Combined Effects of Spirulina Liquid Extract and Endurance Training on Aerobic Performance and Muscle Metabolism Adaptation in Wistar Rats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals, Supplementation, and Diets
2.2. Endurance Training Protocol
2.3. Glucose Tolerance Test
2.4. Blood and Muscle Sampling
2.5. Plasma Parameter Analysis
2.6. Muscle Malondialdehyde Analyses
2.7. Muscle RNA Extraction and Gene Expression
2.8. Statistical Analysis
3. Results
3.1. Nutritional Monitoring
3.2. Bodyweight Evolution
3.3. Muscle Weights and Tibia Length
3.4. Glucose Tolerance Test
3.5. Maximal Aerobic Speed
3.6. Plasma Lipid Profile, Glucose, Insulin Concentrations, and Interleukin-6 Levels
3.7. Assessment of Lipid Peroxidation in Muscle: Malondialdehyde Content
3.8. Gene Expression
3.8.1. Gene Biomarker Modulation in Soleus and EDL Muscles by Spirulina Liquid Extract and Exercise Training
3.8.2. Effect of Spirulina Liquid Extract in Endurance Training Condition
4. Discussion
4.1. Redox Status Genes in the Soleus Muscle
4.2. Mitochondrial Biogenesis Genes in the Soleus Muscle
4.3. Glycogen Metabolism and Storage Genes in the Soleus Muscle
4.4. Fatty Acid Metabolism Genes in the Soleus Muscle
4.5. Redox Status Genes in the EDL Muscle
4.6. Mitochondrial Biogenesis Pathways Genes in the EDL Muscle
4.7. Fatty Acids and Glycogen Metabolism Genes in the EDL Muscle
4.8. Genes Associated with the Effects of SLE Supplementation Under Endurance Training Conditions in the Soleus Muscle
4.9. Genes Associated with the Effects of SLE Supplementation Under Endurance Training Conditions in the EDL Muscle
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Adams, V.; Linke, A. Impact of Exercise Training on Cardiovascular Disease and Risk. Biochim. Biophys. Acta (BBA) Mol. Basis Dis. 2019, 1865, 728–734. [Google Scholar] [CrossRef] [PubMed]
- Petridou, A.; Siopi, A.; Mougios, V. Exercise in the Management of Obesity. Metabolism 2019, 92, 163–169. [Google Scholar] [CrossRef]
- Kawamura, T.; Muraoka, I. Exercise-Induced Oxidative Stress and the Effects of Antioxidant Intake from a Physiological Viewpoint. Antioxidants 2018, 7, 119. [Google Scholar] [CrossRef]
- Spriet, L.L. Performance Nutrition for Athletes. Sports Med. 2019, 49, 1–2. [Google Scholar] [CrossRef] [PubMed]
- Alfieri, A.; D’Angelo, S.; Mazzeo, F. Role of Nutritional Supplements in Sport, Exercise and Health. Nutrients 2023, 15, 4429. [Google Scholar] [CrossRef] [PubMed]
- Ranchordas, M.K.; Rogerson, D.; Soltani, H.; Costello, J.T. Antioxidants for Preventing and Reducing Muscle Soreness after Exercise. Cochrane Database Syst. Rev. 2017, 2017, CD009789. [Google Scholar] [CrossRef] [PubMed]
- Knapik, J.J.; Steelman, R.A.; Hoedebecke, S.S.; Austin, K.G.; Farina, E.K.; Lieberman, H.R. Prevalence of Dietary Supplement Use by Athletes: Systematic Review and Meta-Analysis. Sports Med. 2016, 46, 103–123. [Google Scholar] [CrossRef]
- Vermot, A.; Petit-Härtlein, I.; Smith, S.M.E.; Fieschi, F. NADPH Oxidases (NOX): An Overview from Discovery, Molecular Mechanisms to Physiology and Pathology. Antioxidants 2021, 10, 890. [Google Scholar] [CrossRef] [PubMed]
- Paschalis, V.; Theodorou, A.A.; Kyparos, A.; Dipla, K.; Zafeiridis, A.; Panayiotou, G.; Vrabas, I.S.; Nikolaidis, M.G. Low Vitamin C Values Are Linked with Decreased Physical Performance and Increased Oxidative Stress: Reversal by Vitamin C Supplementation. Eur. J. Nutr. 2016, 55, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Reid, M.B. Redox Interventions to Increase Exercise Performance. J. Physiol. 2016, 594, 5125–5133. [Google Scholar] [CrossRef]
- Powers, S.K.; Smuder, A.J.; Criswell, D.S. Mechanistic Links between Oxidative Stress and Disuse Muscle Atrophy. Antioxid. Redox Signal. 2011, 15, 2519–2528. [Google Scholar] [CrossRef] [PubMed]
- Powers, S.K.; Morton, A.B.; Ahn, B.; Smuder, A.J. Redox Control of Skeletal Muscle Atrophy. Free. Radic. Biol. Med. 2016, 98, 208–217. [Google Scholar] [CrossRef] [PubMed]
- Powers, S.K.; Deminice, R.; Ozdemir, M.; Yoshihara, T.; Bomkamp, M.P.; Hyatt, H. Exercise-Induced Oxidative Stress: Friend or Foe? J. Sport Health Sci. 2020, 9, 415–425. [Google Scholar] [CrossRef]
