Sex Differences in the Association Between the Korean Healthy Eating Index and Liver Enzymes Among Korean Adults
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. KHEI
2.3. Elevated Liver Enzymes
2.4. Covariates
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- GBD 2017 Diet Collaborators. Health effects of dietary risks in 195 countries, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2019, 393, 1958–1972. [Google Scholar] [CrossRef] [PubMed]
- Cho, Y.; Cudhea, F.; Park, J.H.; Mozaffarian, D.; Singh, G.; Shin, M.J. Burdens of Cardiometabolic Diseases Attributable to Dietary and Metabolic Risks in Korean Adults 2012–2013. Yonsei Med. J. 2017, 58, 540–551. [Google Scholar] [CrossRef] [PubMed]
- Tsompanaki, E.; Thanapirom, K.; Papatheodoridi, M.; Parikh, P.; Chotai de Lima, Y.; Tsochatzis, E.A. Systematic Review and Meta-analysis: The Role of Diet in the Development of Nonalcoholic Fatty Liver Disease. Clin. Gastroenterol. Hepatol. 2023, 21, 1462–1474.e24. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Wang, X.; Huang, J.; Wang, S.; Yao, Q.; Li, H. Healthy Eating Index-2015 in relation to risk of metabolic dysfunction-associated fatty liver disease among US population: National Health and Nutrition Examination Survey 2017–2018. Front. Nutr. 2022, 9, 1043901. [Google Scholar] [CrossRef] [PubMed]
- Ramaiah, P.; Jamel Baljon, K.; Alsulami, S.A.; Lindsay, G.M.; Chinnasamy, L. Diet quality indices and odds of metabolic dysfunction-associated fatty liver disease: A case-control study. Front. Nutr. 2023, 10, 1251861. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Wei, J.; Wang, S.; Chen, L.; Zhang, J.; Wang, N.; Tan, X. Dietary pattern modifies the risk of MASLD through metabolomic signature. JHEP Rep. 2024, 6, 101133. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Chen, R.; Chen, S.; Wei, B.; Liu, C.; Jiang, Z. Exploring the association between dietary indices and metabolic dysfunction-associated steatotic liver disease: Mediation analysis and evidence from NHANES. PLoS ONE 2025, 20, e0321251. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Zhang, X.; Hao, X.; Wang, T.; Wu, P.; Shen, L.; Yang, Y.; Wan, W.; Zhang, K. Association of dietary quality and mortality in the non-alcoholic fatty liver disease and advanced fibrosis populations: NHANES 2005–2018. Front. Nutr. 2025, 12, 1507342. [Google Scholar] [CrossRef] [PubMed]
- Li, W.Q.; Park, Y.; McGlynn, K.A.; Hollenbeck, A.R.; Taylor, P.R.; Goldstein, A.M.; Freedman, N.D. Index-based dietary patterns and risk of incident hepatocellular carcinoma and mortality from chronic liver disease in a prospective study. Hepatology 2014, 60, 588–597. [Google Scholar] [CrossRef] [PubMed]
