Associations Between Eating Windows and Health Outcomes in Children and Adolescents from the ALSPAC Cohort
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample
2.2. Dietary Assessment
2.3. Exposure Variable
Eating Window
2.4. Outcome Variables
2.4.1. Body Composition
2.4.2. Blood Pressure
2.4.3. Blood Samples
2.5. Confounding Variables
2.6. Statistical Analysis
- Model 1—Mean EW and each outcome variable, adjusted for age and sex.
- Model 2—Additionally adjusted for maternal and household factors: mother’s age, mother’s BMI, mother’s education level, and household social class.
- Model 3—Additionally adjusted for diet quality scores and energy intake.
- Model 1—Mean EW and each outcome variable, adjusted for age and sex.
- Model 2—Additionally adjusted for pubertal status.
- Model 3—Additionally adjusted for maternal and household factors: mother’s age, mother’s BMI, mother’s education level, and household social class.
- Model 4—Additionally adjusted for diet quality scores and energy intake.
2.7. Sensitivity Analysis
3. Results
3.1. Sample Characteristics
3.2. Eating Windows
3.2.1. Age 7
3.2.2. Age 13
3.3. Cross-Sectional Associations
3.3.1. Age 7
3.3.2. Age 13
3.4. Longitudinal Associations
3.4.1. Age 7 to 24
3.4.2. Age 13 to 24
3.5. Sensitivity Analyses
3.5.1. Complete Confounding Data
3.5.2. Complete (3-Day) Diet Diaries
3.5.3. Eating Windows with at Least One Week and One Weekend Day
4. Discussion
4.1. Eating Windows
4.2. Cross-Sectional and Longitudinal Associations
4.3. Potential Mechanisms for Associations Between EW and Outcomes
4.4. Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ALSPAC | Avon Longitudinal Study of Parents and Children |
β | beta coefficient |
BMIz | body mass index z-score |
CI | confidence interval |
CYP | children and young people |
DAG | directed acyclic graph |
DBP | diastolic blood pressure |
DXA | dual-energy X-ray absorptiometry |
EW | eating window |
FM | fat mass |
HDL-C | high-density lipoprotein cholesterol |
IQR | interquartile range |
LDL-C | low-density lipoprotein cholesterol |
N | number |
NOW | normal weight obesity |
SBP | systolic blood pressure |
SD | standard deviation |
TC | total cholesterol |
TLE | time-limited eating |
WC | waist circumference |
WtHR | waist to height ratio |
YP | young people |
References
- Flanagan, A.; Bechtold, D.A.; Pot, G.K.; Johnston, J.D. Chrono-nutrition: From molecular and neuronal mechanisms to human epidemiology and timed feeding patterns. J. Neurochem. 2021, 157, 53–72. [Google Scholar] [CrossRef] [PubMed]
- Reytor-González, C.; Simancas-Racines, D.; Román-Galeano, N.M.; Annunziata, G.; Galasso, M.; Zambrano-Villacres, R.; Verde, L.; Muscogiuri, G.; Frias-Toral, E.; Barrea, L. Chrononutrition and Energy Balance: How Meal Timing and Circadian Rhythms Shape Weight Regulation and Metabolic Health. Nutrients 2025, 17, 2135. [Google Scholar] [CrossRef] [PubMed]
- Van Cauter, E.; Polonsky, K.S.; Scheen, A.J. Roles of Circadian Rhythmicity and Sleep in Human Glucose Regulation. Endocr. Rev. 1997, 18, 716–738. [Google Scholar] [CrossRef] [PubMed]