- Pilegaard, H.; Saltin, B.; Neufer, P.D. Exercise Induces Transient Transcriptional Activation of the PGC-1alpha Gene in Human Skeletal Muscle. J. Physiol. 2003, 546, 851–858. [Google Scholar] [CrossRef] [PubMed]
- Merry, T.L.; Ristow, M. Do Antioxidant Supplements Interfere with Skeletal Muscle Adaptation to Exercise Training? J. Physiol. 2016, 594, 5135–5147. [Google Scholar] [CrossRef] [PubMed]
- Arc-Chagnaud, C.; Py, G.; Fovet, T.; Roumanille, R.; Demangel, R.; Pagano, A.F.; Delobel, P.; Blanc, S.; Jasmin, B.J.; Blottner, D.; et al. Evaluation of an Antioxidant and Anti-Inflammatory Cocktail Against Human Hypoactivity-Induced Skeletal Muscle Deconditioning. Front. Physiol. 2020, 11, 71. [Google Scholar] [CrossRef]
- Gomez-Cabrera, M.C.; Salvador-Pascual, A.; Cabo, H.; Ferrando, B.; Viña, J. Redox Modulation of Mitochondriogenesis in Exercise. Does Antioxidant Supplementation Blunt the Benefits of Exercise Training? Free Radic. Biol. Med. 2015, 86, 37–46. [Google Scholar] [CrossRef]
- Dutra, M.T.; Alex, S.; Mota, M.R.; Sales, N.B.; Brown, L.E.; Bottaro, M. Effect of Strength Training Combined with Antioxidant Supplementation on Muscular Performance. Appl. Physiol. Nutr. Metab. 2018, 43, 775–781. [Google Scholar] [CrossRef] [PubMed]
- Dutra, M.T.; Martins, W.R.; Ribeiro, A.L.A.; Bottaro, M. The Effects of Strength Training Combined with Vitamin C and E Supplementation on Skeletal Muscle Mass and Strength: A Systematic Review and Meta-Analysis. J. Sports Med. 2020, 2020, 3505209. [Google Scholar] [CrossRef]
- Fovet, T.; Guilhot, C.; Delobel, P.; Chopard, A.; Py, G.; Brioche, T. Ergothioneine Improves Aerobic Performance Without Any Negative Effect on Early Muscle Recovery Signaling in Response to Acute Exercise. Front. Physiol. 2022, 13, 834597. [Google Scholar] [CrossRef] [PubMed]
- Wu, R.-E.; Huang, W.-C.; Liao, C.-C.; Chang, Y.-K.; Kan, N.-W.; Huang, C.-C. Resveratrol Protects against Physical Fatigue and Improves Exercise Performance in Mice. Molecules 2013, 18, 4689–4702. [Google Scholar] [CrossRef]
- Baltaci, S.B.; Mogulkoc, R.; Baltaci, A.K. Resveratrol and Exercise. Biomed. Rep. 2016, 5, 525. [Google Scholar] [CrossRef] [PubMed]
- Vignaud, J.; Loiseau, C.; Hérault, J.; Mayer, C.; Côme, M.; Martin, I.; Ulmann, L. Microalgae Produce Antioxidant Molecules with Potential Preventive Effects on Mitochondrial Functions and Skeletal Muscular Oxidative Stress. Antioxidants 2023, 12, 1050. [Google Scholar] [CrossRef]
- Eriksen, N. Research Trends in the Dominating Microalgal Pigments, β-Carotene, Astaxanthin, and Phycocyanin Used in Feed, in Foods, and in Health Applications. J. Nutr. Food Sci. 2016, 6, 507. [Google Scholar] [CrossRef]
- Eisenberg, I.; Harris, D.; Levi-Kalisman, Y.; Yochelis, S.; Shemesh, A.; Ben-Nissan, G.; Sharon, M.; Raviv, U.; Adir, N.; Keren, N.; et al. Concentration-Based Self-Assembly of Phycocyanin. Photosynth. Res. 2017, 134, 39–49. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Qin, S.; Li, W. Phycocyanin: Anti-Inflammatory Effect and Mechanism. Biomed. Pharmacother. 2022, 153, 113362. [Google Scholar] [CrossRef]
- Kim, K.M.; Lee, J.Y.; Im, A.-R.; Chae, S. Phycocyanin Protects Against UVB-Induced Apoptosis Through the PKC α/βII-Nrf-2/HO-1 Dependent Pathway in Human Primary Skin Cells. Molecules 2018, 23, 478. [Google Scholar] [CrossRef] [PubMed]
- Alzokaky, A.A.; Abdelkader, E.M.; El-Dessouki, A.M.; Khaleel, S.A.; Raslan, N.A. C-Phycocyanin Protects against Ethanol-Induced Gastric Ulcers in Rats: Role of HMGB1/NLRP3/NF-κB Pathway. Basic Clin. Pharmacol. Toxicol. 2020, 127, 265–277. [Google Scholar] [CrossRef] [PubMed]
- Kasbi-Chadli, F.; Coué, M.; Aguesse, A.; Grit, I.; Souque, T.; Ferchaud-Roucher, V.; Ouguerram, K. Spirulina Liquid Extract Prevents Metabolic Disturbances and Improves Liver Sphingolipids Profile in Hamster Fed a High-Fat Diet. Eur. J. Nutr. 2021, 60, 4483–4494. [Google Scholar] [CrossRef] [PubMed]
- Coué, M.; Tesse, A.; Falewée, J.; Aguesse, A.; Croyal, M.; Fizanne, L.; Chaigneau, J.; Boursier, J.; Ouguerram, K. Spirulina Liquid Extract Protects against Fibrosis Related to Non-Alcoholic Steatohepatitis and Increases Ursodeoxycholic Acid. Nutrients 2019, 11, 194. [Google Scholar] [CrossRef] [PubMed]
