The Impact of 5-Hydroxytryptophan Supplementation on Cognitive Function and Mood in Singapore Older Adults: A Randomized Controlled Trial
Abstract
1. Introduction
2. Methods
2.1. Participant
2.2. Study Design
2.3. Anthropometric Parameters and Blood Pressure Measurements
2.4. Dietary Assessment
2.5. Cognitive Function Assessment
2.6. Mood Assessments
2.7. Blood Sample Preparation and Analysis
2.8. Power Calculation and Data Analysis
3. Results
3.1. Baseline Characteristics
3.2. Dietary Assessments
3.3. Effect of 5-HTP Supplementation on Cognitive Function
3.4. Effect of 5-HTP Supplementation on Cognitive Function-Related Biomarkers
3.5. Effect of 5-HTP Supplementation on Mood
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khan, H.T. Population ageing in a globalized world: Risks and dilemmas? J. Eval. Clin. Pract. 2019, 25, 754–760. [Google Scholar] [CrossRef]
- Goh, S.S.N.; Zhao, J.; Drakeford, P.A.; Chen, Q.; Lim, W.W.; Li, A.L.; Chan, K.S.; Ong, M.W.; Goo, J.T.T. Assessing the impact of frailty in elderly patients undergoing emergency laparotomies in Singapore. Ann. Acad. Med. Singap. 2024, 53, 352–360. [Google Scholar] [CrossRef]
- Mecocci, P.; Boccardi, V. The impact of aging in dementia: It is time to refocus attention on the main risk factor of dementia. Ageing Res. Rev. 2021, 65, 101210. [Google Scholar] [CrossRef]
- Subramaniam, M.; Abdin, E.; Asharani, P.; Roystonn, K.; Devi, F.; Peizhi, W.; Shafie, S.; Sagayadevan, V.; Jeyagurunathan, A.; Chua, B.Y.; et al. Prevalence of dementia in Singapore: Changes across a decade. Alzheimer’s Dement. 2025, 21, e14485. [Google Scholar] [CrossRef]
- Biringer, E.; Mykletun, A.; Dahl, A.A.; Smith, A.D.; Engedal, K.; Nygaard, H.A.; Lund, A. The association between depression, anxiety, and cognitive function in the elderly general population—The Hordaland Health Study. Int. J. Geriatr. Psychiatry 2005, 20, 989–997. [Google Scholar] [CrossRef] [PubMed]
- Fisher, D.W.; Dunn, J.T.; Dong, H. Distinguishing features of depression in dementia from primary psychiatric disease. Discov. Ment. Health 2024, 4, 3. [Google Scholar] [CrossRef] [PubMed]
- Ye, K.X.; Sun, L.; Wang, L.; Khoo, A.L.Y.; Lim, K.X.; Lu, G.; Yu, L.; Li, C.; Maier, A.B.; Feng, L. The role of lifestyle factors in cognitive health and dementia in oldest-old: A systematic review. Neurosci. Biobehav. Rev. 2023, 152, 105286. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Chew, K.A.; Wong, Z.X.; Phua, A.K.S.; Chong, E.J.Y.; Teo, C.K.L.; Sathe, N.; Chooi, Y.C.; Chia, W.P.F.; Henry, C.J.; et al. The SINgapore GERiatric Intervention Study to Reduce Cognitive Decline and Physical Frailty (SINGER): Study Design and Protocol. J. Prev. Alzheimer’s Dis. 2022, 9, 40–48. [Google Scholar] [CrossRef]
- Norton, S.; E Matthews, F.; E Barnes, D.; Yaffe, K.; Brayne, C. Potential for primary prevention of Alzheimer’s disease: An analysis of population-based data. Lancet Neurol. 2014, 13, 788–794. [Google Scholar] [CrossRef]
- Scarmeas, N.; Anastasiou, C.A.; Yannakoulia, M. Nutrition and prevention of cognitive impairment. Lancet Neurol. 2018, 17, 1006–1015. [Google Scholar] [CrossRef]
- Fekete, M.; Szarvas, Z.; Fazekas-Pongor, V.; Feher, A.; Csipo, T.; Forrai, J.; Dosa, N.; Peterfi, A.; Lehoczki, A.; Tarantini, S.; et al. Nutrition Strategies Promoting Healthy Aging: From Improvement of Cardiovascular and Brain Health to Prevention of Age-Associated Diseases. Nutrients 2022, 15, 47. [Google Scholar] [CrossRef]
- Kikuchi, A.M.; Tanabe, A.; Iwahori, Y. A systematic review of the effect of L-tryptophan supplementation on mood and emotional functioning. J. Diet. Suppl. 2020, 18, 316–333. [Google Scholar] [CrossRef]
