.; Jiang, Z.; Bruce, M.; Gidrewicz, D.; Marcon, M.; Turner, J.M.; Mager, D.R. Food Insecurity Impacts Diet Quality and Adherence to the Gluten-free Diet in Youth with Celiac Disease. J. Pediatr. Gastroenterol. Nutr. 2024, 79, 1180–1191. [Google Scholar] [CrossRef] [PubMed]
- Rej, A.; Avery, A.; Ford, A.C.; Holdoway, A.; Kurien, M.; McKenzie, Y.; Thompson, J.; Trott, N.; Whelan, K.; Williams, M.; et al. Clinical Application of Dietary Therapies in Irritable Bowel Syndrome. J. Gastrointest. Liver Dis. 2018, 27, 307–316. [Google Scholar] [CrossRef] [PubMed]
- de Bruijn, C.M.; Rexwinkel, R.; Gordon, M.; Sinopoulou, V.; Benninga, M.A.; Tabbers, M.M. Dietary Interventions for Functional Abdominal Pain Disorders in Children: A Systematic Review and Meta-Analysis. Expert Rev. Gastroenterol. Hepatol. 2022, 16, 359–371. [Google Scholar] [CrossRef] [PubMed]
- Gill, S.K.; Rossi, M.; Bajka, B.; Whelan, K. Dietary Fibre in Gastrointestinal Health and Disease. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 101–116. [Google Scholar] [CrossRef] [PubMed]
- Axelrod, C.H.; Saps, M. The Role of Fiber in the Treatment of Functional Gastrointestinal Disorders in Children. Nutrients 2018, 10, 1650. [Google Scholar] [CrossRef]
- Tabbers, M.M.; DiLorenzo, C.; Berger, M.Y.; Faure, C.; Langendam, M.W.; Nurko, S.; Staiano, A.; Vandenplas, Y.; Benninga, M.A.; European Society for Pediatric Gastroenterology, Hepatology, and Nutrition; et al. Evaluation and Treatment of Functional Constipation in Infants and Children: Evidence-Based Recommendations from ESPGHAN and NASPGHAN. J. Pediatr. Gastroenterol. Nutr. 2014, 58, 258–274. [Google Scholar] [CrossRef] [PubMed]
- Alfaro-Cruz, L.; Heitkemper, M.; Chumpitazi, B.P.; Shulman, R.J. Literature Review: Dietary Intervention Adherence and Adherence Barriers in Functional Gastrointestinal Disorder Studies. J. Clin. Gastroenterol. 2020, 54, 203–211. [Google Scholar] [CrossRef]
- Story, M.; Neumark-Sztainer, D.; French, S. Individual and Environmental Influences on Adolescent Eating Behaviors. J. Am. Diet. Assoc. 2002, 102, S40–S51. [Google Scholar] [CrossRef] [PubMed]
- Patrick, H.; Nicklas, T.A. A Review of Family and Social Determinants of Children’s Eating Patterns and Diet Quality. J. Am. Coll. Nutr. 2005, 24, 83–92. [Google Scholar] [CrossRef] [PubMed]
- Arcila-Agudelo, A.M.; Ferrer-Svoboda, C.; Torres-Fernàndez, T.; Farran-Codina, A. Determinants of Adherence to Healthy Eating Patterns in a Population of Children and Adolescents: Evidence on the Mediterranean Diet in the City of Mataró (Catalonia, Spain). Nutrients 2019, 11, 854. [Google Scholar] [CrossRef]
- Burton, C.; Allan, E.; Eckhardt, S.; Grange, D.L.; Ehrenreich-May, J.; Singh, M.; Dimitropoulos, G. Case Presentations Combining Family-Based Treatment with the Unified Protocols for Transdiagnostic Treatment of Emotional Disorders in Children and Adolescents for Comorbid Avoidant Restrictive Food Intake Disorder and Autism Spectrum Disorder. J. Can. Acad. Child. Adolesc. Psychiatry 2021, 30, 280–291. [Google Scholar] [PubMed]
- Radziszewska, M.; Smarkusz-Zarzecka, J.; Ostrowska, L. Nutrition, Physical Activity and Supplementation in Irritable Bowel Syndrome. Nutrients 2023, 15, 3662. [Google Scholar] [CrossRef] [PubMed]
- Inan, M.; Aydiner, C.Y.; Tokuc, B.; Aksu, B.; Ayvaz, S.; Ayhan, S.; Ceylan, T.; Basaran, U.N. Factors Associated with Childhood Constipation. J. Paediatr. Child. Health 2007, 43, 700–706. [Google Scholar] [CrossRef] [PubMed]
- Chien, L.-Y.; Liou, Y.M.; Chang, P. Low Defaecation Frequency in Taiwanese Adolescents: Association with Dietary Intake, Physical Activity and Sedentary Behaviour. J. Paediatr. Child. Health 2011, 47, 381–386. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.; Ho, S.-Y.; Lo, W.-S.; Lam, T.-H. Physical Activity and Constipation in Hong Kong Adolescents. PLoS ONE 2014, 9, e90193. [Google Scholar] [CrossRef] [PubMed]
- Driessen, L.M.; Kiefte-de Jong, J.C.; Wijtzes, A.; de Vries, S.I.; Jaddoe, V.W.V.; Hofman, A.; Raat, H.; Moll, H.A. Preschool Physical Activity and Functional Constipation: The Generation R Study. J. Pediatr. Gastroenterol. Nutr. 2013, 57, 768–774. [Google Scholar] [CrossRef]