- Dupuis, C.; Berthon, J.Y.; Larue, J.; Rougé, S.; Filaire, M.; Filaire, E. Effects of 6 Weeks of Betaine or C-Phycocyanin Supplementation Associated or Not with Wheel Running on Redox Status. Sci. Sports 2018, 33, 47–55. [Google Scholar] [CrossRef]
- Fadaei Chafy, M.R.; Bagherpour Tabalvandani, M.M.; Elmieh, A.; Arabzadeh, E. Determining the Range of Aerobic Exercise on a Treadmill for Male Wistar Rats at Different Ages: A Pilot Study. J. Exerc. Organ. Cross Talk 2022, 2, 96–100. [Google Scholar] [CrossRef]
- Cardenia, V.; Rodriguez-Estrada, M.T.; Lorenzini, A.; Bandini, E.; Angeloni, C.; Hrelia, S.; Malaguti, M. Effect of Broccoli Extract Enriched Diet on Liver Cholesterol Oxidation in Rats Subjected to Exhaustive Exercise. J. Steroid Biochem. Mol. Biol. 2017, 169, 137–144. [Google Scholar] [CrossRef] [PubMed]
- Kryściak, K.; Majerczak, J.; Kryściak, J.; Łochyński, D.; Kaczmarek, D.; Drzymała-Celichowska, H.; Krutki, P.; Gawedzka, A.; Guzik, M.; Korostynski, M.; et al. Adaptation of motor unit contractile properties in rat medial gastrocnemius to treadmill endurance training: Relationship to muscle mitochondrial biogenesis. PLoS ONE 2018, 13, e0195704. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, J.C.B.; Rolim, N.P.L.; Bartholomeu, J.B.; Gobatto, C.A.; Kokubun, E.; Brum, P.C. Maximal Lactate Steady State in Running Mice: Effect of Exercise Training. Clin. Exp. Pharmacol. Physiol. 2007, 34, 760–765. [Google Scholar] [CrossRef] [PubMed]
- De Carvalho, C.D.; Filho, C.K.; da Rocha, A.D.; Silva, A.S.R.; Papoti, M. Glycogen Kinetics of Wistar Rats: Different Exercise Intensities and Tissue Analyzed Influence. Int. J. Exerc. Sci. 2022, 15, 289–299. [Google Scholar]
- Dong, G.J.; Lv, C.X.; Li, K.F. The Changes of Ultrastructure and Proteome Induced by Repeated Eccentric Exercise on of Rat Skeletal Muscle. Appl. Mech. Mater. 2014, 472, 792–800. [Google Scholar] [CrossRef]
- Silva, E.; Maldonado, I.R.S.C.; Matta, S.L.P.; Maia, G.C.; Bozi, L.H.M.; Silva, K.A.; Castro, C.A.; Natali, A.J. Treinamento em natação com baixa intensidade não protege músculo esquelético contra lesões induzidas por exercício exaustivo em ratos. Rev. Bras. Med. Esporte 2011, 17, 207–211. [Google Scholar] [CrossRef]
- Carr, S.S.; Hooper, A.J.; Sullivan, D.R.; Burnett, J.R. Non-HDL-Cholesterol and Apolipoprotein B Compared with LDL-Cholesterol in Atherosclerotic Cardiovascular Disease Risk Assessment. Pathology 2019, 51, 148–154. [Google Scholar] [CrossRef] [PubMed]
- Askin, L.; Tanriverdi, O. Is the Atherogenic Index. of Plasma (AIP) a Cardiovascular Disease Marker? Cor Vasa 2023, 65, 100–103. [Google Scholar] [CrossRef]
- Winterbourn, C.C.; Gutteridge, J.M.C.; Halliwell, B. Doxorubicin-Dependent Lipid Peroxidation at Low Partial Pressures of O2. J. Free Radic. Biol. Med. 1985, 1, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Billat, L.V.; Koralsztein, J.P. Significance of the Velocity at VO2max and Time to Exhaustion at This Velocity. Sports Med. 1996, 22, 90–108. [Google Scholar] [CrossRef] [PubMed]
- Ebal, E.; Cavalie, H.; Michaux, O.; Lac, G. Effect of a Moderate Exercise on the Regulatory Hormones of Food Intake in Rats. Appetite 2007, 49, 521–524. [Google Scholar] [CrossRef] [PubMed]
- Elj, N.E.; Lac, G.; Tabka, Z.; Gharbi, N.; Fezaa, S.E. Effect of Physical Exercise on Reducing Food Intake and Weight Gain. Procedia Soc. Behav. Sci. 2011, 30, 2027–2031. [Google Scholar] [CrossRef]
- Dupas, J.; Feray, A.; Guernec, A.; Pengam, M.; Inizan, M.; Guerrero, F.; Mansourati, J.; Goanvec, C. Effect of Personalized Moderate Exercise Training on Wistar Rats Fed with a Fructose Enriched Water. Nutr. Metab. 2018, 15, 69. [Google Scholar] [CrossRef]
- Zhao, J.; Tian, Y.; Xu, J.; Liu, D.; Wang, X.; Zhao, B. Endurance Exercise Is a Leptin Signaling Mimetic in Hypothalamus of Wistar Rats. Lipids Health Dis. 2011, 10, 225. [Google Scholar] [CrossRef] [PubMed]
- Naidu, K.A.; Sarada, R.; Manoj, G.; Khan, M.Y.; Swamy, M.M.; Viswanatha, S.; Murthy, K.N.; Ravishankar, G.A.; Srinivas, L. Toxicity Assessment of Phycocyanin—A Blue Colorant from Blue Green Alga Spirulina Platensis. Food Biotechnol. 1999, 13, 51–66. [Google Scholar] [CrossRef]