- Doustmohammadian, A.; Amirkalali, B.; de Courten, B.; Esfandyari, S.; Motamed, N.; Maadi, M.; Ajdarkosh, H.; Gholizadeh, E.; Chaibakhsh, S.; Zamani, F. Path analysis model to identify the effect of poor diet quality on NAFLD among Iranian adults from Amol Cohort Study. Sci. Rep. 2024, 14, 19935. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.Y.; Hsu, C.Y.; Chiou, H.Y.; Lee, H.A.; Hsu, L.M.; Chang, P.Y.; Kurniawan, A.L.; Chao, J.C. Association between Dietary Patterns and Serum Hepatic Enzyme Levels in Adults with Dyslipidemia and Impaired Fasting Plasma Glucose. Nutrients 2021, 13, 987. [Google Scholar] [CrossRef] [PubMed]
- Sookoian, S.; Pirola, C.J. Genetic predisposition in nonalcoholic fatty liver disease. Clin. Mol. Hepatol. 2017, 23, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Lv, Y.; Rong, S.; Deng, Y.; Bao, W.; Xia, Y.; Chen, L. Plant-based diets, genetic predisposition and risk of non-alcoholic fatty liver disease. BMC Med. 2023, 21, 351. [Google Scholar] [CrossRef] [PubMed]
- Chen, V.L.; Du, X.; Oliveri, A.; Chen, Y.; Kuppa, A.; Halligan, B.D.; Province, M.A.; Speliotes, E.K. Genetic risk accentuates dietary effects on hepatic steatosis, inflammation and fibrosis in a population-based cohort. J. Hepatol. 2024, 81, 379–388. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.J.; Fried, S.K. Sex-dependent Depot Differences in Adipose Tissue Development and Function; Role of Sex Steroids. J. Obes. Metab. Syndr. 2017, 26, 172–180. [Google Scholar] [CrossRef] [PubMed]
- Fuente-Martin, E.; Argente-Arizon, P.; Ros, P.; Argente, J.; Chowen, J.A. Sex differences in adipose tissue: It is not only a question of quantity and distribution. Adipocyte 2013, 2, 128–134. [Google Scholar] [CrossRef] [PubMed]
- Della Torre, S. Beyond the X Factor: Relevance of Sex Hormones in NAFLD Pathophysiology. Cells 2021, 10, 2502. [Google Scholar] [CrossRef] [PubMed]
- Moran-Costoya, A.; Proenza, A.M.; Gianotti, M.; Llado, I.; Valle, A. Sex Differences in Nonalcoholic Fatty Liver Disease: Estrogen Influence on the Liver-Adipose Tissue Crosstalk. Antioxid. Redox Signal. 2021, 35, 753–774. [Google Scholar] [CrossRef] [PubMed]
- Kweon, S.; Kim, Y.; Jang, M.J.; Kim, Y.; Kim, K.; Choi, S.; Chun, C.; Khang, Y.H.; Oh, K. Data resource profile: The Korea National Health and Nutrition Examination Survey (KNHANES). Int. J. Epidemiol. 2014, 43, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Oh, K.; Kim, Y.; Kweon, S.; Kim, S.; Yun, S.; Park, S.; Lee, Y.K.; Kim, Y.; Park, O.; Jeong, E.K. Korea National Health and Nutrition Examination Survey, 20th anniversary: Accomplishments and future directions. Epidemiol. Health 2021, 43, e2021025. [Google Scholar] [CrossRef] [PubMed]
- Shams-White, M.M.; Pannucci, T.E.; Lerman, J.L.; Herrick, K.A.; Zimmer, M.; Meyers Mathieu, K.; Stoody, E.E.; Reedy, J. Healthy Eating Index-2020: Review and Update Process to Reflect the Dietary Guidelines for Americans, 2020–2025. J. Acad. Nutr. Diet. 2023, 123, 1280–1288. [Google Scholar] [CrossRef] [PubMed]