- Richter, J.; Herzog, N.; Janka, S.; Baumann, T.; Kistenmacher, A.; Oltmanns, K.M. Twice as High Diet-Induced Thermogenesis After Breakfast vs Dinner On High-Calorie as Well as Low-Calorie Meals. J. Clin. Endocrinol. Metab. 2020, 105, e211–e221. [Google Scholar] [CrossRef]
- Wilkinson, M.J.; Manoogian, E.N.C.; Zadourian, A.; Lo, H.; Fakhouri, S.; Shoghi, A.; Wang, X.; Fleischer, J.G.; Navlakha, S.; Panda, S.; et al. Ten-Hour Time-Restricted Eating Reduces Weight, Blood Pressure, and Atherogenic Lipids in Patients with Metabolic Syndrome. Cell Metab. 2020, 31, 92–104.e105. [Google Scholar] [CrossRef]
- Mishra, S.; Persons, P.A.; Lorenzo, A.M.; Chaliki, S.S.; Bersoux, S. Time-Restricted Eating and Its Metabolic Benefits. J. Clin. Med. 2023, 12, 7007. [Google Scholar] [CrossRef]
- Anton, S.D.; Moehl, K.; Donahoo, W.T.; Marosi, K.; Lee, S.A.; Mainous, A.G., 3rd; Leeuwenburgh, C.; Mattson, M.P. Flipping the Metabolic Switch: Understanding and Applying the Health Benefits of Fasting. Obesity 2018, 26, 254–268. [Google Scholar] [CrossRef]
- Gill, S.; Panda, S. A Smartphone App Reveals Erratic Diurnal Eating Patterns in Humans That Can Be Modulated for Health Benefits. Cell Metab. 2015, 22, 789–798. [Google Scholar] [CrossRef]
- Manoogian, E.N.C.; Zadourian, A.; Lo, H.C.; Gutierrez, N.R.; Shoghi, A.; Rosander, A.; Pazargadi, A.; Ormiston, C.K.; Wang, X.; Sui, J.; et al. Feasibility of time-restricted eating and impacts on cardiometabolic health in 24-h shift workers: The Healthy Heroes randomized control trial. Cell Metab. 2022, 34, 1442–1456.e1447. [Google Scholar] [CrossRef]
- Waldman, H.S.; Witt, C.R.; Grozier, C.D.; McAllister, M.J. A self-selected 16:8 time-restricted eating quasi-experimental intervention improves various markers of cardiovascular health in middle-age male cyclists. Nutrition 2023, 113, 112086. [Google Scholar] [CrossRef]
- Townley, J.; Northstone, K.; Hinton, E.C.; Hamilton-Shield, J.; Searle, A.; Leary, S. Daily Duration of Eating for Children and Adolescents: A Systematic Review and Meta-Analysis. Nutrients 2024, 16, 993. [Google Scholar] [CrossRef]
- Hegedus, E.; Vu, M.H.; Salvy, S.J.; Bakhsh, J.; Goran, M.I.; Raymond, J.K.; Espinoza, J.C.; Vidmar, A.P. Randomized Controlled Feasibility Trial of Late 8-Hour Time-Restricted Eating for Adolescents with Type 2 Diabetes. J. Acad. Nutr. Diet. 2024, 124, 1014–1028. [Google Scholar] [CrossRef] [PubMed]
- Vidmar, A.P.; Naguib, M.; Raymond, J.K.; Salvy, S.J.; Hegedus, E.; Wee, C.P.; Goran, M.I. Time-Limited Eating and Continuous Glucose Monitoring in Adolescents with Obesity: A Pilot Study. Nutrients 2021, 13, 3697. [Google Scholar] [CrossRef] [PubMed]
- Adafer, R.; Messaadi, W.; Meddahi, M.; Patey, A.; Haderbache, A.; Bayen, S.; Messaadi, N. Food Timing, Circadian Rhythm and Chrononutrition: A Systematic Review of Time-Restricted Eating’s Effects on Human Health. Nutrients 2020, 12, 3770. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.; Du, T.; Zhuang, X.; Ma, G. Time-restricted eating improves health because of energy deficit and circadian rhythm: A systematic review and meta-analysis. iScience 2024, 27, 109000. [Google Scholar] [CrossRef]