- Ichimura, M.; Kato, S.; Tsuneyama, K.; Matsutake, S.; Kamogawa, M.; Hirao, E.; Miyata, A.; Mori, S.; Yamaguchi, N.; Suruga, K.; et al. Phycocyanin Prevents Hypertension and Low Serum Adiponectin Level in a Rat Model of Metabolic Syndrome. Nutr. Res. 2013, 33, 397–405. [Google Scholar] [CrossRef]
- Haghshenas, R.; Jafari, M.; Ravasi, A.; Kordi, M.; Gilani, N.; Shariatzadeh, M.; Hedayati, M.; Rahimi, M. The Effect of Eight Weeks Endurance Training and High-Fat Diet on Appetite-Regulating Hormones in Rat Plasma. Iran. J. Basic Med. Sci. 2014, 17, 237–243. [Google Scholar]
- Koite, N.L.N.; Sanogo, N.I.; Lépine, O.; Bard, J.-M.; Ouguerram, K. Antioxidant Efficacy of a Spirulina Liquid Extract on Oxidative Stress Status and Metabolic Disturbances in Subjects with Metabolic Syndrome. Mar. Drugs 2022, 20, 441. [Google Scholar] [CrossRef]
- Atum, A.L.B.; de Matos, L.P.; de Jesus, B.C.; Nasuk, G.R.; da Silva, G.A.; Gomes, C.P.; Pesquero, J.B.; Zamuner, S.R.; Silva Júnior, J.A. Impact of Prenatal Alcohol Exposure on the Development and Myocardium of Adult Mice: Morphometric Changes, Transcriptional Modulation of Genes Related to Cardiac Dysfunction, and Antioxidant Cardioprotection. Antioxidants 2023, 12, 256. [Google Scholar] [CrossRef] [PubMed]
- Padilla, J.; Jenkins, N.T.; Vieira-Potter, V.J.; Laughlin, M.H. Divergent Phenotype of Rat Thoracic and Abdominal Perivascular Adipose Tissues. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2013, 304, R543–R552. [Google Scholar] [CrossRef] [PubMed]
- Yin, F.C.; Spurgeon, H.A.; Rakusan, K.; Weisfeldt, M.L.; Lakatta, E.G. Use of Tibial Length to Quantify Cardiac Hypertrophy: Application in the Aging Rat. Am. J. Physiol. Heart Circ. Physiol. 1982, 243, H941–H947. [Google Scholar] [CrossRef] [PubMed]
- Plant, D.R.; Gregorevic, P.; Warmington, S.A.; Williams, D.A.; Lynch, G.S. Endurance Training Adaptations Modulate the Redox–Force Relationship of Rat Isolated Slow-Twitch Skeletal Muscles. Clin. Exp. Pharmacol. Physiol. 2003, 30, 77–81. [Google Scholar] [CrossRef] [PubMed]
- Ou, Y.; Lin, L.; Yang, X.; Pan, Q.; Cheng, X. Antidiabetic Potential of Phycocyanin: Effects on KKAy Mice. Pharm. Biol. 2013, 51, 539–544. [Google Scholar] [CrossRef] [PubMed]
- Holloszy, J.O.; Booth, F.W. Biochemical Adaptations to Endurance Exercise in Muscle. Annu. Rev. Physiol. 1976, 38, 273–291. [Google Scholar] [CrossRef] [PubMed]
- Pengam, M.; Goanvec, C.; Moisan, C.; Simon, B.; Albacète, G.; Féray, A.; Guernec, A.; Amérand, A. Moderate Intensity Continuous versus High Intensity Interval Training: Metabolic Responses of Slow and Fast Skeletal Muscles in Rat. PLoS ONE 2023, 18, e0292225. [Google Scholar] [CrossRef] [PubMed]
- Kalafati, M.; Jamurtas, A.Z.; Nikolaidis, M.G.; Paschalis, V.; Theodorou, A.A.; Sakellariou, G.K.; Koutedakis, Y.; Kouretas, D. Ergogenic and Antioxidant Effects of Spirulina Supplementation in Humans. Med. Sci. Sports Exerc. 2010, 42, 142–151. [Google Scholar] [CrossRef]
- Dietschy, J.M.; Wilson, J.D. Regulation of Cholesterol Metabolism. N. Engl. J. Med. 1970, 282, 1128–1138. [Google Scholar] [CrossRef] [PubMed]
- Pels, A.E.; White, T.P.; Block, W.D. Effects of Exercise Training on Plasma Lipids and Lipoproteins in Rats. J. Appl. Physiol. 1985, 58, 612–618. [Google Scholar] [CrossRef]
- Kazeminasab, F.; Marandi, M.; Ghaedi, K.; Esfarjani, F.; Moshtaghian, J. Effects of A 4-Week Aerobic Exercise on Lipid Profile and Expression of LXRα in Rat Liver. Cell J. 2017, 19, 45–49. [Google Scholar] [PubMed]
- Muga, M.A.; Chao, J.C.-J. Effects of Fish Oil and Spirulina on Oxidative Stress and Inflammation in Hypercholesterolemic Hamsters. BMC Complement. Altern. Med. 2014, 14, 470. [Google Scholar] [CrossRef] [PubMed]
- Ziyaei, K.; Abdi, F.; Mokhtari, M.; Daneshmehr, M.A.; Ataie, Z. Phycocyanin as a Nature-Inspired Antidiabetic Agent: A Systematic Review. Phytomedicine 2023, 119, 154964. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Liao, G.; Xiang, C.; Yang, X.; Cheng, X.; Ou, Y. Effects of Phycocyanin on INS-1 Pancreatic β-Cell Mediated by PI3K/Akt/FoxO1 Signaling Pathway. Int. J. Biol. Macromol. 2016, 83, 185–194. [Google Scholar] [CrossRef] [PubMed]