- Johannesson, E.; Ringström, G.; Abrahamsson, H.; Sadik, R. Intervention to Increase Physical Activity in Irritable Bowel Syndrome Shows Long-Term Positive Effects. World J. Gastroenterol. 2015, 21, 600–608. [Google Scholar] [CrossRef]
- Sadeghian, M.; Sadeghi, O.; Hassanzadeh Keshteli, A.; Daghaghzadeh, H.; Esmaillzadeh, A.; Adibi, P. Physical Activity in Relation to Irritable Bowel Syndrome among Iranian Adults. PLoS ONE 2018, 13, e0205806. [Google Scholar] [CrossRef] [PubMed]
- Shahabi, L.; Naliboff, B.D.; Shapiro, D. Self-Regulation Evaluation of Therapeutic Yoga and Walking for Patients with Irritable Bowel Syndrome: A Pilot Study. Psychol. Health Med. 2016, 21, 176–188. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, N.R.; Moorman, E.; Brown, C.M.; Mallon, D.; Chundi, P.K.; Mara, C.A.; Pentiuk, S.; Lynch-Jordan, A.M.; Dykes, D.M.H.; Elfers, J.; et al. Integrating Psychological Screening Into Medical Care for Youth with Abdominal Pain. Pediatrics 2018, 142, e20172876. [Google Scholar] [CrossRef]
- Liyanarachchi, H.; Rajindrajith, S.; Kuruppu, C.; Chathurangana, P.; Ranawaka, R.; Devanarayana, N.M.; Benninga, M.A. Association between Childhood Constipation and Exposure to Stressful Life Events: A Systematic Review. Neurogastroenterol. Motil. 2022, 34, e14231. [Google Scholar] [CrossRef]
- Bonnert, M.; Olén, O.; Lalouni, M.; Benninga, M.A.; Bottai, M.; Engelbrektsson, J.; Hedman, E.; Lenhard, F.; Melin, B.; Simrén, M.; et al. Internet-Delivered Cognitive Behavior Therapy for Adolescents with Irritable Bowel Syndrome: A Randomized Controlled Trial. Am. J. Gastroenterol. 2017, 112, 152–162. [Google Scholar] [CrossRef] [PubMed]
- Van Oudenhove, L.; Crowell, M.D.; Drossman, D.A.; Halpert, A.D.; Keefer, L.; Lackner, J.M.; Murphy, T.B.; Naliboff, B.D.; Levy, R.L. Biopsychosocial Aspects of Functional Gastrointestinal Disorders. Gastroenterology 2016, 150, 1355–1367.e2. [Google Scholar] [CrossRef] [PubMed]
- Person, H.; Keefer, L. Psychological Comorbidity in Gastrointestinal Diseases: Update on the Brain-Gut-Microbiome Axis. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2021, 107, 110209. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.-Y.; Chen, S.-N.; Lee, C.-H.; Huang, Y.-J. A Systematic Review and Meta-Analysis of Randomized Control Trials: Efficacy of Cognitive Behavioral Therapies for the Management of Functional and Recurrent Abdominal Pain Disorders in Children and Adolescents. Cogn. Behav. Ther. 2023, 52, 438–459. [Google Scholar] [CrossRef] [PubMed]
- Robins, P.M.; Smith, S.M.; Glutting, J.J.; Bishop, C.T. A Randomized Controlled Trial of a Cognitive-Behavioral Family Intervention for Pediatric Recurrent Abdominal Pain. J. Pediatr. Psychol. 2005, 30, 397–408. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Jia, N.; Zhang, Y.; Hao, Y.; Xiao, F.; Sun, C.; Cui, X.; Wang, F. Effect of Cognitive-Behavior Therapy for Children with Functional Abdominal Pain: A Meta-Analysis. BMC Gastroenterol. 2024, 24, 62. [Google Scholar] [CrossRef]
- Hou, K.; Wu, Z.-X.; Chen, X.-Y.; Wang, J.-Q.; Zhang, D.; Xiao, C.; Zhu, D.; Koya, J.B.; Wei, L.; Li, J.; et al. Microbiota in Health and Diseases. Signal Transduct. Target. Ther. 2022, 7, 135. [Google Scholar] [CrossRef]
- Cho, K.Y. Association of Gut Microbiota with Obesity in Children and Adolescents. Clin. Exp. Pediatr. 2023, 66, 148–154. [Google Scholar] [CrossRef] [PubMed]
- Geng, J.; Ni, Q.; Sun, W.; Li, L.; Feng, X. The Links between Gut Microbiota and Obesity and Obesity Related Diseases. Biomed. Pharmacother. 2022, 147, 112678. [Google Scholar] [CrossRef] [PubMed]
- Shin, A.; Preidis, G.A.; Shulman, R.; Kashyap, P.C. The Gut Microbiome in Adult and Pediatric Functional Gastrointestinal Disorders. Clin. Gastroenterol. Hepatol. 2019, 17, 256–274. [Google Scholar] [CrossRef]