- Yun, S.; Park, S.; Yook, S.M.; Kim, K.; Shim, J.E.; Hwang, J.Y.; Oh, K. Development of the Korean Healthy Eating Index for adults, based on the Korea National Health and Nutrition Examination Survey. Nutr. Res. Pract. 2022, 16, 233–247. [Google Scholar] [CrossRef] [PubMed]
- National Academy of Agricultural Sciences. Food Composition Table; National Academy of Agricultural Sciences: Suwon, Republic of Korea, 2012. [Google Scholar]
- Chung, J.W.; Acharya, D.; Singh, J.K.; Sakong, J. Association of Blood Mercury Level with Liver Enzymes in Korean Adults: An Analysis of 2015–2017 Korean National Environmental Health Survey. Int. J. Environ. Res. Public Health 2023, 20, 3290. [Google Scholar] [CrossRef] [PubMed]
- Song, J.H.; Kim, H.R.; Lee, D.W.; Min, J.; Lee, Y.M.; Kang, M.Y. Association between long working hours and liver enzymes: Evidence from the Korea National Health and Nutrition Examination Survey, 2007–2017. Ann. Occup. Environ. Med. 2022, 34, e9. [Google Scholar] [CrossRef] [PubMed]
- Farrell, G.C.; Chitturi, S.; Lau, G.K.; Sollano, J.D.; Asia-Pacific Working Party on NAFLD. Guidelines for the assessment and management of non-alcoholic fatty liver disease in the Asia-Pacific region: Executive summary. J. Gastroenterol. Hepatol. 2007, 22, 775–777. [Google Scholar] [CrossRef] [PubMed]
- Younossi, Z.M.; Golabi, P.; Paik, J.M.; Henry, A.; Van Dongen, C.; Henry, L. The global epidemiology of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH): A systematic review. Hepatology 2023, 77, 1335–1347. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z. Multiple imputation with multivariate imputation by chained equation (MICE) package. Ann. Transl. Med. 2016, 4, 30. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, F.; Mirzaei, K.; Rahimi, M.H.; Mollahosesini, M.; Issah, A.; Yekaninejad, M.S.; Maghbooli, Z. Alternative Healthy Eating Index may be associated with liver enzymes level among healthy adults. Prog. Nutr. 2019, 21, 165–169. [Google Scholar] [CrossRef]
- Mirashrafi, S.; Kafeshani, M.; Hassanzadeh, A.; Entezari, M.H. Is any association between alternate healthy eating index (AHEI) with lipid profile and liver enzymes? A cross-sectional Study. J. Diabetes Metab. Disord. 2021, 20, 1537–1544. [Google Scholar] [CrossRef] [PubMed]
- Park, S.Y.; Noureddin, M.; Boushey, C.; Wilkens, L.R.; Setiawan, V.W. Diet Quality Association with Nonalcoholic Fatty Liver Disease by Cirrhosis Status: The Multiethnic Cohort. Curr. Dev. Nutr. 2020, 4, nzaa024. [Google Scholar] [CrossRef] [PubMed]