- Puengpan, S.; Phetrungnapha, A.; Sattayakawee, S.; Tunsophon, S. Phycocyanin Attenuates Skeletal Muscle Damage and Fatigue via Modulation of Nrf2 and IRS-1/AKT/mTOR Pathway in Exercise-Induced Oxidative Stress in Rats. PLoS ONE 2024, 19, e0310138. [Google Scholar] [CrossRef] [PubMed]
- Gillen, J.B.; Martin, B.J.; MacInnis, M.J.; Skelly, L.E.; Tarnopolsky, M.A.; Gibala, M.J. Twelve Weeks of Sprint Interval Training Improves Indices of Cardiometabolic Health Similar to Traditional Endurance Training despite a Five-Fold Lower Exercise Volume and Time Commitment. PLoS ONE 2016, 11, e0154075. [Google Scholar] [CrossRef] [PubMed]
- Benatti, F.B.; Pedersen, B.K. Exercise as an Anti-Inflammatory Therapy for Rheumatic Diseases-Myokine Regulation. Nat. Rev. Rheumatol. 2015, 11, 86–97. [Google Scholar] [CrossRef] [PubMed]
- Hennigar, S.R.; McClung, J.P.; Pasiakos, S.M. Nutritional Interventions and the IL-6 Response to Exercise. FASEB J. 2017, 31, 3719–3728. [Google Scholar] [CrossRef]
- Singh, Z.; Karthigesu, I.P.; Singh, P.; Kaur, R. Use of Malondialdehyde as a Biomarker for Assessing Oxidative Stress in Different Disease Pathologies: A Review. Iran. J. Public Health 2014, 43, 7–16. [Google Scholar]
- Noonan, A.M.; Mashouri, P.; Chen, J.; Power, G.A.; Brown, S.H.M. Training Induced Changes to Skeletal Muscle Passive Properties Are Evident in Both Single Fibers and Fiber Bundles in the Rat Hindlimb. Front. Physiol. 2020, 11, 907. [Google Scholar] [CrossRef]
- Close, R. Properties of Motor Units in Fast and Slow Skeletal Muscles of the Rat. J. Physiol. 1967, 193, 45–55. [Google Scholar] [CrossRef]
- Kovanen, V.; Suominen, H.; Heikkinen, E. Mechanical Properties of Fast and Slow Skeletal Muscle with Special Reference to Collagen and Endurance Training. J. Biomech. 1984, 17, 725–735. [Google Scholar] [CrossRef] [PubMed]
- Lambertucci, R.H.; Levada-Pires, A.C.; Rossoni, L.V.; Curi, R.; Pithon-Curi, T.C. Effects of Aerobic Exercise Training on Antioxidant Enzyme Activities and mRNA Levels in Soleus Muscle from Young and Aged Rats. Mech. Ageing Dev. 2007, 128, 267–275. [Google Scholar] [CrossRef] [PubMed]
- Bloomer, R.J.; Goldfarb, A.H. Anaerobic Exercise and Oxidative Stress: A Review. Can. J. Appl. Physiol. 2004, 29, 245–263. [Google Scholar] [CrossRef]
- Cunningham, P.; Geary, M.; Harper, R.; Pendleton, A.; Stover, S. High intensity sprint training reduces lipid peroxidation in fast-twitch skeletal muscle. J. Exerc. Physiol. Online 2005, 8, 18–25. [Google Scholar]
- Lamb, G.D.; Westerblad, H. Acute Effects of Reactive Oxygen and Nitrogen Species on the Contractile Function of Skeletal Muscle. J. Physiol. 2011, 589, 2119–2127. [Google Scholar] [CrossRef] [PubMed]
- Steinbacher, P.; Eckl, P. Impact of Oxidative Stress on Exercising Skeletal Muscle. Biomolecules 2015, 5, 356–377. [Google Scholar] [CrossRef] [PubMed]
- Bruunsgaard, H. Physical Activity and Modulation of Systemic Low-Level Inflammation. J. Leukoc. Biol. 2005, 78, 819–835. [Google Scholar] [CrossRef] [PubMed]
- Vargas-Mendoza, N.; Morales-González, Á.; Madrigal-Santillán, E.O.; Madrigal-Bujaidar, E.; Álvarez-González, I.; García-Melo, L.F.; Anguiano-Robledo, L.; Fregoso-Aguilar, T.; Morales-Gonzalez, J.A. Antioxidant and Adaptative Response Mediated by Nrf2 during Physical Exercise. Antioxidants 2019, 8, 196. [Google Scholar] [CrossRef]
- Vichaiwong, K.; Henriksen, E.J.; Toskulkao, C.; Prasannarong, M.; Bupha-Intr, T.; Saengsirisuwan, V. Attenuation of Oxidant-Induced Muscle Insulin Resistance and P38 MAPK by Exercise Training. Free Radic. Biol. Med. 2009, 47, 593–599. [Google Scholar] [CrossRef]
- Li, S.; Wang, R.; Song, F.; Chen, P.; Gu, Y.; Chen, C.; Yuan, Y. Salvianolic Acid A Suppresses CCl4-Induced Liver Fibrosis through Regulating the Nrf2/HO-1, NF-κB/IκBα, P38 MAPK, and JAK1/STAT3 Signaling Pathways. Drug Chem. Toxicol. 2023, 46, 304–313. [Google Scholar] [CrossRef] [PubMed]
- Tarini, V.A.F.; Carnevali, L.C.; Arida, R.M.; Cunha, C.A.; Alves, E.S.; Seeleander, M.C.L.; Schmidt, B.; Faloppa, F. Effect of Exhaustive Ultra-Endurance Exercise in Muscular Glycogen and Both Alpha1 and Alpha2 Ampk Protein Expression in Trained Rats. J. Physiol. Biochem. 2013, 69, 429–440. [Google Scholar] [CrossRef]