- Chen, X.; Sun, H.; Jiang, F.; Shen, Y.; Li, X.; Hu, X.; Shen, X.; Wei, P. Alteration of the Gut Microbiota Associated with Childhood Obesity by 16S rRNA Gene Sequencing. PeerJ 2020, 8, e8317. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, C.C.; Monteil, M.A.; Davis, E.M. Overweight and Obesity in Children Are Associated with an Abundance of Firmicutes and Reduction of Bifidobacterium in Their Gastrointestinal Microbiota. Child. Obes. 2020, 16, 204–210. [Google Scholar] [CrossRef] [PubMed]
- Li, X.-M.; Lv, Q.; Chen, Y.-J.; Yan, L.-B.; Xiong, X. Association between Childhood Obesity and Gut Microbiota: 16S rRNA Gene Sequencing-Based Cohort Study. World J. Gastroenterol. 2024, 30, 2249–2257. [Google Scholar] [CrossRef] [PubMed]
- Rajilić–Stojanović, M.; Biagi, E.; Heilig, H.G.H.J.; Kajander, K.; Kekkonen, R.A.; Tims, S.; De Vos, W.M. Global and Deep Molecular Analysis of Microbiota Signatures in Fecal Samples from Patients with Irritable Bowel Syndrome. Gastroenterology 2011, 141, 1792–1801. [Google Scholar] [CrossRef]
- Chumpitazi, B.P.; Shulman, R.J. Underlying Molecular and Cellular Mechanisms in Childhood Irritable Bowel Syndrome. Mol. Cell Pediatr. 2016, 3, 11. [Google Scholar] [CrossRef] [PubMed]
- Saulnier, D.M.; Ringel, Y.; Heyman, M.B.; Foster, J.A.; Bercik, P.; Shulman, R.J.; Versalovic, J.; Verdu, E.; Dinan, T.G.; Hecht, G.; et al. The Intestinal Microbiome, Probiotics and Prebiotics in Neurogastroenterology. Gut Microbes 2013, 4, 17–27. [Google Scholar] [CrossRef]
- Bin Waqar, S.H.; Rehan, A. Methane and Constipation-Predominant Irritable Bowel Syndrome: Entwining Pillars of Emerging Neurogastroenterology. Cureus 2019, 11, e4764. [Google Scholar] [CrossRef]
- De Meij, T.G.J.; De Groot, E.F.J.; Eck, A.; Budding, A.E.; Kneepkens, C.M.F.; Benninga, M.A.; Van Bodegraven, A.A.; Savelkoul, P.H.M. Characterization of Microbiota in Children with Chronic Functional Constipation. PLoS ONE 2016, 11, e0164731. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Liu, W.; Alkhouri, R.; Baker, R.D.; Bard, J.E.; Quigley, E.M.; Baker, S.S. Structural Changes in the Gut Microbiome of Constipated Patients. Physiol. Genom. 2014, 46, 679–686. [Google Scholar] [CrossRef]
- Zoppi, G.; Cinquetti, M.; Luciano, A.; Benini, A.; Muner, A.; Minelli, E.B. The Intestinal Ecosystem in Chronic Functional Constipation. Acta Paediatr. 1998, 87, 836–841. [Google Scholar] [CrossRef]
- Brown, S.C.; Whelan, K.; Gearry, R.B.; Day, A.S. Low FODMAP Diet in Children and Adolescents with Functional Bowel Disorder: A Clinical Case Note Review. JGH Open 2020, 4, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Horvath, A.; Dziechciarz, P.; Szajewska, H. Meta-Analysis: Lactobacillus Rhamnosus GG for Abdominal Pain-Related Functional Gastrointestinal Disorders in Childhood. Aliment. Pharmacol. Ther. 2011, 33, 1302–1310. [Google Scholar] [CrossRef] [PubMed]
- FAO. Joint FAO/WHO Expert Consultation on Evaluation of Health and Nutritional Properties of Probiotics in Food Including Powder Milk with Live Lactic Acid Bacteria; FAO: Rome, Italy, 2002; p. 34. [Google Scholar]
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; et al. The International Scientific Association for Probiotics and Prebiotics Consensus Statement on the Scope and Appropriate Use of the Term Probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [CrossRef]
- Sánchez, B.; Delgado, S.; Blanco-Míguez, A.; Lourenço, A.; Gueimonde, M.; Margolles, A. Probiotics, Gut Microbiota, and Their Influence on Host Health and Disease. Mol. Nutr. Food Res. 2017, 61, 1600240. [Google Scholar] [CrossRef] [PubMed]
- Derrien, M.; van Hylckama Vlieg, J.E.T. Fate, Activity, and Impact of Ingested Bacteria within the Human Gut Microbiota. Trends Microbiol. 2015, 23, 354–366. [Google Scholar] [CrossRef] [PubMed]
- Bu, L.-N.; Chang, M.-H.; Ni, Y.-H.; Chen, H.-L.; Cheng, C.-C. Lactobacillus casei rhamnosus Lcr35 in Children with Chronic Constipation. Pediatr. Int. 2007, 49, 485–490. [Google Scholar] [CrossRef]
- Kubota, M.; Ito, K.; Tomimoto, K.; Kanazaki, M.; Tsukiyama, K.; Kubota, A.; Kuroki, H.; Fujita, M.; Vandenplas, Y. Lactobacillus reuteri DSM 17938 and Magnesium Oxide in Children with Functional Chronic Constipation: A Double-Blind and Randomized Clinical Trial. Nutrients 2020, 12, 225. [Google Scholar] [CrossRef] [PubMed]