- Baek, S.U.; Kim, T.; Lee, Y.M.; Won, J.U.; Yoon, J.H. Association between Dietary Quality and Non-Alcoholic Fatty Liver Disease in Korean Adults: A Nationwide, Population-Based Study Using the Korean Healthy Eating Index (2013–2021). Nutrients 2024, 16, 1516. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.; Ma, E.; Zhang, W.; Feng, B. Association between Healthy Eating Index-2015 total and metabolic associated fatty liver disease in Americans: A cross-sectional study with U.S. National Health and Nutrition Examination Survey. Front. Nutr. 2024, 11, 1427619. [Google Scholar] [CrossRef] [PubMed]
- Mollahosseini, M.; Daneshzad, E.; Rahimi, M.H.; Yekaninejad, M.S.; Maghbooli, Z.; Mirzaei, K. The Association between Fruit and Vegetable Intake and Liver Enzymes (Aspartate and Alanine Transaminases) in Tehran, Iran. Ethiop. J. Health Sci. 2017, 27, 401–410. [Google Scholar] [CrossRef] [PubMed]
- Vu, T.-D.; Ngo, A.-D.; Nguyen, S.-T.; Khuong, Y.-N.; Phan, V.-B.; Pham, T.-D.; Le, D.-A.; To, T.-T.; Wu, C.-C.; Chu, D.-T. Effects of high fat diet on blood lipids and liver enzymes in murine model: The systemic and experimental study. Obesity Med. 2025, 55, 100614. [Google Scholar] [CrossRef]
- Shimony, M.K.; Schliep, K.C.; Schisterman, E.F.; Ahrens, K.A.; Sjaarda, L.A.; Rotman, Y.; Perkins, N.J.; Pollack, A.Z.; Wactawski-Wende, J.; Mumford, S.L. The relationship between sugar-sweetened beverages and liver enzymes among healthy premenopausal women: A prospective cohort study. Eur. J. Nutr. 2016, 55, 569–576. [Google Scholar] [CrossRef] [PubMed]
- Iwamoto, M.; Yagi, K.; Yazumi, K.; Komine, A.; Shirouchi, B.; Sato, M. Eating a healthy lunch improves serum alanine aminotransferase activity. Lipids Health Dis. 2013, 12, 134. [Google Scholar] [CrossRef] [PubMed]
- Haigh, L.; Kirk, C.; El Gendy, K.; Gallacher, J.; Errington, L.; Mathers, J.C.; Anstee, Q.M. The effectiveness and acceptability of Mediterranean diet and calorie restriction in non-alcoholic fatty liver disease (NAFLD): A systematic review and meta-analysis. Clin. Nutr. 2022, 41, 1913–1931. [Google Scholar] [CrossRef] [PubMed]
- Moszak, M.; Szulinska, M.; Bogdanski, P. You Are What You Eat-The Relationship between Diet, Microbiota, and Metabolic Disorders-A Review. Nutrients 2020, 12, 1096. [Google Scholar] [CrossRef] [PubMed]
- Pan, L.; Xu, Z.; Li, Y.; Cai, G.; Gao, H.; Lin, S. Exploring the association between pro-inflammatory diets and chronic liver diseases: Evidence from the UK Biobank. Front. Nutr. 2025, 12, 1537855. [Google Scholar] [CrossRef] [PubMed]
- Morisco, F.; Vitaglione, P.; Amoruso, D.; Russo, B.; Fogliano, V.; Caporaso, N. Foods and liver health. Mol. Aspects Med. 2008, 29, 144–150. [Google Scholar] [CrossRef] [PubMed]
- Parry, S.A.; Hodson, L. Influence of dietary macronutrients on liver fat accumulation and metabolism. J. Investig. Med. 2017, 65, 1102–1115. [Google Scholar] [CrossRef] [PubMed]