- Adan, A.; Archer, S.N.; Hidalgo, M.P.; Di Milia, L.; Natale, V.; Randler, C. Circadian Typology: A Comprehensive Review. Chronobiol. Int. 2012, 29, 1153–1175. [Google Scholar] [CrossRef]
- Boyd, A.; Golding, J.; Macleod, J.; Lawlor, D.A.; Fraser, A.; Henderson, J.; Molloy, L.; Ness, A.; Ring, S.; Davey Smith, G. Cohort Profile: The ‘children of the 90s’—The index offspring of the Avon Longitudinal Study of Parents and Children. Int. J. Epidemiol. 2013, 42, 111–127. [Google Scholar] [CrossRef]
- Fraser, A.; Macdonald-Wallis, C.; Tilling, K.; Boyd, A.; Golding, J.; Davey Smith, G.; Henderson, J.; Macleod, J.; Molloy, L.; Ness, A.; et al. Cohort Profile: The Avon Longitudinal Study of Parents and Children: ALSPAC mothers cohort. Int. J. Epidemiol. 2013, 42, 97–110. [Google Scholar] [CrossRef]
- Northstone, K.; Lewcock, M.; Groom, A.; Boyd, A.; Macleod, J.; Timpson, N.; Wells, N. The Avon Longitudinal Study of Parents and Children (ALSPAC): An update on the enrolled sample of index children in 2019. Wellcome Open Res. 2019, 4, 51. [Google Scholar] [CrossRef]
- Harris, P.A.; Taylor, R.; Thielke, R.; Payne, J.; Gonzalez, N.; Conde, J.G. Research electronic data capture (REDCap)—A metadata-driven methodology and workflow process for providing translational research informatics support. J. Biomed. Inform. 2009, 42, 377–381. [Google Scholar] [CrossRef]
- Emmett, P. Dietary assessment in the Avon Longitudinal Study of Parents and Children. Eur. J. Clin. Nutr. 2009, 63 (Suppl. 1), S38–S44. [Google Scholar] [CrossRef]
- Price, G.M.; Paul, A.A.; Key, F.B.; Harter, A.C.; Cole, T.J.; Day, K.C.; Wadsworth, M.E.J. Measurement of diet in a large national survey: Comparison of computerized and manual coding of records in household measures. J. Hum. Nutr. Diet. 1995, 8, 417–428. [Google Scholar] [CrossRef]
- Holland, B.; Welch, A.; Unwin, A.; Buss, D.; Paul, A.; Southgate, D. McCance & Widdowson’s the Composition of Foods, 5th ed.; The Stationery Office: London, UK, 1991. [Google Scholar]
- Spaeth, A.M.; Hawley, N.L.; Raynor, H.A.; Jelalian, E.; Greer, A.; Crouter, S.E.; Coffman, D.L.; Carskadon, M.A.; Owens, J.A.; Wing, R.R.; et al. Sleep, energy balance, and meal timing in school-aged children. Sleep Med. 2019, 60, 139–144. [Google Scholar] [CrossRef]
- Roßbach, S.; Diederichs, T.; Bolzenius, K.; Herder, C.; Buyken, A.E.; Alexy, U. Age and time trends in eating frequency and duration of nightly fasting of German children and adolescents. Eur. J. Nutr. 2017, 56, 2507–2517. [Google Scholar] [CrossRef]
- Murakami, K.; Livingstone, M.B. Associations of eating frequency with adiposity measures, blood lipid profiles and blood pressure in British children and adolescents. Br. J. Nutr. 2014, 111, 2176–2183. [Google Scholar] [CrossRef] [PubMed]