- Norouziasl, R.; Zeraattalab-Motlagh, S.; Jayedi, A.; Shab-Bidar, S. Efficacy and safety of n-3 fatty acids supplementation on depression: A systematic review and dose-response meta-analysis of randomised controlled trials. Br. J. Nutr. 2023, 131, 658–671. [Google Scholar] [CrossRef]
- Lamar, M.; Cutter, W.J.; Rubia, K.; Brammer, M.; Daly, E.M.; Craig, M.C.; Cleare, A.J.; Murphy, D.G. 5-HT, prefrontal function and aging: fMRI of inhibition and acute tryptophan depletion. Neurobiol. Aging 2009, 30, 1135–1146. [Google Scholar] [CrossRef]
- Olivier, B. Serotonin: A never-ending story. Eur. J. Pharmacol. 2015, 753, 2–18. [Google Scholar] [CrossRef]
- Strac, D.Š.; Pivac, N.; Mück-Šeler, D. The serotonergic system and cognitive function. Transl. Neurosci. 2016, 7, 35–49. [Google Scholar] [CrossRef]
- Sim, M.A.; Liao, Y.; Chan, S.P.; Tan, E.S.J.; Ni Kan, C.; Chong, J.R.; Chai, Y.L.; Venketasubramanian, N.; Tan, B.Y.; Hilal, S.; et al. Low serum serotonin is associated with functional decline, mild behavioural impairment and brain atrophy in dementia-free subjects. Brain Commun. 2024, 7, fcaf005. [Google Scholar] [CrossRef] [PubMed]
- Maffei, M.E. 5-Hydroxytryptophan (5-HTP): Natural Occurrence, Analysis, Biosynthesis, Biotechnology, Physiology and Toxicology. Int. J. Mol. Sci. 2020, 22, 181. [Google Scholar] [CrossRef]
- Weinberg-Wolf, H.B.; Fagan, N.; Monte, O.D.; Chang, S.W.C. Increasing central serotonin with 5-hydroxytryptophan disrupts the inhibition of social gaze in nonhuman primates. J. Neurosci. 2021, 42, 670–681. [Google Scholar] [CrossRef] [PubMed]
- Adekunle, H.; Balogun, O. Tryptophan and HTP supplementation in the treatment of cognitive and mood disorders: A systematic review and meta-analysis. Res. Sq. 2024, 3, 1–13. [Google Scholar] [CrossRef]
- Meloni, M.; Puligheddu, M.; Carta, M.; Cannas, A.; Figorilli, M.; Defazio, G. Efficacy and safety of 5-hydroxytryptophan on depression and apathy in Parkinson’s disease: A preliminary finding. Eur. J. Neurol. 2020, 27, 779–786. [Google Scholar] [CrossRef] [PubMed]
- Sutanto, C.N.; Xia, X.; Heng, C.W.; Tan, Y.S.; Lee, D.P.S.; Fam, J.; Kim, J.E. The impact of 5-hydroxytryptophan supplementation on sleep quality and gut microbiota composition in older adults: A randomized controlled trial. Clin. Nutr. 2024, 43, 593–602. [Google Scholar] [CrossRef]
- Evans, C.; Mekhail, V.; Curtis, J.; Czartoryski, P.; Kaminski, J.; Ellerbroek, A.; Bustillo, E.; Jiannine, L.; Santana, J.C.; Antonio, J. The Effects of 5-HTP on Body Composition: An 8-Week Preliminary RCT. J. Diet. Suppl. 2022, 20, 621–630. [Google Scholar] [CrossRef]
- Zamoscik, V.; Schmidt, S.N.L.; Bravo, R.; Ugartemendia, L.; Plieger, T.; Rodríguez, A.B.; Reuter, M.; Kirsch, P. Tryptophan-enriched diet or 5-hydroxytryptophan supplementation given in a randomized controlled trial impacts social cognition on a neural and behavioral level. Sci. Rep. 2021, 11, 21637. [Google Scholar] [CrossRef] [PubMed]
- Meloni, M.; Figorilli, M.; Carta, M.; Tamburrino, L.; Cannas, A.; Sanna, F.; Defazio, G.; Puligheddu, M. Preliminary finding of a randomized, double-blind, placebo-controlled, crossover study to evaluate the safety and efficacy of 5-hydroxytryptophan on REM sleep behavior disorder in Parkinson’s disease. Sleep Breath. 2022, 26, 1023–1031. [Google Scholar] [CrossRef]
- Consultation, W. Waist Circumference and Waist-Hip Ratio. Report of a WHO Expert Consultation; World Health Organization: Geneva, Switzerland, 2008; pp. 8–11. [Google Scholar]
- US Department of Agriculture. Food Data Central. Available online: https://fdc.nal.usda.gov/ (accessed on 1 July 2020).