- Meyer, J.; Teixeira, A.M.; Richter, S.; Larner, D.P.; Syed, A.; Kloting, N.; Matz-Soja, M.; Gaul, S.; Barnikol-Oettler, A.; Kiess, W.; et al. Sex differences in diet-induced MASLD—Are female mice naturally protected? Front. Endocrinol. 2025, 16, 1567573. [Google Scholar] [CrossRef] [PubMed]
- Chan, R.; Wong, V.W.; Chu, W.C.; Wong, G.L.; Li, L.S.; Leung, J.; Chim, A.M.; Yeung, D.K.; Sea, M.M.; Woo, J.; et al. Diet-Quality Scores and Prevalence of Nonalcoholic Fatty Liver Disease: A Population Study Using Proton-Magnetic Resonance Spectroscopy. PLoS ONE 2015, 10, e0139310. [Google Scholar] [CrossRef] [PubMed]
- Smiriglia, A.; Lorito, N.; Serra, M.; Perra, A.; Morandi, A.; Kowalik, M.A. Sex difference in liver diseases: How preclinical models help to dissect the sex-related mechanisms sustaining NAFLD and hepatocellular carcinoma. iScience 2023, 26, 108363. [Google Scholar] [CrossRef] [PubMed]
- Burra, P.; Bizzaro, D.; Gonta, A.; Shalaby, S.; Gambato, M.; Morelli, M.C.; Trapani, S.; Floreani, A.; Marra, F.; Brunetto, M.R.; et al. Clinical impact of sexual dimorphism in non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH). Liver Int. 2021, 41, 1713–1733. [Google Scholar] [CrossRef] [PubMed]
- Nagral, A.; Bangar, M.; Menezes, S.; Bhatia, S.; Butt, N.; Ghosh, J.; Manchanayake, J.H.; Mahtab, M.A.; Singh, S.P. Gender Differences in Nonalcoholic Fatty Liver Disease. Euroasian J. Hepato-Gastroenterol. 2022, 12, S19–S25. [Google Scholar] [CrossRef]
- Park, Y.T.; Chung, E.Y.; Chae, C.H.; Lee, Y.H. Association between serum perfluoroalkyl substances concentrations and non-alcoholic fatty liver disease among Korean adults: A cross-sectional study using the National Environmental Health Survey cycle 4. Ann. Occup. Environ. Med. 2024, 36, e10. [Google Scholar] [CrossRef] [PubMed]
- Chi, Y.; Park, J.T.; Na, S.; Kwak, K. Environment-wide association study of elevated liver enzymes: Results from the Korean National Environmental Health Survey 2018–2022. Ann. Occup. Environ. Med. 2023, 35, e27. [Google Scholar] [CrossRef] [PubMed]
- Woo, S.H.; Kim, Y.; Ju, K.; Kim, J.; Song, J.; Lee, S.J.; Min, J. Differences of nutritional intake habits and Dietary Inflammatory Index score between occupational classifications in the Korean working population. Ann. Occup. Environ. Med. 2024, 36, e5. [Google Scholar] [CrossRef] [PubMed]
- Ju, K.; Kim, Y.; Woo, S.H.; Kim, J.; Kim, I.; Song, J.; Lee, S.J.; Min, J. The impact of long working hours on daily sodium intake. Ann. Occup. Environ. Med. 2024, 36, e9. [Google Scholar] [CrossRef] [PubMed]
Overall | Males | Females | p Value a | |
---|---|---|---|---|
n = 38,297 | n = 15,997 | n = 22,300 | ||
Korean Healthy Eating Index | ||||
Mean (SD) | 63.0 (13.3) | 61.6 (13.0) | 64.1 (13.5) | <0.001 |
Range (min.—max.) | 13.5–99.8 | 15.0–99.1 | 13.5–99.8 | |