- Cole, T.J.; Freeman, J.V.; Preece, M.A. Body mass index reference curves for the UK, 1990. Arch. Dis. Child. 1995, 73, 25–29. [Google Scholar] [CrossRef] [PubMed]
- De Lorenzo, A.; Martinoli, R.; Vaia, F.; Di Renzo, L. Normal weight obese (NWO) women: An evaluation of a candidate new syndrome. Nutr. Metab. Cardiovasc. Dis. 2006, 16, 513–523. [Google Scholar] [CrossRef] [PubMed]
- García-Hermoso, A.; Agostinis-Sobrinho, C.; Camargo-Villalba, G.E.; González-Jiménez, N.M.; Izquierdo, M.; Correa-Bautista, J.E.; Ramírez-Vélez, R. Normal-Weight Obesity Is Associated with Poorer Cardiometabolic Profile and Lower Physical Fitness Levels in Children and Adolescents. Nutrients 2020, 12, 1171. [Google Scholar] [CrossRef]
- Wiklund, P.; Törmäkangas, T.; Shi, Y.; Wu, N.; Vainionpää, A.; Alen, M.; Cheng, S. Normal-weight obesity and cardiometabolic risk: A 7-year longitudinal study in girls from prepuberty to early adulthood. Obesity 2017, 25, 1077–1082. [Google Scholar] [CrossRef]
- Cota, B.C.; Suhett, L.G.; Leite, N.N.; Pereira, P.F.; Ribeiro, S.A.V.; Franceschini, S. Cardiometabolic risk and health behaviours in adolescents with normal-weight obesity: A systematic review. Public Health Nutr. 2021, 24, 870–881. [Google Scholar] [CrossRef]
- National Institute for Health and Care Excellence. Obesity: Identification, Assessment and Management; Clinical Guideline [CG189]; National Institute for Health and Care Excellence: London, UK, 2014. [Google Scholar]
- McCarthy, H.D.; Cole, T.J.; Fry, T.; Jebb, S.A.; Prentice, A.M. Body fat reference curves for children. Int. J. Obes. 2006, 30, 598–602. [Google Scholar] [CrossRef]
- Frysz, M.; Howe, L.; Tobias, J.; Paternoster, L. Using SITAR (SuperImposition by Translation and Rotation) to estimate age at peak height velocity in Avon Longitudinal Study of Parents and Children [version 2; peer review: 2 approved]. Wellcome Open Res. 2018, 3, 90. [Google Scholar] [CrossRef]
- Buckland, G.; Taylor, C.M.; Emmett, P.M.; Johnson, L.; Northstone, K. Prospective association between a Mediterranean-style dietary score in childhood and cardiometabolic risk in young adults from the ALSPAC birth cohort. Eur. J. Nutr. 2022, 61, 737–752. [Google Scholar] [CrossRef]
- Buckland, G.; Northstone, K.; Emmett, P.M.; Taylor, C.M. The inflammatory potential of the diet in childhood is associated with cardiometabolic risk in adolescence/young adulthood in the ALSPAC birth cohort. Eur. J. Nutr. 2022, 61, 3471–3486. [Google Scholar] [CrossRef]
- Sterne, J.A.C.; Davey Smith, G. Sifting the evidence—What’s wrong with significance tests? Phys. Ther. 2001, 81, 1464–1469. [Google Scholar] [CrossRef]
- Roßbach, S.; Diederichs, T.; Nöthlings, U.; Buyken, A.E.; Alexy, U. Relevance of chronotype for eating patterns in adolescents. Chronobiol. Int. 2018, 35, 336–347. [Google Scholar] [CrossRef]
- Schultz, J.; Moraeus, L.; Lindroos, A.K.; Warensjö Lemming, E. Temporal meal patterns in the Swedish population and associations with socio-demographic variables and nutrient intakes: A cross-sectional study. Br. J. Nutr. 2025, 133, 1363–1373. [Google Scholar] [CrossRef] [PubMed]