- Health Promotion Board Singapore, Energy & Nutrient Composition of Food. Available online: https://focos.hpb.gov.sg/eservices/ENCF/ (accessed on 1 July 2020).
- Yang, Q.; Zhou, L.; Bai, X.; Huang, J.; Tan, Y. Vitamin B12 supplementation improves cognitive function in middle aged and elderly patients with cognitive impairment. Nutr. Hosp. 2023, 40, 724–731. [Google Scholar] [CrossRef]
- Ng, A.; Chew, I.; Narasimhalu, K.; Kandiah, N. Effectiveness of Montreal Cognitive Assessment for the diagnosis of mild cognitive impairment and mild Alzheimer’s disease in Singapore. Singap. Med J. 2013, 54, 616–619. [Google Scholar] [CrossRef]
- Pang, J.W.M.; Lim, J.E.; Koh, E.Y.L.; Tan, N.C. Validity and reliability of a virtual reality system as an assessment tool for cognitive impairment based on the six cognitive domains. Virtual Real. 2025, 29, 109. [Google Scholar] [CrossRef]
- MoCa Cognition. Available online: https://mocacognition.com/ (accessed on 1 April 2019).
- Lin, X.; Haralambous, B.; Pachana, N.A.; Bryant, C.; LoGiudice, D.; Goh, A.; Dow, B. Screening for depression and anxiety among older Chinese immigrants living in Western countries: The use of the Geriatric Depression Scale (GDS) and the Geriatric Anxiety Inventory (GAI). Asia Pac. Psychiatry 2015, 8, 32–43. [Google Scholar] [CrossRef]
- Kogan, J.N.; Edelstein, B.A.; McKee, D.R. Assessment of anxiety in older adults: Current status. J. Anxiety Disord. 2000, 14, 109–132. [Google Scholar] [CrossRef] [PubMed]
- Byrne, G.J.; Pachana, N.A.; Goncalves, D.C.; Arnold, E.; King, R.; Khoo, S.K. Psychometric properties and health correlates of the Geriatric Anxiety Inventory in Australian community-residing older women. Aging Ment. Health 2010, 14, 247–254. [Google Scholar] [CrossRef]
- Nyunt, M.S.Z.; Fones, C.; Niti, M.; Ng, T.-P. Criterion-based validity and reliability of the Geriatric Depression Screening Scale (GDS-15) in a large validation sample of community-living Asian older adults. Aging Ment. Health 2009, 13, 376–382. [Google Scholar] [CrossRef] [PubMed]
- Molde, H.; Nordhus, I.H.; Torsheim, T.; Engedal, K.; Bendixen, A.B.; Byrne, G.J.; Márquez-González, M.; Losada, A.; Feng, L.; Ow, E.K.T.; et al. A cross-national analysis of the psychometric properties of the Geriatric Anxiety Inventory. J. Gerontol. Ser. B 2020, 75, 1475–1483. [Google Scholar] [CrossRef]
- Yesavage, J.A.; Brink, T.L.; Rose, T.L.; Lum, O.; Huang, V.; Adey, M.; Leirer, V.O. Development and validation of a geriatric depression screening scale: A preliminary report. J. Psychiatry Res. 1983, 17, 37–49. [Google Scholar] [CrossRef]