- García Contreras, A.A.; Vásquez Garibay, E.M.; Sánchez Ramírez, C.A.; Fafutis Morris, M.; Delgado Rizo, V. Lactobacillus reuteri DSM 17938 and Agave Inulin in Children with Cerebral Palsy and Chronic Constipation: A Double-Blind Randomized Placebo Controlled Clinical Trial. Nutrients 2020, 12, 2971. [Google Scholar] [CrossRef] [PubMed]
- Putignani, L.; Del Chierico, F.; Vernocchi, P.; Cicala, M.; Cucchiara, S.; Dallapiccola, B.; Dysbiotrack Study Group. Gut Microbiota Dysbiosis as Risk and Premorbid Factors of IBD and IBS Along the Childhood-Adulthood Transition. Inflamm. Bowel Dis. 2016, 22, 487–504. [Google Scholar] [CrossRef]
- Closa-Monasterolo, R.; Ferré, N.; Castillejo-DeVillasante, G.; Luque, V.; Gispert-Llaurado, M.; Zaragoza-Jordana, M.; Theis, S.; Escribano, J. The Use of Inulin-Type Fructans Improves Stool Consistency in Constipated Children. A Randomised Clinical Trial: Pilot Study. Int. J. Food Sci. Nutr. 2017, 68, 587–594. [Google Scholar] [CrossRef]
- Lohner, S.; Jakobik, V.; Mihályi, K.; Soldi, S.; Vasileiadis, S.; Theis, S.; Sailer, M.; Sieland, C.; Berényi, K.; Boehm, G.; et al. Inulin-Type Fructan Supplementation of 3- to 6-Year-Old Children Is Associated with Higher Fecal Bifidobacterium Concentrations and Fewer Febrile Episodes Requiring Medical Attention. J. Nutr. 2018, 148, 1300–1308. [Google Scholar] [CrossRef] [PubMed]
- Abot, A.; Wemelle, E.; Laurens, C.; Paquot, A.; Pomie, N.; Carper, D.; Bessac, A.; Mas Orea, X.; Fremez, C.; Fontanie, M.; et al. Identification of New Enterosynes Using Prebiotics: Roles of Bioactive Lipids and Mu-Opioid Receptor Signalling in Humans and Mice. Gut 2021, 70, 1078–1087. [Google Scholar] [CrossRef]
- Everard, A.; Lazarevic, V.; Derrien, M.; Girard, M.; Muccioli, G.G.; Neyrinck, A.M.; Possemiers, S.; Van Holle, A.; François, P.; De Vos, W.M.; et al. Responses of Gut Microbiota and Glucose and Lipid Metabolism to Prebiotics in Genetic Obese and Diet-Induced Leptin-Resistant Mice. Diabetes 2011, 60, 2775–2786. [Google Scholar] [CrossRef]
- Cani, P.D.; Possemiers, S.; Van de Wiele, T.; Guiot, Y.; Everard, A.; Rottier, O.; Geurts, L.; Naslain, D.; Neyrinck, A.; Lambert, D.M.; et al. Changes in Gut Microbiota Control Inflammation in Obese Mice through a Mechanism Involving GLP-2-Driven Improvement of Gut Permeability. Gut 2009, 58, 1091–1103. [Google Scholar] [CrossRef]
- Cani, P.D.; Knauf, C.; Iglesias, M.A.; Drucker, D.J.; Delzenne, N.M.; Burcelin, R. Improvement of Glucose Tolerance and Hepatic Insulin Sensitivity by Oligofructose Requires a Functional Glucagon-like Peptide 1 Receptor. Diabetes 2006, 55, 1484–1490. [Google Scholar] [CrossRef]
- Kokke, F.T.M.; Scholtens, P.A.M.J.; Alles, M.S.; Decates, T.S.; Fiselier, T.J.W.; Tolboom, J.J.M.; Kimpen, J.L.L.; Benninga, M.A. A Dietary Fiber Mixture versus Lactulose in the Treatment of Childhood Constipation: A Double-Blind Randomized Controlled Trial. J. Pediatr. Gastroenterol. Nutr. 2008, 47, 592–597. [Google Scholar] [CrossRef]
- Han, Y.; Zhang, L.; Liu, X.-Q.; Zhao, Z.-J.; Lv, L.-X. Effect of Glucomannan on Functional Constipation in Children: A Systematic Review and Meta-Analysis of Randomised Controlled Trials. Asia Pac. J. Clin. Nutr. 2017, 26, 471–477. [Google Scholar] [CrossRef] [PubMed]
- Staiano, A.; Simeone, D.; Del Giudice, E.; Miele, E.; Tozzi, A.; Toraldo, C. Effect of the Dietary Fiber Glucomannan on Chronic Constipation in Neurologically Impaired Children. J. Pediatr. 2000, 136, 41–45. [Google Scholar] [CrossRef]
- Barbara, G.; Cremon, C.; Bellini, M.; Corsetti, M.; Di Nardo, G.; Falangone, F.; Fuccio, L.; Galeazzi, F.; Iovino, P.; Sarnelli, G.; et al. Italian Guidelines for the Management of Irritable Bowel Syndrome: Joint Consensus from the Italian Societies of: Gastroenterology and Endoscopy (SIGE), Neurogastroenterology and Motility (SINGEM), Hospital Gastroenterologists and Endoscopists (AIGO), Digestive Endoscopy (SIED), General Medicine (SIMG), Gastroenterology, Hepatology and Pediatric Nutrition (SIGENP) and Pediatrics (SIP). Dig. Liver Dis. 2023, 55, 187–207. [Google Scholar] [CrossRef] [PubMed]