Total adequacy score | ||||
Mean (SD) | 31.5 (10.5) | 30.8 (10.3) | 31.9 (10.7) | <0.001 |
Total moderation score | ||||
Mean (SD) | 22.8 (6.0) | 21.8 (6.0) | 23.5 (5.8) | <0.001 |
Total balance score | ||||
Mean (SD) | 8.8 (4.7) | 9.0 (4.7) | 8.7 (4.7) | <0.001 |
Age (years) | ||||
Mean (SD) | 51.4 (16.7) | 51.5 (17.1) | 51.4 (16.4) | 0.130 |
Range (min.—max.) | 19–80 | 19–80 | 19–80 | |
Income level | ||||
Lowest | 7126 (18.6%) | 2785 (17.4%) | 4341 (19.5%) | <0.001 |
Low | 9499 (24.8%) | 3907 (24.4%) | 5592 (25.1%) | |
High | 10,469 (27.3%) | 4458 (27.9%) | 6011 (27.0%) | |
Highest | 11,203 (29.3%) | 4847 (30.3%) | 6356 (28.5%) | |
Educational level | ||||
Middle school or below | 11,728 (30.6%) | 4048 (25.3%) | 7680 (34.4%) | <0.001 |
High school | 12,693 (33.1%) | 5670 (35.4%) | 7023 (31.5%) | |
College or above | 13,876 (36.2%) | 6279 (39.3%) | 7597 (34.1%) | |
Marital status | ||||
Married | 31,957 (83.4%) | 12,685 (79.3%) | 19,272 (86.4%) | <0.001 |
Unmarred or others | 6340 (16.6%) | 3312 (20.7%) | 3028 (13.6%) | |
Employment status | ||||
Workers | 22,881 (59.7%) | 11,377 (71.1%) | 11,504 (51.6%) | <0.001 |
Unemployed | 15,416 (40.3%) | 4620 (28.9%) | 10,796 (48.4%) | |
Smoking status | ||||
No | 32,902 (85.9%) | 11,375 (71.1%) | 21,527 (96.5%) | <0.001 |
Yes | 5395 (14.1%) | 4622 (28.9%) | 773 (3.5%) | |
Physical activity | ||||
No | 21,422 (55.9%) | 8303 (51.9%) | 13,119 (58.8%) | <0.001 |
Yes | 16,875 (44.1%) | 7694 (48.1%) | 9181 (41.2%) | |
Excess alcohol use | ||||
No | 33,934 (88.6%) | 12,864 (80.4%) | 21,070 (94.5%) | <0.001 |
Yes | 4363 (11.4%) | 3133 (19.6%) | 1230 (5.5%) | |
Body mass index | ||||
Mean (SD) | 23.9 (3.5) | 24.5 (3.4) | 23.5 (3.6) | <0.001 |
Range (min.—max.) | 13.3–62.6 | 15.0–50.9 | 13.3–62.6 | |
Hypertension b | ||||
No | 29,768 (77.7%) | 12,273 (76.7%) | 17,495 (78.5%) | <0.001 |
Yes | 8529 (22.3%) | 3724 (23.3%) | 4805 (21.5%) | |
Diabetes c | ||||
No | 34,870 (91.1%) | 14,364 (89.8%) | 20,506 (92.0%) | <0.001 |
Yes | 3427 (8.9%) | 1633 (10.2%) | 1794 (8.0%) | |
Elevated AST level | ||||
No | 36,415 (95.1%) | 14,866 (92.9%) | 21,549 (96.6%) | <0.001 |
Yes | 1882 (4.9%) | 1131 (7.1%) | 751 (3.4%) | |
Range of AST (min.—max.) | 5–927 | 9–927 | 5–404 | |
Elevated ALT level | ||||
No | 33,678 (87.9%) | 12,871 (80.5%) | 20,807 (93.3%) | <0.001 |
Yes | 4619 (12.1%) | 3126 (19.5%) | 1493 (6.7%) | |
Range of ALT (min.—max.) | 1–458 | 1–402 | 3–458 |
Overall | KHEI Categories | |||||
---|---|---|---|---|---|---|
Lowest | Low | Average | High | Highest | ||
Male | ||||||
Total KHEI score | 61.6 ± 13.0 | 43.6 ± 6.2 | 55.9 ± 2.5 | 63.6 ± 2.0 | 70.6 ± 2.2 | 80.5 ± 4.6 |
Total adequacy score a | 30.8 ± 10.3 | 19.7 ± 7.6 | 26.5 ± 6.7 | 31.6 ± 6.1 | 36.7 ± 5.5 | 43.6 ± 5.4 |