- Pachana, N.A.; Byrne, G.J.; Siddle, H.; Koloski, N.; Harley, E.; Arnold, E. Development and validation of the Geriatric Anxiety Inventory. Int. Psychogeriatrics 2007, 19, 103–114. [Google Scholar] [CrossRef]
- Eshkoor, S.A.; Mun, C.Y.; Ng, C.K.; Hamid, T.A. Mild cognitive impairment and its management in older people. Clin. Interv. Aging 2015, 10, 687–693. [Google Scholar] [CrossRef] [PubMed]
- Höglund, E.; Øverli, Ø.; Winberg, S. Tryptophan metabolic pathways and brain serotonergic activity: A comparative review. Front. Endocrinol. 2019, 10, 158. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, H.; Nakamura, K. Tryptophan hydroxylase and serotonin synthesis regulation. In Handbook of Behavioral Neuroscience; Elsevier: Amsterdam, The Netherlands, 2010; pp. 183–202. [Google Scholar]
- Lindvall, E.; Abzhandadze, T.; Quinn, T.J.; Sunnerhagen, K.S.; Lundström, E. Is the difference real, is the difference relevant: The minimal detectable and clinically important changes in the Montreal Cognitive Assessment. Cereb. Circ. Cogn. Behav. 2024, 6, 100222. [Google Scholar] [CrossRef]
- E Haahr, M.; Fisher, P.M.; Jensen, C.G.; Frokjaer, V.G.; Mc Mahon, B.; Madsen, K.; Baaré, W.F.C.; Lehel, S.; Norremolle, A.; A Rabiner, E.; et al. Central 5-HT4 receptor binding as biomarker of serotonergic tonus in humans: A [11C]SB207145 PET study. Mol. Psychiatry 2013, 19, 427–432. [Google Scholar] [CrossRef]
- Jenkins, T.A.; Nguyen, J.C.D.; Polglaze, K.E.; Bertrand, P.P. Influence of tryptophan and serotonin on mood and cognition with a possible role of the gut-brain axis. Nutrients 2016, 8, 56. [Google Scholar] [CrossRef]
- Ziad, S.; Nasreddine, M. The Montreal cognitive assessment (MoCA)-concept and clinical review. J. Am. Geriatr. Soc. 2005, 53, 695–699. [Google Scholar]
- Chouinard, P.A.; Goodale, M.A. Goodale, Category-specific neural processing for naming pictures of animals and naming pictures of tools: An ALE meta-analysis. Neuropsychologia 2010, 48, 409–418. [Google Scholar] [CrossRef] [PubMed]
- Enge, S.; Fleischhauer, M.; Lesch, K.-P.; Reif, A.; Strobel, A. Serotonergic modulation in executive functioning: Linking genetic variations to working memory performance. Neuropsychologia 2011, 49, 3776–3785. [Google Scholar] [CrossRef] [PubMed]
- Madsen, K.; Erritzoe, D.; Mortensen, E.L.; Gade, A.; Madsen, J.; Baaré, W.; Knudsen, G.M.; Hasselbalch, S.G. Cognitive function is related to fronto-striatal serotonin transporter levels--a brain PET study in young healthy subjects. Psychopharmacology 2010, 213, 573–581. [Google Scholar] [CrossRef]
- Okereke, O.I.; Xia, W.; Selkoe, D.J.; Grodstein, F. Ten-Year Change in Plasma Amyloid β Levels and Late-Life Cognitive Decline. Arch. Neurol. 2009, 66, 1247–1253. [Google Scholar] [CrossRef] [PubMed]