- Baştürk, A.; Artan, R.; Atalay, A.; Yılmaz, A. Investigation of the Efficacy of Synbiotics in the Treatment of Functional Constipation in Children: A Randomized Double-Blind Placebo-Controlled Study. Turk. J. Gastroenterol. 2017, 28, 388–393. [Google Scholar] [CrossRef]
- Vieira, A.T.; Fukumori, C.; Ferreira, C.M. New Insights into Therapeutic Strategies for Gut Microbiota Modulation in Inflammatory Diseases. Clin. Transl. Immunol. 2016, 5, e87. [Google Scholar] [CrossRef] [PubMed]
- Dehzad, M.J.; Ghalandari, H.; Nouri, M.; Askarpour, M. Antioxidant and Anti-Inflammatory Effects of Curcumin/Turmeric Supplementation in Adults: A GRADE-Assessed Systematic Review and Dose-Response Meta-Analysis of Randomized Controlled Trials. Cytokine 2023, 164, 156144. [Google Scholar] [CrossRef]
- Nohynek, L.J.; Alakomi, H.-L.; Kähkönen, M.P.; Heinonen, M.; Helander, I.M.; Oksman-Caldentey, K.-M.; Puupponen-Pimiä, R.H. Berry Phenolics: Antimicrobial Properties and Mechanisms of Action Against Severe Human Pathogens. Nutr. Cancer 2006, 54, 18–32. [Google Scholar] [CrossRef] [PubMed]
- Alizadeh, M.; Kheirouri, S. Curcumin Reduces Malondialdehyde and Improves Antioxidants in Humans with Diseased Conditions: A Comprehensive Meta-Analysis of Randomized Controlled Trials. BioMedicine 2019, 9, 23. [Google Scholar] [CrossRef] [PubMed]
- Scazzocchio, B.; Minghetti, L.; D’Archivio, M. Interaction between Gut Microbiota and Curcumin: A New Key of Understanding for the Health Effects of Curcumin. Nutrients 2020, 12, 2499. [Google Scholar] [CrossRef] [PubMed]
- Kato, M.; Nishikawa, S.; Ikehata, A.; Dochi, K.; Tani, T.; Takahashi, T.; Imaizumi, A.; Tsuda, T. Curcumin Improves Glucose Tolerance via Stimulation of Glucagon-like Peptide-1 Secretion. Mol. Nutr. Food Res. 2017, 61, 1600471. [Google Scholar] [CrossRef] [PubMed]
- Suskind, D.L.; Wahbeh, G.; Burpee, T.; Cohen, M.; Christie, D.; Weber, W. Tolerability of Curcumin in Pediatric Inflammatory Bowel Disease: A Forced-Dose Titration Study. J. Pediatr. Gastroenterol. Nutr. 2013, 56, 277–279. [Google Scholar] [CrossRef]
- Jafarzadeh, E.; Shoeibi, S.; Bahramvand, Y.; Nasrollahi, E.; Maghsoudi, A.S.; Yazdi, F.; KarkonShayan, S.; Hassani, S. Turmeric for Treatment of Irritable Bowel Syndrome: A Systematic Review of Population-Based Evidence. Iran. J. Public Health 2022, 51, 1223–1231. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, B.B.; Sung, B. Pharmacological Basis for the Role of Curcumin in Chronic Diseases: An Age-Old Spice with Modern Targets. Trends Pharmacol. Sci. 2009, 30, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Stohs, S.J.; Chen, O.; Ray, S.D.; Ji, J.; Bucci, L.R.; Preuss, H.G. Highly Bioavailable Forms of Curcumin and Promising Avenues for Curcumin-Based Research and Application: A Review. Molecules 2020, 25, 1397. [Google Scholar] [CrossRef] [PubMed]
- Altveş, S.; Yildiz, H.K.; Vural, H.C. Interaction of the Microbiota with the Human Body in Health and Diseases. Biosci. Microbiota Food Health 2020, 39, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Jabczyk, M.; Nowak, J.; Hudzik, B.; Zubelewicz-Szkodzińska, B. Curcumin and Its Potential Impact on Microbiota. Nutrients 2021, 13, 2004. [Google Scholar] [CrossRef] [PubMed]
- Pandey, A.; Chaturvedi, M.; Mishra, S.; Kumar, P.; Somvanshi, P.; Chaturvedi, R. Reductive Metabolites of Curcumin and Their Therapeutic Effects. Heliyon 2020, 6, e05469. [Google Scholar] [CrossRef] [PubMed]
- Jazayeri, S.D.; Shuhaimi, M.; Abd Manap, Y.; Ali, A. Survival of Bifidobacteria and Other Selected Intestinal Bacteria in TPY Medium Supplemented with Curcumin as Assessed in Vitro. Int. J. Probiotics Prebiotics 2009, 4, 15–22. [Google Scholar]
- Servida, S.; Piontini, A.; Gori, F.; Tomaino, L.; Moroncini, G.; De Gennaro Colonna, V.; La Vecchia, C.; Vigna, L. Curcumin and Gut Microbiota: A Narrative Overview with Focus on Glycemic Control. Int. J. Mol. Sci. 2024, 25, 7710. [Google Scholar] [CrossRef]