Breakfast (0–10) | 7.5 ± 3.8 | 4.4 ± 4.2 | 6.9 ± 4.0 | 8.3 ± 3.1 | 9.1 ± 2.4 | 9.5 ± 1.6 |
Whole grains (0–5) | 2.1 ± 2.2 | 0.9 ± 1.7 | 1.7 ± 2.1 | 2.2 ± 2.2 | 2.8 ± 2.2 | 3.4 ± 2.0 |
Total fruit (0–5) | 1.9 ± 2.1 | 0.6 ± 1.4 | 1.2 ± 1.8 | 1.8 ± 2.0 | 2.6 ± 2.1 | 3.6 ± 1.7 |
Fruit, excluding juice (0–5) | 2.1 ± 2.3 | 0.7 ± 1.6 | 1.3 ± 2.0 | 2.0 ± 2.3 | 2.9 ± 2.3 | 4.0 ± 1.9 |
Total vegetables (0–5) | 3.8 ± 1.4 | 3.1 ± 1.6 | 3.6 ± 1.4 | 3.9 ± 1.3 | 4.2 ± 1.1 | 4.4 ± 1.0 |
Vegetable, excluding kimchi and pickles (0–5) | 3.4 ± 1.6 | 2.5 ± 1.7 | 3.1 ± 1.6 | 3.5 ± 1.5 | 3.8 ± 1.4 | 4.2 ± 1.2 |
Meat, fish, eggs, and beans (0–10) | 7.3 ± 3.0 | 6.1 ± 3.6 | 6.7 ± 3.2 | 7.3 ± 2.8 | 8.1 ± 2.4 | 8.8 ± 1.9 |
Milk and dairy (0–10) | 2.9 ± 4.3 | 1.5 ± 3.3 | 2.1 ± 3.8 | 2.6 ± 4.1 | 3.2 ± 4.4 | 5.8 ± 4.6 |
Total moderation score b | 21.8 ± 6.0 | 18.1 ± 6.8 | 21.5 ± 6.1 | 22.6 ± 5.2 | 23.2 ± 4.8 | 24.6 ± 3.9 |
Saturated fatty acid (0–10) | 7.6 ± 3.8 | 5.0 ± 4.6 | 7.4 ± 4.0 | 8.3 ± 3.3 | 8.8 ± 2.7 | 9.3 ± 1.9 |
Sodium (0–10) | 5.7 ± 3.5 | 5.7 ± 3.7 | 5.7 ± 3.6 | 5.5 ± 3.5 | 5.5 ± 3.3 | 6.1 ± 3.0 |
Sweets (0–10) | 8.5 ± 3.0 | 7.4 ± 3.8 | 8.5 ± 3.0 | 8.8 ± 2.6 | 8.9 ± 2.5 | 9.2 ± 2.1 |
Total balance score c | 9.0 ± 4.7 | 5.7 ± 4.7 | 7.9 ± 4.5 | 9.4 ± 4.2 | 10.7 ± 3.8 | 12.3 ± 3.0 |
Carbohydrate (0–5) | 2.5 ± 2.1 | 1.5 ± 2.0 | 2.1 ± 2.1 | 2.6 ± 2.1 | 3.1 ± 2.0 | 3.7 ± 1.6 |
Fat (0–5) | 3.3 ± 2.1 | 2.1 ± 2.2 | 3.0 ± 2.2 | 3.5 ± 2.0 | 3.9 ± 1.8 | 4.5 ± 1.2 |
Total energy (0–5) | 3.1 ± 2.2 | 2.1 ± 2.3 | 2.8 ± 2.3 | 3.3 ± 2.1 | 3.7 ± 2.0 | 4.1 ± 1.7 |
AST level | ||||||
Mean (SD) | 25.3 ± 16.3 | 26.0 ± 23.1 | 25.8 ± 19.7 | 24.9 ± 11.1 | 25.0 ± 10.5 | 24.5 ± 10.0 |
ALT level | ||||||
Mean (SD) | 26.9 ± 20.0 | 28.9 ± 24.0 | 27.7 ± 21.8 | 25.8 ± 17.3 | 26.2 ± 17.4 | 25.2 ± 16.9 |
Body Mass Index | ||||||
Mean (SD) | 24.5 ± 3.4 | 24.7 ± 3.8 | 24.5 ± 3.5 | 24.4 ± 3.2 | 24.4 ± 3.1 | 24.3 ± 3.1 |
Female | ||||||
Total KHEI score | 64.1 ± 13.5 | 43.6 ± 6.4 | 56.0 ± 2.4 | 63.5 ± 2.0 | 70.8 ± 2.2 | 81.3 ± 5.0 |
Total adequacy score a | 31.9 ± 10.7 | 18.2 ± 7.2 | 26.3 ± 6.6 | 31.3 ± 6.1 | 36.6 ± 5.6 | 43.7 ± 5.5 |
Breakfast (0–10) | 7.5 ± 3.7 | 4.1 ± 4.1 | 6.6 ± 4.0 | 7.8 ± 3.5 | 8.8 ± 2.6 | 9.5 ± 1.7 |
Whole grains (0–5) | 2.1 ± 2.2 | 0.9 ± 1.6 | 1.6 ± 2.0 | 2.1 ± 2.1 | 2.5 ± 2.1 | 3.3 ± 2.0 |
Total fruit (0–5) | 2.6 ± 2.2 | 1.0 ± 1.7 | 1.8 ± 2.1 | 2.6 ± 2.2 | 3.3 ± 2.0 | 4.1 ± 1.5 |
Fruit, excluding juice (0–5) | 2.8 ± 2.4 | 1.1 ± 1.9 | 2.0 ± 2.3 | 2.8 ± 2.3 | 3.5 ± 2.2 | 4.3 ± 1.6 |
Total vegetables (0–5) | 3.3 ± 1.5 | 2.2 ± 1.5 | 3.0 ± 1.5 | 3.4 ± 1.4 | 3.7 ± 1.3 | 4.0 ± 1.2 |
Vegetable, excluding kimchi and pickles (0–5) | 3.2 ± 1.7 | 2.0 ± 1.6 | 2.7 ± 1.6 | 3.2 ± 1.6 | 3.6 ± 1.5 | 4.0 ± 1.3 |
Meat, fish, eggs, and beans (0–10) | 6.8 ± 3.2 | 5.0 ± 3.5 | 6.0 ± 3.3 | 6.7 ± 3.0 | 7.5 ± 2.7 | 8.5 ± 2.2 |