- Berendsen, M.; Boss, M.; Smits, M.; Pot, G.K. Chrono-Nutrition and Diet Quality in Adolescents with Delayed Sleep-Wake Phase Disorder. Nutrients 2020, 12, 539. [Google Scholar] [CrossRef] [PubMed]
- Tucker, J.M.; Siegel, R.; Murray, P.J.; Han, J.C.; Boyer, K.; Reed, N.; Allenby, T.; Novick, M. Acceptability of Time-Limited Eating in Pediatric Weight Management. Front. Endocrinol. 2022, 13, 811489. [Google Scholar] [CrossRef]
- Salas-González, M.D.; Loria-Kohen, V.; Aparicio, A.; Bermejo, L.M.; Cuadrado-Soto, E.; González-Rodríguez, L.G.; Lozano-Estevan, M.D.C.; Peral-Suárez, Á.; Cervera-Muñoz, A.; Ortega, R.M.; et al. Meal timing, nutritional status and diet quality in a group of Spanish children. Pediatr. Obes. 2025, 20, e70006. [Google Scholar] [CrossRef]
- Moon, S.; Kang, J.; Kim, S.H.; Chung, H.S.; Kim, Y.J.; Yu, J.M.; Cho, S.T.; Oh, C.-M.; Kim, T. Beneficial Effects of Time-Restricted Eating on Metabolic Diseases: A Systemic Review and Meta-Analysis. Nutrients 2020, 12, 1267. [Google Scholar] [CrossRef]
- Bakhsh, J.A.; Vu, M.H.; Salvy, S.J.; Goran, M.I.; Vidmar, A.P. Effects of 8-h time-restricted eating on energy intake, dietary composition and quality in adolescents with obesity. Pediatr. Obes. 2024, 19, e13165. [Google Scholar] [CrossRef]
- Moliterno, P.; Donhauser, V.; Widhalm, K. Daily Eating Window and Obesity Markers in a Sample of Schoolchildren from Vienna: Insights from the EDDY Study. Nutrients 2025, 17, 1661. [Google Scholar] [CrossRef] [PubMed]
- Borisenkov, M.F.; Tserne, T.A.; Popov, S.V.; Smirnov, V.V.; Dorogina, O.I.; Pecherkina, A.A.; Symaniuk, E.E. Association of Chrononutrition Indices with Anthropometric Parameters, Academic Performance, and Psychoemotional State of Adolescents: A Cross-Sectional Study. Nutrients 2023, 15, 4521. [Google Scholar] [CrossRef] [PubMed]
- Intemann, T.; Bogl, L.H.; Hunsberger, M.; Lauria, F.; De Henauw, S.; Molnár, D.; Moreno, L.A.; Tornaritis, M.; Veidebaum, T.; Ahrens, W.; et al. A Late Meal Timing Pattern Is Associated with Insulin Resistance in European Children and Adolescents. Pediatr. Diabetes 2024, 2024, 6623357. [Google Scholar] [CrossRef] [PubMed]
- Monzani, A.; Ricotti, R.; Caputo, M.; Solito, A.; Archero, F.; Bellone, S.; Prodam, F. A Systematic Review of the Association of Skipping Breakfast with Weight and Cardiometabolic Risk Factors in Children and Adolescents. What Should We Better Investigate in the Future? Nutrients 2019, 11, 387. [Google Scholar] [CrossRef]
- Ardeshirlarijani, E.; Namazi, N.; Jabbari, M.; Zeinali, M.; Gerami, H.; Jalili, R.B.; Larijani, B.; Azadbakht, L. The link between breakfast skipping and overweigh/obesity in children and adolescents: A meta-analysis of observational studies. J. Diabetes Metab. Disord 2019, 18, 657–664. [Google Scholar] [CrossRef]
- Giménez-Legarre, N.; Miguel-Berges, M.L.; Flores-Barrantes, P.; Santaliestra-Pasías, A.M.; Moreno, L.A. Breakfast Characteristics and Its Association with Daily Micronutrients Intake in Children and Adolescents-A Systematic Review and Meta-Analysis. Nutrients 2020, 12, 3201. [Google Scholar] [CrossRef]