- Ng, Q.X.; Soh, A.Y.S.; Loke, W.; Venkatanarayanan, N.; Lim, D.Y.; Yeo, W.-S. A Meta-Analysis of the Clinical Use of Curcumin for Irritable Bowel Syndrome (IBS). J. Clin. Med. 2018, 7, 298. [Google Scholar] [CrossRef]
Author, Year | Study Design | Sample | FBDs | Age | Main Results |
---|---|---|---|---|---|
Teitelbaum J et al., 2009 [22] | Randomized-controlled trial | 1012 (n 757 patients and n 255 controls) | FC, GE, IBS, encopresi and FAP, gastroesophageal reflux, irritable bowel syndrome, encopresis, and functional abdominal pain | 2–20 | Significantly higher prevalence of obesity in children with IBS |
Galai T et al., 2020 [26] | Retrospective study | 173 partecipants | FAP | 2–18 | Statistically significant higher prevalence of obesity or overweight compared to the control group |
Tambucci R et al., 2019 [27] | Case-control study | 103 partecipantswith FAP and 115 controls | FAP, FD, IBS, FC | 4–18 | A difference was noted between the two groups for FC, FD, and IBS but no statistically significant difference was observed for FAP |
Phatak UP et al., 2014 [28] | Comparative study | 450 participants | IBS | 4–18 | Overweight children have a higher prevalenc of FGIDs than normal-weight children |
Pashankar DS et al., 2005 [29] | Retrospective analysis | 719 partecipants | FC | 4–18 | No significant difference between children with obesity and normal weight children |
Zia JK et al., 2022 [30] | Review | 348 studies | FGIDs | No age limits | It’s necessary to implement studies on the pediatric population to determine the risk factors of FGIDs |
Bonilla S et al., 2011 [32] | Prospective cohort study | 188 partecipants | AP | 9–18 | Obesity predicts persistence of AP in children with FGIDs |
Elitsur Y et al., 2009 [31] | Retrospective analysis | 738 partecipants | GERD | 2–18 | No significant difference between childern with obesity and normal weight children |
Patel N et al., 2010 [33] | Retrospective analysis | 230 partecipants | GERD | 2–20 | No significant difference between children with obesity and normal weight children |
Meng D et al., 2023 [34] | Review | 165 studies | Relationship between the microbiome, obesity and functional disorders | No age limits | Exercise induces changes in the intestinal microbiome, regulating it and reducing the various disorders associated with it |
Author, Year | Study Design | Sample | FBDs | Age | Main Results |
---|---|---|---|---|---|
Dietary interventions | |||||
Katsagoni CN et al. 2023 [60] | Systematic review | 15 included articles. No weight information | FGIDs | Age: 3–18 years | Low-FODMAP diet, LRD, FRD, and GFD have no place in daily clinical practice for the management of children and adolescents with FGIDs. Nevertheless, some patients with IBS or RAP may experience some benefit from the use of a low-FODMAP diet or FRD/LRD. Limited data suggest that MD may be promising in the management of FGIDs, especially in IBS patients, but more data are required |
El Ezaby SA et al. 2024 [61] | Randomized Controlled Trial | 80 participants (n = 39 intervention group; n = 41 control group) Normal weight: 68% Overweight: 14% With obesity: 5% | IBS | Intervention group: 10.33 ± 2.80 years Control group: 10.98 ±2.59 years | Low FODMAP dietary intervention in children with IBS for six weeks decreased abdominal pain severity, improved gastrointestinal symptoms, and improved the health-related quality of life |
Tenenbaum RB et al. 2023 [62] | Randomized Controlled Trial | 30 participants (27% with obesity) | AP | Age: 7–12 years | Greater baseline quality of life was associated with better adherence to the low FODMAP dietary intervention (beta coefficient β = −0.2; p = 0.03); while abdominal pain complaints were not significantly associated with adherence. |
Beleli CA et al. 2015 [73] | Non-randomized interventional double-blinded, placebo-controlled, crossover assignment study | 20 participants No information on weight | FC | Age: 4–16 years | Galactooligosaccharide ingestion was related to increase of the bowel movement frequency (p < 0.0001), relief of defecation straining (p < 0.0001) and decrease in stool consistency (p = 0.0014), compared to placebo ingestion. |