- Lopez, O.L.; Kuller, L.H.; Mehta, P.D.; Becker, J.T.; Gach, H.M.; Sweet, R.A.; Chang, Y.F.; Tracy, R.; DeKosky, S.T. Plasma amyloid levels and the risk of AD in normal subjects in the Cardiovascular Health Study. Neurology 2008, 70, 1664–1671. [Google Scholar] [CrossRef] [PubMed]
- Toledo, J.B.; Vanderstichele, H.; Figurski, M.; Aisen, P.S.; Petersen, R.C.; Weiner, M.W.; Jack, C.R.; Jagust, W.; Decarli, C.; Toga, A.W.; et al. Factors affecting Aβ plasma levels and their utility as biomarkers in ADNI. Acta Neuropathol. 2011, 122, 401–413. [Google Scholar] [CrossRef]
- Lee, E.H.; Kang, S.H.; Shin, D.; Kim, Y.J.; Zetterberg, H.; Blennow, K.; Gonzalez-Ortiz, F.; Ashton, N.J.; Cheon, B.K.; Yoo, H.; et al. Plasma Alzheimer’s disease biomarker variability: Amyloid-independent and amyloid-dependent factors. Alzheimer’s Dement. 2024, 21, e14368. [Google Scholar] [CrossRef]
- McQuail, J.A.; Frazier, C.J.; Bizon, J.L. Molecular aspects of age-related cognitive decline: The role of GABA signaling. Trends Mol. Med. 2015, 21, 450–460. [Google Scholar] [CrossRef]
- Lladó-Pelfort, L.; Santana, N.; Ghisi, V.; Artigas, F.; Celada, P. 5-HT1A receptor agonists enhance pyramidal cell firing in prefrontal cortex through a preferential action on GABA interneurons. Cereb. Cortex 2011, 22, 1487–1497. [Google Scholar] [CrossRef]
- Rojas, P.S.; Fiedler, J.L. What do we really know about 5-HT1A receptor signaling in neuronal cells? Front. Cell. Neurosci. 2016, 10, 272. [Google Scholar] [CrossRef]
- Zhou, X.; Zhang, R.; Zhang, S.; Wu, J.; Sun, X. Activation of 5-HT1A Receptors Promotes Retinal Ganglion Cell Function by Inhibiting the cAMP-PKA Pathway to Modulate Presynaptic GABA Release in Chronic Glaucoma. J. Neurosci. 2019, 39, 1484–1504. [Google Scholar] [CrossRef]
- Pomares, F.B.; Roy, S.; Funck, T.; Feier, N.A.; Thiel, A.; Fitzcharles, M.-A.; Schweinhardt, P. Upregulation of cortical GABAA receptor concentration in fibromyalgia. Pain 2020, 161, 74–82. [Google Scholar] [CrossRef]
- Birdsall, T.C. 5-Hydroxytryptophan: A clinically-effective serotonin precursor. Altern. Med. Rev. A J. Clin. Ther. 1998, 3, 271–280. [Google Scholar]
- Shaw, K.A.; Turner, J.; Del Mar, C. Tryptophan and 5-hydroxytryptophan for depression. Cochrane Database Syst. Rev. 2001, 2002, Cd003198. [Google Scholar] [CrossRef] [PubMed]
- Ressler, K.J.; Nemeroff, C.B. Role of serotonergic and noradrenergic systems in the pathophysiology of depression and anxiety disorders. Depress. Anxiety 2000, 12, 2–19. [Google Scholar] [CrossRef] [PubMed]
- Möhler, H. The GABA system in anxiety and depression and its therapeutic potential. Neuropharmacology 2012, 62, 42–53. [Google Scholar] [CrossRef] [PubMed]