Age 7 (N = 4835) | Age 13 (N = 4719) | Age 24 (N = 2568) | |
---|---|---|---|
Age (years) | 7.5 (0.3) | 13.8 (0.2) | 24.0 (0.8) |
Sex | |||
Female | 2607 (54%) | 2469 (52%) | 1622 (63%) |
Male | 2228 (46%) | 2250 (48%) | 946 (37%) |
Ethnicity | |||
White | 4147 (96.4%) | 4163 (96.4%) | 2295 (96.3%) |
Non-white | 153 (3.6%) | 155 (3.6%) | 87 (3.7%) |
BMI z score | 0.1 (1.0) | 0.3 (1.1) | - |
BMI (kg/m2) | - | - | 23.6 (21.4, 26.9) |
WC (cm) | 55.5 (53.0, 58.7) | 70.0 (65.7, 76.0) | 78.7 (72.1, 87.5) |
WtHR | 0.44 (0.42, 0.46) | 0.43 (0.40, 0.46) | 0.46 (0.42, 0.50) |
FM (%) | - | 24.4 (10.2) | 31.2 (9.0) |
NWO | |||
Yes | - | 1096 (23.6%) | 821 (33.2%) |
No | - | 3546 (76.4%) | 1652 (66.8%) |
SBP (mmHg) | 99.1 (9.2) | 106.6 (9.4) | 116.0 (11.5) |
DBP (mmHg) | 56.5 (6.7) | 57.6 (6.0) | 67.0 (8.1) |
TC (mmol/L) | - | - | 4.4 (0.8) |
HDL-C (mmol/L) | - | - | 1.6 (0.4) |
LDL-C (mmol/L) | - | - | 2.4 (0.8) |
Triglycerides (mmol/L) | - | - | 0.8 (0.7, 1.1) |
FG (mmol/L) | - | - | 5.3 (0.6) |
Age 7 | Age 13 | |||
---|---|---|---|---|
N | Time | N | Time | |
All diaries—first | 4851 | 8.12 (0.6) | 4741 | 8.68 (1.3) |
All diaries—last | 4851 | 19.05 (1.0) | 4741 | 19.79 (1.4) |
Weekday—first | 4793 | 7.92 (0.6) | 4426 | 8.34 (1.4) |
Weekday—last | 4793 | 19.03 (1.1) | 4426 | 19.79 (1.5) |
Weekend—first | 3742 | 8.60 (0.9) | 2669 | 8.68 (1.3) |
Weekend—last | 3742 | 19.08 (1.2) | 2669 | 19.79 (1.4) |
N | Hours | N | Hours | |
Eating window (all days) | 4848 | 10.9 (1.1) | 4741 | 11.1 (1.8) |
Weekday eating window | 4793 | 11.1 (1.2) | 4426 | 11.5 (1.9) |
Weekend eating window | 3742 | 10.5 (1.4) | 2669 | 10.3 (2.0) |
Model 1 | Model 2 | Model 3 | |||||||
---|---|---|---|---|---|---|---|---|---|
β | 95% CI | P | β | 95% CI | P | β | 95% CI | P | |
BMIz | 0.027 | −0.001, 0.055 | 0.06 | 0.041 | 0.011, 0.071 | 0.01 | 0.012 | −0.019, 0.043 | 0.45 |
Log WtHR | 0.001 | −0.001, 0.003 | 0.44 | 0.002 | −0.000, 0.004 | 0.10 | 0.002 | −0.001, 0.004 | 0.19 |
Log WC | 0.001 | −0.001, 0.003 | 0.36 | 0.002 | −0.000, 0.005 | 0.09 | −0.000 | −0.003, 0.002 | 0.87 |
SBP (mmHg) | 0.055 | −0.191, 0.301 | 0.66 | 0.041 | −0.235, 0.317 | 0.77 | −0.218 | −0.501, 0.065 | 0.13 |
DBP (mmHg) | 0.003 | −0.175, 0.181 | 0.97 | −0.064 | −0.265, 0.136 | 0.53 | −0.151 | −0.358, 0.055 | 0.15 |
OR | 95% CI | P | OR | 95% CI | P | OR | 95% CI | P | |
WtHR | |||||||||
Healthy | Ref. | Ref. | Ref. | ||||||
High | 1.04 | 0.94, 1.15 | 0.46 | 1.07 | 0.95, 1.20 | 0.28 | 1.09 | 0.97, 1.24 | 0.15 |
BMIz | |||||||||
Healthy | Ref | Ref. | Ref. | ||||||
Overweight | 1.06 | 0.97, 1.15 | 0.19 | 1.13 | 1.02, 1.24 | 0.02 | 1.09 | 0.98, 1.21 | 0.10 |
Model 1 | Model 2 | Model 3 | Model 4 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
β | 95% CI | P | β | 95% CI | P | β | 95% CI | P | β | 95% CI | P | |
BMIz | −0.028 | −0.046, −0.010 | 0.003 | −0.023 | −0.042, −0.004 | 0.02 | −0.026 | −0.046, −0.006 | 0.01 | −0.018 | −0.039, 0.002 | 0.08 |