Dehghani SM et al. 2019 [74] | Randomized controlled double blinded trial | 86 participants (n = 45 PEG syrup group; n = 41 BSM syrup group) no weight information | FC | Age: 4–12 years | BSM and PEG syrups had similar efficacy on FC. |
Tajik p et al. 2018 [75] | Randomized Controlled Trial | 60 participants (n = 30 intervention group; n = 30 control group). No weight information | FC | Age: 2–10 years | No significant difference was found between effects of red sugar and fig syrup in terms of the frequency of fecal excretion, and pain at the time of excretion (p = 0.264). Red syrup was more effective in reducing abdominal pain compared with fig syrup (p < 0.001), while fig syrup was more effective in inducing diarrhea (p = 0.019). |
de Bruijn CM et al. 2022 [83] | Systematic review and meta-analysis | 12 included articles, 819 participants 1 study included children with obesity | FAPDs | Age: 4–18 years | Very low-certainty evidence that the use of fibers leads to higher treatment success was found. |
Alfaro-Cruz L et al. 2020 [87] | Narrative review | 21 included articles No weight information | FAPDs | NA | Inconsistent results for the efficacy of low-FODMAP diet on FBDs in children |
Inan M et al. 2007 [93] | Cross-sectional and descriptive study | 1900 participants No weight information | FC | 7–12 years | A negative correlation between physical activity and functional constipation |
Chien LY et al. 2011 [94] | Observational study | 14,626 participants Normal weight: 75.8% Overweight: 14.9% With obesity: 5.9% | FC | 7–12 years | More time spent on sedentary activity was independently associated with increased risk of low defaecation frequency. |
Huang R et al. 2014 [95] | Observational study | 26,864 participants No weight information | FC | 11–18 years | Constipation was associated with insufficient exercise and excessive sedentary behaviors |
Driessen LM et al. 2013 [96] | Population-based prospective cohort study | 347 participants No weight information | FC | Age: <4 years | Physical activity could reduce symptoms of functional constipation in the longer time. A high level of physical activity, established with an accelerometric actigraph in children with an average age of 25 months, allows to reduce the incidence of functional constipation in the fourth year of life. This result was obtained in children who practiced physical activity for more than 60 min/day |
Chen JY et al. 2023 [105] | Systematic review and meta-analysis | 10 included articles, 872 participants 1 study with children with obesity | FAPDs | Age: <18 years | CBT had significantly positive effects on reducing pain intensity, the severity of gastrointestinal symptoms, depression, and solicitousness and improved the quality of life decreasing the total social cost. |
Integrative support | |||||
Bu LN et al. 2007 [128] | Double-blind placebo-controlled, randomized study | 45 participants: group A (n = 18) with MgO (50mg/kg/die); group B (n = 18) with Lcr35, 8 × 10 8 c.f.u./die; group C (n = 9) with placebo No weight information | Chronic constipation | Age: <10 years | MgO and probiotics resulted in significant improvements over the placebo group in terms of increased stool frequency (p = 0.03), higher treatment success rate (p = 0.01), less use of glycerin enemas (p = 0.04), and softer stools (p = 0.01). There were no significant differences between MgO and probiotics. MgO showed a slightly earlier effect on constipation (week 2) than probiotics (weeks 2 to 3). |
Kubota M et al. 2020 [129] | Double-blind, placebo-controlled, randomized, and parallel-group trial | 60 participants; group A (n = 20) with L. reuteri DSM 17,938 and lactose hydrate as a placebo of MgO; group B (n = 19) with L. reuteri DSM 17,938 and MgO; and group C (n = 21) with a placebo of L. reuteri DSM 17,938 and MgO No weight information | FC | Age: 6 mo–6 years | Significant improvement in defecation frequency by the 4 week compared to baseline (group A: p < 0.05; group B: p < 0.05; group C: p < 0.05). The MgO group and the combination group registered a reduction in stool consistency, whereas the L. reuteri DSM 17,938 group did not (group A: p = 0.079; group B: p < 0.05; group C: p < 0.05). |