- Thomson, D.M. The Role of AMPK in the Regulation of Skeletal Muscle Size, Hypertrophy, and Regeneration. Int. J. Mol. Sci. 2018, 19, 3125. [Google Scholar] [CrossRef] [PubMed]
- Joseph, A.-M.; Pilegaard, H.; Litvintsev, A.; Leick, L.; Hood, D.A. Control of Gene Expression and Mitochondrial Biogenesis in the Muscular Adaptation to Endurance Exercise. Essays Biochem. 2006, 42, 13–29. [Google Scholar] [CrossRef] [PubMed]
- Olesen, J.; Kiilerich, K.; Pilegaard, H. PGC-1α-Mediated Adaptations in Skeletal Muscle. Pflug. Arch. Eur. J. Physiol. 2010, 460, 153–162. [Google Scholar] [CrossRef] [PubMed]
- Vainshtein, A.; Desjardins, E.M.; Armani, A.; Sandri, M.; Hood, D.A. PGC-1α Modulates Denervation-Induced Mitophagy in Skeletal Muscle. Skelet. Muscle 2015, 5, 9. [Google Scholar] [CrossRef] [PubMed]
- Gibala, M.J.; McGee, S.L.; Garnham, A.P.; Howlett, K.F.; Snow, R.J.; Hargreaves, M. Brief Intense Interval Exercise Activates AMPK and P38 MAPK Signaling and Increases the Expression of PGC-1α in Human Skeletal Muscle. J. Appl. Physiol. 2009, 106, 929–934. [Google Scholar] [CrossRef]
- Mathai, A.S.; Bonen, A.; Benton, C.R.; Robinson, D.L.; Graham, T.E. Rapid Exercise-Induced Changes in PGC-1α mRNA and Protein in Human Skeletal Muscle. J. Appl. Physiol. 2008, 105, 1098–1105. [Google Scholar] [CrossRef] [PubMed]
- Kraniou, G.N.; Cameron-Smith, D.; Hargreaves, M. Effect of Short-Term Training on GLUT-4 mRNA and Protein Expression in Human Skeletal Muscle. Exp. Physiol. 2004, 89, 559–563. [Google Scholar] [CrossRef] [PubMed]
- Xirouchaki, C.E.; Mangiafico, S.P.; Bate, K.; Ruan, Z.; Huang, A.M.; Tedjosiswoyo, B.W.; Lamont, B.; Pong, W.; Favaloro, J.; Blair, A.R.; et al. Impaired Glucose Metabolism and Exercise Capacity with Muscle-Specific Glycogen Synthase 1 (Gys1) Deletion in Adult Mice. Mol. Metab. 2016, 5, 221–232. [Google Scholar] [CrossRef] [PubMed]
- Atkinson, B.J.; Griesel, B.A.; King, C.D.; Josey, M.A.; Olson, A.L. Moderate GLUT4 Overexpression Improves Insulin Sensitivity and Fasting Triglyceridemia in High-Fat Diet–Fed Transgenic Mice. Diabetes 2013, 62, 2249–2258. [Google Scholar] [CrossRef] [PubMed]
- Henique, C.; Mansouri, A.; Vavrova, E.; Lenoir, V.; Ferry, A.; Esnous, C.; Ramond, E.; Girard, J.; Bouillaud, F.; Prip-Buus, C.; et al. Increasing Mitochondrial Muscle Fatty Acid Oxidation Induces Skeletal Muscle Remodeling toward an Oxidative Phenotype. FASEB J. 2015, 29, 2473–2483. [Google Scholar] [CrossRef]
- Manini, T.M.; Clark, B.C.; Nalls, M.A.; Goodpaster, B.H.; Ploutz-Snyder, L.L.; Harris, T.B. Reduced Physical Activity Increases Intermuscular Adipose Tissue in Healthy Young Adults2. Am. J. Clin. Nutr. 2007, 85, 377–384. [Google Scholar] [CrossRef] [PubMed]
- Guilhot, C.; Fovet, T.; Delobel, P.; Dargegen, M.; Jasmin, B.J.; Brioche, T.; Chopard, A.; Py, G. Severe Muscle Deconditioning Triggers Early Extracellular Matrix Remodeling and Resident Stem Cell Differentiation into Adipocytes in Healthy Men. Int. J. Mol. Sci. 2022, 23, 5489. [Google Scholar] [CrossRef]
- Calderon-Dominguez, M.; Sebastián, D.; Fucho, R.; Weber, M.; Mir, J.F.; García-Casarrubios, E.; Obregón, M.J.; Zorzano, A.; Valverde, Á.M.; Serra, D.; et al. Carnitine Palmitoyltransferase 1 Increases Lipolysis, UCP1 Protein Expression and Mitochondrial Activity in Brown Adipocytes. PLoS ONE 2016, 11, e0159399. [Google Scholar] [CrossRef] [PubMed]
- Kitaoka, Y. The Role of Nrf2 in Skeletal Muscle on Exercise Capacity. Antioxidants 2021, 10, 1712. [Google Scholar] [CrossRef] [PubMed]
- Keren, A.; Tamir, Y.; Bengal, E. The P38 MAPK Signaling Pathway: A Major Regulator of Skeletal Muscle Development. Mol. Cell. Endocrinol. 2006, 252, 224–230. [Google Scholar] [CrossRef]
- Bengal, E.; Aviram, S.; Hayek, T. P38 MAPK in Glucose Metabolism of Skeletal Muscle: Beneficial or Harmful? Int. J. Mol. Sci. 2020, 21, 6480. [Google Scholar] [CrossRef] [PubMed]
- Komiya, Y.; Sawano, S.; Mashima, D.; Ichitsubo, R.; Nakamura, M.; Tatsumi, R.; Ikeuchi, Y.; Mizunoya, W. Mouse Soleus (Slow) Muscle Shows Greater Intramyocellular Lipid Droplet Accumulation than EDL (Fast) Muscle: Fiber Type-Specific Analysis. J. Muscle Res. Cell Motil. 2017, 38, 163–173. [Google Scholar] [CrossRef]