- Nemeroff, C.B. The role of GABA in the pathophysiology and treatment of anxiety disorders. Psychopharmacol Bull 2003, 37, 133–146. [Google Scholar]
- Cangiano, C.; Laviano, A.; Del Ben, M.; Preziosa, I.; Angelico, F.; Cascino, A.; Rossi-Fanelli, F. Effects of oral 5-hydroxy-tryptophan on energy intake and macronutrient selection in non-insulin dependent diabetic patients. Int. J. Obes. 1998, 22, 648–654. [Google Scholar] [CrossRef]
- Pourhamzeh, M.; Moravej, F.G.; Arabi, M.; Shahriari, E.; Mehrabi, S.; Ward, R.; Ahadi, R.; Joghataei, M.T. The Roles of Serotonin in Neuropsychiatric Disorders. Cell. Mol. Neurobiol. 2021, 42, 1671–1692. [Google Scholar] [CrossRef]
5-HTP | Control | p Value | |
---|---|---|---|
Mean ± SD | Mean ± SD | ||
Age (years) a | 66 ± 3 | 67 ± 4 | 0.4461 |
Gender (F/M) | 8/7 | 7/8 | |
Race (Chinese/Indian/Caucasian) | 15/0/0 | 12/1/2 | |
Education Level | |||
Secondary (%) | 27% | 40% | |
Tertiary (%) | 47% | 33% | |
University and above (%) | 27% | 27% | |
Medical Condition | |||
High blood pressure (%) | 13% | 27% | |
High blood cholesterol (%) | 20% | 60% | |
Osteoporosis (%) | 13% | 13% | |
Osteopenia (%) | 7% | 13% | |
Anthropometrics | |||
Weight (kg) a | 57.3 ± 11.3 | 61.5 ± 16.7 | 0.4280 |
BMI (kg/m2) b | 21.8 ± 2.6 | 23.8 ± 5.5 | 0.3245 |
Waist Circumference (cm) a | 80.9 ± 10.2 | 85.4 ± 14.3 | 0.3400 |
Blood pressure | |||
Systolic (mmHg) b | 120 ± 23 | 126 ± 19 | 0.1702 |
Diastolic (mmHg) a | 72 ± 14 | 79 ± 11 | 0.1426 |
5-HTP | Control | p Value | |||
---|---|---|---|---|---|
Mean ± SD | Mean ± SD | Time | Group × Time | ||
Total Score | Week 0 | 26.6 ± 1.4 | 26.4 ± 1.8 | 0.0007 | 0.9343 |
Week 4 | 26.4 ± 1.2 | 26.2 ± 1.9 | |||
Week 8 | 27.2 ± 1.9 | 27.5 ± 1.7 | |||
Week 12 | 27.6 ± 1.4 * | 27.3 ± 2.4 | |||
Visuospatial/ Executive | Week 0 | 4.6 ± 0.5 | 4.7 ± 0.6 | 0.7582 | 0.9363 |
Week 4 | 4.6 ± 0.6 | 4.7 ± 0.5 | |||
Week 8 | 4.7 ± 0.5 | 4.9 ± 0.4 | |||
Week 12 | 4.8 ± 0.6 | 4.9 ± 0.4 | |||
Naming | Week 0 | 2.4 ± 0.5 | 2.6 ± 0.5 | <0.0001 | 0.4317 |
Week 4 | 2.9 ± 0.4 | 3.0 ± 0.0 * | |||
Week 8 | 3.0 ± 0.0 * | 3.0 ± 0.0 * | |||
Week 12 | 3.0 ± 0.0 * | 3.0 ± 0.0 * | |||
Attention | Week 0 | 6.0 ± 0 | 5.7 ± 0.5 | 0.1448 | 0.0880 |
Week 4 | 5.9 ± 0.3 | 5.8 ± 0.4 | |||
Week 8 | 5.4 ± 1.1 | 5.7 ± 0.5 | |||
Week 12 | 5.9 ± 0.3 | 5.7 ± 0.5 | |||
Language | Week 0 | 1.4 ± 0.7 | 1.6 ± 1.1 | 0.0003 | 0.7277 |
Week 4 | 1.1 ± 0.6 | 1.3 ± 0.7 | |||
Week 8 | 1.9 ± 0.7 | 2.2 ± 0.7 | |||
Week 12 | 1.8 ± 0.8 | 1.7 ± 1.1 | |||
Abstraction | Week 0 | 1.6 ± 0.6 | 1.8 ± 0.4 | 0.0070 | 0.8541 |
Week 4 | 1.5 ± 0.5 | 1.6 ± 0.5 | |||
Week 8 | 1.9 ± 0.3 | 1.9 ± 0.3 | |||