Closa-Monasterolo R et al. 2017 [132] | Double-blind, randomized, placebo-controlled parallel group trial | 17 participants; inulin-type fructans group (n = 8); placebo group (n = 9) No weight information | FC | Age: 2–5 years | No significant changes in the control group; the supplemented children showed an improvement in stool consistency (from 2.2 to 2.6 on the modified Bristol scale for children) (p = 0.040). |
Lohner S et al. 2018 [133] | Randomized, parallel, double-blind, placebo-controlled trial | 219 participants No weight information | FC | Age: 3–6 years | The relative abundance of Bifidobacterium (p < 0.001) and Lactobacillus (p= 0.014) were 19.9% and 7.8% higher, respectively, in stool samples of children receiving fructans compared to the control group at week 24. This was also associated with significantly softer stools, in the prebiotic group (from week 12). |
Kokke FT et al. 2008 [138] | Randomized, double-blind, prospective controlled study | 135 participants; fiber mixture group (n = 65); lactulose group (n = 70) No weight information | FC | Age: 1–13 years | No significant differences were found between the groups regarding defecation frequency (p = 0.481) and fecal incontinence (p = 0.084). Stool consistency was notably softer in the lactulose group (p = 0.01). Scores for abdominal pain and flatulence were comparable (p = 0.395 and p = 0.739). |
Staiano et al. 2000 [140] | Randomized, double-blind trial | 20 participants; glucomannan group (n = 10); placebo group (n = 10) No weight information | Chronic constipation | Age: 5.7 ± 4.2 (mean ± SD) years | Glucomannan significantly increased stool frequency (p < 0.01). It also notably reduced the use of laxatives or suppositories (p < 0.01) and improved stool consistency, with a significant reduction in painful defecation episodes per week (p < 0.01). |
Baştürk A et al. 2017 [142] | Randomized, controlled trial | 146 participants; symbiotic group (n = 72); placebo group (n = 74) No weight information | FC | Age: 4–18 years | Significant improvement of frequency of defecations, abdominal pain, painful defecation, and pediatric Bristol scale scores (p ≤ 0.001) in the synbiotic group. Complete treatment benefits were achieved by 66.7% patients in the synbiotic group and 28.3% patients in the placebo group, with a significant difference between groups (p ≤ 0.001). |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Calcaterra, V.; Cena, H.; Loperfido, F.; Porri, D.; Basilico, S.; Gazzola, C.; Ricciardi Rizzo, C.; Conti, M.V.; Luppino, G.; Wasniewska, M.G.; et al. Functional Gastrointestinal Disorders and Childhood Obesity: The Role of Diet and Its Impact on Microbiota. Nutrients 2025, 17, 123. https://doi.org/10.3390/nu17010123
Calcaterra V, Cena H, Loperfido F, Porri D, Basilico S, Gazzola C, Ricciardi Rizzo C, Conti MV, Luppino G, Wasniewska MG, et al. Functional Gastrointestinal Disorders and Childhood Obesity: The Role of Diet and Its Impact on Microbiota. Nutrients. 2025; 17(1):123. https://doi.org/10.3390/nu17010123
Chicago/Turabian StyleCalcaterra, Valeria, Hellas Cena, Federica Loperfido, Debora Porri, Sara Basilico, Cassandra Gazzola, Cecilia Ricciardi Rizzo, Maria Vittoria Conti, Giovanni Luppino, Malgorzata Gabriela Wasniewska, and et al. 2025. "Functional Gastrointestinal Disorders and Childhood Obesity: The Role of Diet and Its Impact on Microbiota" Nutrients 17, no. 1: 123. https://doi.org/10.3390/nu17010123
APA StyleCalcaterra, V., Cena, H., Loperfido, F., Porri, D., Basilico, S., Gazzola, C., Ricciardi Rizzo, C., Conti, M. V., Luppino, G., Wasniewska, M. G., & Zuccotti, G. (2025). Functional Gastrointestinal Disorders and Childhood Obesity: The Role of Diet and Its Impact on Microbiota. Nutrients, 17(1), 123. https://doi.org/10.3390/nu17010123