- Bhawe, K.; Roy, D. Interplay between NRF1, E2F4 and MYC Transcription Factors Regulating Common Target Genes Contributes to Cancer Development and Progression. Cell. Oncol. 2018, 41, 465–484. [Google Scholar] [CrossRef] [PubMed]
- Randle, P.J.; Garland, P.B.; Hales, C.N.; Newsholme, E.A. The Glucose Fatty-Acid Cycle. Its Role in Insulin Sensitivity and the Metabolic Disturbances of Diabetes Mellitus. Lancet 1963, 1, 785–789. [Google Scholar] [CrossRef]
- St-Pierre, J.; Drori, S.; Uldry, M.; Silvaggi, J.M.; Rhee, J.; Jäger, S.; Handschin, C.; Zheng, K.; Lin, J.; Yang, W.; et al. Suppression of Reactive Oxygen Species and Neurodegeneration by the PGC-1 Transcriptional Coactivators. Cell 2006, 127, 397–408. [Google Scholar] [CrossRef] [PubMed]
- McFarlan, J.T.; Yoshida, Y.; Jain, S.S.; Han, X.-X.; Snook, L.A.; Lally, J.; Smith, B.K.; Glatz, J.F.C.; Luiken, J.J.F.P.; Sayer, R.A.; et al. In Vivo, Fatty Acid Translocase (CD36) Critically Regulates Skeletal Muscle Fuel Selection, Exercise Performance, and Training-Induced Adaptation of Fatty Acid Oxidation *. J. Biol. Chem. 2012, 287, 23502–23516. [Google Scholar] [CrossRef] [PubMed]
- Louet, J.F.; Le May, C.; Pégorier, J.P.; Decaux, J.F.; Girard, J. Regulation of Liver Carnitine Palmitoyltransferase I Gene Expression by Hormones and Fatty Acids. Biochem. Soc. Trans. 2001, 29, 310–316. [Google Scholar] [CrossRef] [PubMed]
- Zizola, C.; Kennel, P.J.; Akashi, H.; Ji, R.; Castillero, E.; George, I.; Homma, S.; Schulze, P.C. Activation of PPARδ Signaling Improves Skeletal Muscle Oxidative Metabolism and Endurance Function in an Animal Model of Ischemic Left Ventricular Dysfunction. Am. J. Physiol. Heart Circ. Physiol. 2015, 308, H1078–H1085. [Google Scholar] [CrossRef] [PubMed]
- Fischer, H.; Gustafsson, T.; Sundberg, C.J.; Norrbom, J.; Ekman, M.; Johansson, O.; Jansson, E. Fatty Acid Binding Protein 4 in Human Skeletal Muscle. Biochem. Biophys. Res. Commun. 2006, 346, 125–130. [Google Scholar] [CrossRef] [PubMed]
- Glund, S.; Deshmukh, A.; Long, Y.C.; Moller, T.; Koistinen, H.A.; Caidahl, K.; Zierath, J.R.; Krook, A. Interleukin-6 Directly Increases Glucose Metabolism in Resting Human Skeletal Muscle. Diabetes 2007, 56, 1630–1637. [Google Scholar] [CrossRef]
- Impey, S.G.; Jevons, E.F.P.; Mees, G.; Cocks, M.S.; Strauss, J.A.; Chester, N.; Laurie, I.; Target, D.; Hodgson, A.; Shepherd, S.O.; et al. Glycogen Utilization during Running: Intensity, Sex, and Muscle-Specific Responses. Med. Sci. Sports Exerc. 2020, 52, 1966–1975. [Google Scholar] [CrossRef] [PubMed]
- Hawley, J.A. Adaptations of Skeletal Muscle to Prolonged, Intense Endurance Training. Clin. Exp. Pharmacol. Physiol. 2002, 29, 218–222. [Google Scholar] [CrossRef]
- Li, L.; Jiang, Z.; Yao, Y.; Yang, Z.; Ma, H. (−)-Hydroxycitric Acid Regulates Energy Metabolism by Activation of AMPK-PGC1α-NRF1 Signal Pathway in Primary Chicken Hepatocytes. Life Sci. 2020, 254, 117785. [Google Scholar] [CrossRef]
Weeks | Running Time (min) | Speed (cm/s) | MAS Measurement | Sprints | |
---|---|---|---|---|---|
Adaptation | 1 | 10 | 11–16–21 | X | |
Block 1 | 2 | 25 | 60% average MAS | ||
3 | 30 | 70% average MAS | |||
4 | 30 | 80% average MAS | X | ||
Block 2 | 5 | 60 | 60% average MAS | 30 s at 70% of the average MAS every 10 min | |
6 | 60 | 70% average MAS | 30 s at 80% of the average MAS every 10 min | ||
7 | 60 | 80% average MAS | X | 30 s at 90% of the average MAS every 10 min | |
Block 3 | 8 | 60–70 | 60% average MAS | 1 min at 80% of the average MAS every 13 min | |
9 | 60 | 70% average MAS | X | 1 min at 90% of the average MAS every 13 min |
Genes | Abbreviations | Forward Primers | Reverse Primers |
---|---|---|---|
Redox status | |||
P38 Mitogen-Activated Protein Kinases | P38MAPK | TGCCAGGAATGGAGCCACAT | CATGGAGAAAACTGCCGCCC |
Nuclear respiratory factor 2 | Nrf2 | ATGCCTTCCTCTGCTGCCAT | TCGGCTGGGACTTGTGTTCA |
Β-oxidation | |||
Carnitine Palmitoyltransférase 1A | CPT1A | AGCTGGATCTGGGAAACGGG | TCGATCAATGTGGGGAGGCC |
Fatty acid binding protein 4 | Fabp4 | GCTGTACTGTCTGGGCCTCA | ATGAGAGGGTGGAGGTGCAG |
Cluster of Differentiation 36 | CD36 | ACTAAGCTGTTTGTGTGCCCC | ATCATCGAGTGGTGCTACTGGT |
Glycogen storage | |||