Log WtHR | −0.003 | −0.005, −0.001 | <0.001 | −0.003 | −0.005, −0.001 | 0.005 | −0.003 | −0.005, −0.001 | 0.004 | −0.001 | −0.004, 0.001 | 0.17 |
Log WC | −0.003 | −0.005, −0.001 | 0.002 | −0.002 | −0.005, −0.000 | 0.02 | −0.003 | −0.005, −0.001 | 0.007 | −0.002 | −0.004, −0.000 | 0.04 |
FM (%) | −0.404 | −0.547, −0.261 | <0.001 | −0.375 | −0.529, −0.222 | <0.001 | −0.447 | −0.607, −0.286 | <0.001 | −0.253 | −0.417, −0.089 | 0.002 |
SBP (mmHg) | −0.120 | −0.279, 0.038 | 0.14 | −0.136 | −0.305, 0.034 | 0.12 | −0.102 | −0.290, 0.086 | 0.29 | −0.179 | −0.374, 0.016 | 0.07 |
DBP (mmHg) | −0.136 | −0.237, −0.035 | 0.008 | −0.172 | −0.282, −0.061 | 0.002 | −0.132 | −0.254, −0.009 | 0.04 | −0.120 | −0.247, 0.007 | 0.06 |
OR | 95% CI | P | OR | 95% CI | P | OR | 95% CI | P | OR | 95% CI | P | |
WtHR | ||||||||||||
Healthy | Ref. | Ref. | Ref. | Ref. | ||||||||
High | 0.92 | 0.88, 0.97 | <0.001 | 0.93 | 0.89, 0.98 | 0.01 | 0.93 | 0.88, 0.99 | 0.02 | 0.97 | 0.91, 1.03 | 0.36 |
BMIz | ||||||||||||
Healthy | Ref. | Ref. | Ref. | |||||||||
Overweight | 0.96 | 0.92, 0.99 | 0.03 | 0.96 | 0.92, 1.01 | 0.12 | 0.96 | 0.91, 1.01 | 0.10 | 0.98 | 0.92, 1.03 | 0.43 |
NWO | ||||||||||||
No | Ref. | Ref. | Ref. | Ref. | ||||||||
Yes | 0.96 | 0.93, 1.00 | 0.04 | 0.96 | 0.92, 1.00 | 0.08 | 0.94 | 0.90, 0.99 | 0.01 | 0.98 | 0.93, 1.03 | 0.41 |
Model 1 | Model 2 | Model 3 | |||||||
---|---|---|---|---|---|---|---|---|---|
β | 95% CI | P | β | 95% CI | P | β | 95% CI | P | |
Log BMI | −0.002 | −0.009, 0.005 | 0.62 | 0.002 | −0.005, 0.009 | 0.59 | −0.003 | −0.010, 0.005 | 0.48 |
Log WtHR | −0.002 | −0.008, 0.003 | 0.36 | −0.000 | −0.006, 0.005 | 0.96 | −0.002 | −0.007, 0.004 | 0.49 |
Log WC | −0.003 | −0.008, 0.003 | 0.33 | −0.000 | −0.006, 0.005 | 0.90 | −0.004 | −0.009, 0.002 | 0.20 |
FM (%) | −0.208 | −0.493, 0.077 | 0.15 | −0.086 | −0.386, 0.214 | 0.57 | −0.186 | −0.492, 0.121 | 0.23 |
SBP (mmHg) | −0.243 | −0.620, 0.134 | 0.21 | −0.159 | −0.580, 0.262 | 0.46 | −0.368 | −0.799, 0.062 | 0.09 |
DBP (mmHg) | −0.113 | −0.412, 0.186 | 0.46 | −0.062 | −0.395, 0.270 | 0.71 | −0.129 | −0.471, 0.212 | 0.46 |
TC (mmol/L) | −0.038 | −0.072,−0.004 | 0.03 | −0.029 | −0.066, 0.008 | 0.13 | −0.025 | −0.064, 0.013 | 0.19 |
HDL-C (mmol/L) | 0.002 | −0.014, 0.019 | 0.81 | −0.001 | −0.019, 0.017 | 0.94 | 0.001 | −0.018, 0.020 | 0.92 |
LDL-C (mmol/L) | −0.027 | −0.057, 0.004 | 0.09 | −0.020 | −0.054, 0.013 | 0.24 | −0.019 | −0.053, 0.016 | 0.28 |
Log trig | −0.022 | −0.039,−0.005 | 0.01 | −0.013 | −0.032, 0.005 | 0.17 | −0.013 | −0.032, 0.007 | 0.20 |
FG (mmol/L) | −0.003 | −0.028, 0.021 | 0.78 | 0.001 | −0.027, 0.030 | 0.92 | 0.006 | −0.023, 0.035 | 0.67 |
OR | 95% CI | P | OR | 95% CI | P | OR | 95% CI | P | |
WtHR | |||||||||
Healthy | Ref. | Ref. | Ref. | ||||||
High | 0.96 | 0.88, 1.04 | 0.31 | 0.99 | 0.90, 1.09 | 0.88 | 0.96 | 0.87, 1.07 | 0.49 |
BMI | |||||||||
Healthy | Ref. | Ref. | Ref. | ||||||
Overweight | 0.95 | 0.88, 1.02 | 0.18 | 0.99 | 0.90, 1.08 | 0.79 | 0.94 | 0.86, 1.04 | 0.22 |
NWO | |||||||||
No | Ref. | Ref. | Ref. | ||||||