Milk and dairy (0–10) | 3.5 ± 4.4 | 2.0 ± 3.7 | 2.5 ± 4.0 | 2.9 ± 4.2 | 3.6 ± 4.4 | 5.9 ± 4.5 |
Total moderation score b | 23.5 ± 5.8 | 20.0 ± 6.7 | 22.5 ± 6.2 | 23.8 ± 5.6 | 24.4 ± 5.0 | 25.8 ± 4.0 |
Saturated fatty acid (0–10) | 7.7 ± 3.8 | 5.4 ± 4.7 | 7.0 ± 4.2 | 8.0 ± 3.6 | 8.4 ± 3.1 | 9.0 ± 2.3 |
Sodium (0–10) | 7.6 ± 2.9 | 7.9 ± 3.0 | 7.6 ± 3.0 | 7.5 ± 3.0 | 7.4 ± 3.0 | 7.7 ± 2.6 |
Sweets (0–10) | 8.2 ± 3.3 | 6.7 ± 4.1 | 7.9 ± 3.5 | 8.3 ± 3.1 | 8.6 ± 2.9 | 9.0 ± 2.4 |
Total balance score c | 8.7 ± 4.7 | 5.3 ± 4.4 | 7.2 ± 4.6 | 8.4 ± 4.3 | 9.9 ± 4.1 | 11.8 ± 3.3 |
Carbohydrate (0–5) | 2.4 ± 2.1 | 1.5 ± 2.0 | 1.9 ± 2.1 | 2.2 ± 2.1 | 2.7 ± 2.1 | 3.4 ± 1.8 |
Fat (0–5) | 3.2 ± 2.1 | 2.1 ± 2.2 | 2.7 ± 2.2 | 3.1 ± 2.2 | 3.6 ± 2.0 | 4.3 ± 1.4 |
Total energy (0–5) | 3.1 ± 2.2 | 1.8 ± 2.2 | 2.5 ± 2.3 | 3.1 ± 2.2 | 3.6 ± 2.0 | 4.1 ± 1.7 |
AST level | ||||||
Mean (SD) | 21.7 ± 10.8 | 20.6 ± 12.4 | 21.5 ± 12.2 | 21.9 ± 9.9 | 21.8 ± 10.4 | 22.3 ± 9.4 |
ALT level | ||||||
Mean (SD) | 18.5 ± 14.2 | 17.3 ± 15.4 | 18.0 ± 14.8 | 18.7 ± 13.5 | 18.7 ± 13.5 | 19.3 ± 13.9 |
Body Mass Index | ||||||
Mean (SD) | 23.5 ± 3.6 | 23.3 ± 3.9 | 23.5 ± 3.8 | 23.6 ± 3.6 | 23.6 ± 3.5 | 23.4 ± 3.2 |
Elevated AST Level | Elevated ALT Level | |||
---|---|---|---|---|
Males | Females | Males | Females | |
OR (95% CI) | OR (95% CI) | OR (95% CI) | OR (95% CI) | |
KHEI (categorical) | ||||
Lowest | Reference | Reference | Reference | Reference |
Low | 0.98 (0.80–1.20) | 1.09 (0.80–1.48) | 0.98 (0.85–1.13) | 0.91 (0.73–1.13) |
Average | 0.76 (0.60–0.96) | 1.10 (0.82–1.46) | 0.91 (0.79–1.06) | 0.96 (0.78–1.18) |
High | 0.81 (0.64–1.01) | 0.79 (0.58–1.08) | 0.97 (0.83–1.12) | 0.95 (0.78–1.17) |
Highest | 0.67 (0.52–0.88) | 1.05 (0.78–1.41) | 0.80 (0.68–0.96) | 1.01 (0.83–1.24) |
KHEI (continuous) | ||||
10-point increase | 0.90 (0.85–0.96) | 0.98 (0.91–1.05) | 0.96 (0.92–1.00) | 1.00 (0.95–1.05) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baek, S.-U.; Yoon, J.-H. Sex Differences in the Association Between the Korean Healthy Eating Index and Liver Enzymes Among Korean Adults. Nutrients 2025, 17, 2372. https://doi.org/10.3390/nu17142372
Baek S-U, Yoon J-H. Sex Differences in the Association Between the Korean Healthy Eating Index and Liver Enzymes Among Korean Adults. Nutrients. 2025; 17(14):2372. https://doi.org/10.3390/nu17142372
Chicago/Turabian StyleBaek, Seong-Uk, and Jin-Ha Yoon. 2025. "Sex Differences in the Association Between the Korean Healthy Eating Index and Liver Enzymes Among Korean Adults" Nutrients 17, no. 14: 2372. https://doi.org/10.3390/nu17142372
APA StyleBaek, S.-U., & Yoon, J.-H. (2025). Sex Differences in the Association Between the Korean Healthy Eating Index and Liver Enzymes Among Korean Adults. Nutrients, 17(14), 2372. https://doi.org/10.3390/nu17142372