Glucose Transporter 4 | GLUT4 | TTGACCAGATCTCGGCCACC | AGTGCTGCGAGGAAAGGAGG |
Glycogen synthase 1 | Gys1 | ACCCCATTCCCTGCCTGTTC | GCGATCCAAGAAAGGCACGG |
Insulin Receptor Substrate 1 | IRS1 | GCACCTCTCATTCAGCCCCT | CATGCAGCGTTTGTGGACCA |
Mitochondrial biogenesis pathway | |||
Protein kinase AMP-activated catalytic subunit alpha 1 | AMPKα1 | TGGCTTCAGTCACCATCACCA | AGCTCCCACAACTCAGGCTC |
Protein kinase AMP-activated catalytic subunit alpha 2 | AMPKα2 | AGGTGGTGGAGCAGAGGTCT | GGGGAAGCGGAGGACAAAGT |
PPARG Coactivator 1 alpha | PGC1α | TTCCAGAAGCTCCAGTGCCC | CCTGCTCAGCCATGCCTACT |
Nuclear respiratory factor 1 | Nrf1 | CGCTGGTGTCCCTGGATCTT | CGAGTTAGGGTGTGGCAGGT |
Housekeeping gene | |||
Tubulin alpha 1 | Tubα | CCACTTCCCTCTGGCCACTT | GGGACCACATCACCACGGTA |
Parameters | C | SP | T | SPT | n |
---|---|---|---|---|---|
Characteristics | |||||
Bodyweight (g) | 454 ± 9 a | 466 ± 10 a | 421 ± 5 b | 405 ± 10 b | 5–7 |
Soleus (mg/100g BW) | 44.5 ± 1.3 b | 45.1 ± 1.5 b | 51.3 ± 1.4 a | 48.3 ± 1.8 ab | 7–8 |
EDL (mg/100g BW) | 43.3 ± 0.9 ab | 40.7 ± 1.9 b | 43.7± 1.8 ab | 47.4 ± 0.7 a | 8 |
Tibial length (cm) | 4.10 ± 0.01 a | 4.00 ± 0.05 a | 4.11 ± 0.02 a | 3.96 ± 0.04 a | 8 |
Soleus (mg/cm TL) | 48.0 ± 1.1 a | 53.8 ± 2.5 a | 52.6 ± 1.9 a | 50.2 ± 2.4 a | 8 |
EDL (mg/cm TL) | 46.8 ± 1.1 a | 49.8 ± 2.7 a | 45.6 ± 1.8 a | 48.7 ± 1.3 a | 8 |
Nutritional parameters | |||||
Food intake (g/day/100g BW) | 7.5 ± 0.2 a | 7.6 ± 0.2 a | 7.1 ± 0.2 a | 7.3 ± 0.2 a | 8 |
Water intake (mL/day/100g BW) | 8.8 ± 0.2 bc | 9.7 ± 0.3 ab | 8.4 ± 0.2 c | 10.3 ± 0.3 a | 8 |
Food intake/weight gain to W1 at W4 (pearson correlation) | r = −0.4074 | r = −0.2302 | r = 0.0075 | r = 0.1839 | 8 |
p = 0.0206 | p = 0.0695 | p = 0.9673 | p = 0.1490 | ||
Food intake/weight gain to W4 at W8 (pearson correlation) | r = 0.5340 | r = 0.1219 | r = 0.0519 | r = 0.6341 | 8 |
p = 0.0016 | p = 0.3414 | p = 0.7777 | p < 0.0001 | ||
Food intake/weight gain (pearson correlation) | r = −0.0523 | r = 0.0742 | r = −0.2176 | r = 0.2285 | 8 |
p = 0.6814 | p = 0.5601 | p = 0.0882 | p = 0.0694 |
Plasma Parameters | C | SP | T | SPT | n |
---|---|---|---|---|---|
TG (mmol/L) | 2.69 ± 0.39 a | 2.34 ± 0.21 ab | 1.60 ± 0.21 bc | 1.11 ± 0.10 c | 6–8 |
T-Chol (mmol/L) | 1.62 ± 0.09 ab | 1.76 ± 0.12 a | 1.26 ± 0.07 c | 1.38 ± 0.06 bc | 5–7 |
HDL-Chol (mmol/L) | 0.48 ± 0.03 a | 0.52 ± 0.03 a | 0.35 ± 0.03 b | 0.43 ± 0.01 ab | 5–7 |
Non HDL-Chol (mmol/L) | 1.09 ± 0.08 ab | 1.12 ± 0.06 a | 0.83 ± 0.04 c | 0.85 ± 0.05 bc | 6–7 |
AIP | 0.80 ± 0.05 a | 0.80 ± 0.01 a | 0.63 ± 0.04 b | 0.43 ± 0.03 c | 5–7 |
Glycemia (mg/dL) | 60.8 ± 1.3 a | 55.2 ± 1.6 b | 64.8 ± 2.3 a | 50.3 ± 1.0 b | 5–7 |
Insulin (µUI/mL) | 34.9 ± 3.3 c | 53.1 ± 3.9 b | 46.3 ± 5.7 bc | 82.3 ± 3.5 a | 5–6 |
IL-6 (pg/mL) | 95.67 ± 9 b | 102 ± 15 b | 160 ± 18 a | 158 ± 16 a | 5–6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vignaud, J.; Loiseau, C.; Côme, M.; Martin, I.; Rasoanarivo, R.; Hérault, J.; Mayer, C.; Lépine, O.; Ulmann, L. Combined Effects of Spirulina Liquid Extract and Endurance Training on Aerobic Performance and Muscle Metabolism Adaptation in Wistar Rats. Nutrients 2025, 17, 283. https://doi.org/10.3390/nu17020283
Vignaud J, Loiseau C, Côme M, Martin I, Rasoanarivo R, Hérault J, Mayer C, Lépine O, Ulmann L. Combined Effects of Spirulina Liquid Extract and Endurance Training on Aerobic Performance and Muscle Metabolism Adaptation in Wistar Rats. Nutrients. 2025; 17(2):283. https://doi.org/10.3390/nu17020283
Chicago/Turabian StyleVignaud, Jordi, Céline Loiseau, Martine Côme, Isabelle Martin, Rova Rasoanarivo, Josiane Hérault, Claire Mayer, Olivier Lépine, and Lionel Ulmann. 2025. "Combined Effects of Spirulina Liquid Extract and Endurance Training on Aerobic Performance and Muscle Metabolism Adaptation in Wistar Rats" Nutrients 17, no. 2: 283. https://doi.org/10.3390/nu17020283
APA StyleVignaud, J., Loiseau, C., Côme, M., Martin, I., Rasoanarivo, R., Hérault, J., Mayer, C., Lépine, O., & Ulmann, L. (2025). Combined Effects of Spirulina Liquid Extract and Endurance Training on Aerobic Performance and Muscle Metabolism Adaptation in Wistar Rats. Nutrients, 17(2), 283. https://doi.org/10.3390/nu17020283