Yes | 1.04 | 0.96, 1.12 | 0.38 | 1.01 | 0.93, 1.11 | 0.76 | 1.04 | 0.95, 1.14 | 0.45 |
Model 1 | Model 2 | Model 3 | |||||||
---|---|---|---|---|---|---|---|---|---|
β | 95% CI | P | β | 95% CI | P | β | 95% CI | P | |
Log BMI | −0.004 | −0.008, −0.000 | 0.05 | −0.004 | −0.008, 0.000 | 0.08 | −0.003 | −0.007, 0.001 | 0.15 |
Log WtHR | −0.003 | −0.006, 0.000 | 0.09 | −0.002 | −0.005, 0.001 | 0.16 | −0.001 | −0.004, 0.002 | 0.52 |
Log WC | −0.002 | −0.005, 0.001 | 0.16 | −0.002 | −0.005, 0.001 | 0.25 | −0.001 | −0.005, 0.002 | 0.41 |
FM (%) | −0.299 | −0.471, −0.127 | <0.001 | −0.307 | −0.487, −0.127 | <0.001 | −0.192 | −0.377, −0.007 | 0.04 |
SBP (mmHg) | −0.008 | −0.233, 0.217 | 0.95 | 0.119 | −0.130, 0.368 | 0.35 | 0.104 | −0.153, 0.361 | 0.43 |
DBP (mmHg) | −0.056 | −0.233, 0.121 | 0.53 | 0.017 | −0.178, 0.212 | 0.87 | 0.068 | −0.133, 0.270 | 0.51 |
TC (mmol/L) | −0.008 | −0.029, 0.012 | 0.43 | −0.004 | −0.027, 0.018 | 0.70 | −0.003 | −0.026, 0.021 | 0.83 |
HDL-C (mmol/L) | 0.005 | −0.005, 0.015 | 0.29 | 0.005 | −0.006, 0.016 | 0.37 | 0.004 | −0.007, 0.015 | 0.47 |
LDL-C (mmol/L) | −0.008 | −0.026, 0.011 | 0.42 | −0.005 | −0.026, 0.015 | 0.63 | −0.003 | −0.024, 0.018 | 0.80 |
Log trig | −0.009 | −0.020, 0.001 | 0.08 | −0.008 | −0.020, 0.004 | 0.18 | −0.007 | −0.019, 0.005 | 0.28 |
FG (mmol/L) | −0.016 | −0.034, 0.002 | 0.08 | 0.001 | −0.016, 0.017 | 0.94 | −0.003 | −0.020, 0.013 | 0.70 |
OR | 95% CI | P | OR | 95% C | P | OR | 95% CI | P | |
WtHR | |||||||||
Healthy | Ref. | Ref. | Ref. | ||||||
High | 0.98 | 0.94, 1.04 | 0.55 | 0.98 | 0.92, 1.04 | 0.50 | 1.00 | 0.94, 1.06 | 0.98 |
BMI | |||||||||
Healthy | Ref. | Ref. | Ref. | ||||||
Overweight | 0.97 | 0.93, 1.02 | 0.27 | 0.97 | 0.92, 1.02 | 0.28 | 0.98 | 0.93, 1.04 | 0.50 |
NWO | |||||||||
No | Ref. | Ref. | Ref. | ||||||
Yes | 0.97 | 0.92, 1.02 | 0.22 | 0.98 | 0.92, 1.03 | 0.37 | 0.98 | 0.93, 1.04 | 0.58 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Townley, J.; Leary, S.; Hamilton-Shield, J.; de Lange, M.; Hinton, E.C.; Northstone, K. Associations Between Eating Windows and Health Outcomes in Children and Adolescents from the ALSPAC Cohort. Nutrients 2025, 17, 2856. https://doi.org/10.3390/nu17172856
Townley J, Leary S, Hamilton-Shield J, de Lange M, Hinton EC, Northstone K. Associations Between Eating Windows and Health Outcomes in Children and Adolescents from the ALSPAC Cohort. Nutrients. 2025; 17(17):2856. https://doi.org/10.3390/nu17172856
Chicago/Turabian StyleTownley, Jill, Sam Leary, Julian Hamilton-Shield, Melanie de Lange, Elanor C. Hinton, and Kate Northstone. 2025. "Associations Between Eating Windows and Health Outcomes in Children and Adolescents from the ALSPAC Cohort" Nutrients 17, no. 17: 2856. https://doi.org/10.3390/nu17172856
APA StyleTownley, J., Leary, S., Hamilton-Shield, J., de Lange, M., Hinton, E. C., & Northstone, K. (2025). Associations Between Eating Windows and Health Outcomes in Children and Adolescents from the ALSPAC Cohort. Nutrients, 17(17), 2856. https://doi.org/10.3390/nu17172856