Week 12 | 1.8 ± 0.4 | 1.8 ± 0.4 | |||
Delayed Recall | Week 0 | 4.6 ± 0.6 | 4.2 ± 0.9 | 0.2386 | 0.5258 |
Week 4 | 4.6 ± 0.6 | 3.9 ± 1.2 | |||
Week 8 | 4.3 ± 0.9 | 3.8 ± 1.5 | |||
Week 12 | 4.5 ± 0.8 | 4.3 ± 1.0 | |||
Orientation | Week 0 | 5.9 ± 0.3 | 5.8 ± 0.4 | 0.2026 | 0.2211 |
Week 4 | 5.7 ± 0.5 | 5.9 ± 0.4 | |||
Week 8 | 5.9 ± 0.3 | 5.9 ± 0.3 | |||
Week 12 | 5.9 ± 0.4 | 5.9 ± 0.3 |
5-HTP | Control | p Value | ||||||
---|---|---|---|---|---|---|---|---|
Week 0 | Week 12 | Week 12–0 Change | Week 0 | Week 12 | Week 12–0 Change | Time | Group × Time | |
Aβ40 (pg/mL) | 14.4 ± 23.4 | 13.8 ± 25.5 | −0.6 ± 3.2 | 9.8 ± 8.5 | 7.8 ± 8.8 | −2.0 ± 4.3 | 0.2871 | 0.5523 |
Aβ42 (pg/mL) | 7.5 ± 7.5 | 6.9 ± 7.2 | −0.6 ± 0.8 | 6.7 ± 9.1 | 4.9 ± 6.6 | −1.8 ± 2.6 | 0.0786 | 0.3634 |
Aβ42/Aβ40 | 1.2 ± 1.2 | 18.9 ± 41.0 | 17.7 ± 40.1 | 0.9 ± 0.8 | 7.2 ± 14.8 | 6.3 ± 15.0 | 0.2045 | 0.5302 |
GABA (ng/mL) | 2.7 ± 0.7 | 2.8 ± 0.8 | 0.1 ± 0.3 | 2.5 ± 0.8 | 2.6 ± 0.8 | 0.1 ± 0.5 | 0.1912 | 0.7411 |
Serotonin (ng/mL) | 173.7 ± 81.2 | 219.6 ± 73.1 * | 45.8 ± 64.8 a | 209.5 ± 87.0 | 185.4 ± 95.6 | −20.2 ± 75.3 b | 0.3432 | 0.0197 |
5-HTP | Control | p Value | |||
---|---|---|---|---|---|
Mean ± SD | Mean ± SD | Time | Group × Time | ||
GDS | Week 0 | 1.2 ± 1.7 | 1.4 ± 2.3 | 0.0564 | 0.3851 |
Week 4 | 0.8 ± 1.3 | 1.3 ± 2.1 | |||
Week 8 | 0.7 ± 1.2 * | 0.7 ± 1.2 | |||
Week 12 | 0.6 ± 1.4 | 1.3 ± 2.5 | |||
GAI | Week 0 | 1.7 ± 4.6 | 1.3 ± 2.1 | 0.5615 | 0.1676 |
Week 4 | 0.6 ± 1.5 | 2.1 ± 5.0 | |||
Week 8 | 0.6 ± 2.3 | 1.6 ± 4.9 | |||
Week 12 | 1.1 ± 3.9 | 0.9 ± 2.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Sutanto, C.N.; Xia, X.; Kim, J.E. The Impact of 5-Hydroxytryptophan Supplementation on Cognitive Function and Mood in Singapore Older Adults: A Randomized Controlled Trial. Nutrients 2025, 17, 2773. https://doi.org/10.3390/nu17172773
Li S, Sutanto CN, Xia X, Kim JE. The Impact of 5-Hydroxytryptophan Supplementation on Cognitive Function and Mood in Singapore Older Adults: A Randomized Controlled Trial. Nutrients. 2025; 17(17):2773. https://doi.org/10.3390/nu17172773
Chicago/Turabian StyleLi, Shuqi, Clarinda Nataria Sutanto, Xuejuan Xia, and Jung Eun Kim. 2025. "The Impact of 5-Hydroxytryptophan Supplementation on Cognitive Function and Mood in Singapore Older Adults: A Randomized Controlled Trial" Nutrients 17, no. 17: 2773. https://doi.org/10.3390/nu17172773
APA StyleLi, S., Sutanto, C. N., Xia, X., & Kim, J. E. (2025). The Impact of 5-Hydroxytryptophan Supplementation on Cognitive Function and Mood in Singapore Older Adults: A Randomized Controlled Trial. Nutrients, 17(17), 2773. https://doi.org/10.3390/nu17172773