Impact of Artificial Sweeteners on Inflammation Markers: A Systematic Review of Animal Studies
Abstract
1. Introduction
2. Methods
2.1. Eligibility Criteria
2.2. Data Sources and Search Strategy
2.3. Study Selection
2.4. Data Extraction and Reporting
2.5. Quality Assessment
3. Results
3.1. Study Selection
3.2. Study Characteristics
3.3. Quality Assessment
3.4. Results
3.4.1. Aspartame (17 Studies)
3.4.2. Sucralose (16 Studies)
3.4.3. Acesulfame-K (5 Studies)
3.4.4. Saccharin (4 Studies)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Prescott, M.P.; Ben Hassen, T.; El Bilali, H. Editorial: Obesity and Sustainability. Front. Nutr. 2023, 10, 1235036. [Google Scholar] [CrossRef]
- Russell, C.; Baker, P.; Grimes, C.; Lindberg, R.; Lawrence, M.A. Global Trends in Added Sugars and Non-Nutritive Sweetener Use in the Packaged Food Supply: Drivers and Implications for Public Health. Public Health Nutr. 2023, 26, 952–964. [Google Scholar] [CrossRef]
- Kossiva, L.; Kakleas, K.; Christodouli, F.; Soldatou, A.; Karanasios, S.; Karavanaki, K. Chronic Use of Artificial Sweeteners: Pros and Cons. Nutrients 2024, 16, 3162. [Google Scholar] [CrossRef] [PubMed]
- Harris, E. WHO Warns Against Artificial Sugars for Weight Loss. JAMA 2023, 329, 2011. [Google Scholar] [CrossRef] [PubMed]
- Bian, X.; Tu, P.; Chi, L.; Gao, B.; Ru, H.; Lu, K. Saccharin Induced Liver Inflammation in Mice by Altering the Gut Microbiota and Its Metabolic Functions. Food Chem. Toxicol. 2017, 107, 530–539. [Google Scholar] [CrossRef] [PubMed]
- Bian, X.; Chi, L.; Gao, B.; Tu, P.; Ru, H.; Lu, K. Gut Microbiome Response to Sucralose and Its Potential Role in Inducing Liver Inflammation in Mice. Front. Physiol. 2017, 8, 487. [Google Scholar] [CrossRef]
- Khanna, D.; Khanna, S.; Khanna, P.; Kahar, P.; Patel, B.M. Obesity: A Chronic Low-Grade Inflammation and Its Markers. Cureus 2022, 14, e22711. [Google Scholar] [CrossRef]
- World Health Organization; Magali, R.-L.; Jason, M. Health Effects of the Use of Non-Sugar Sweeteners: A Systematic Review and Meta-Analysis. World Health Organization. 2022. Available online: https://iris.who.int/handle/10665/353064 (accessed on 13 May 2025). License: CC BY-NC-SA 3.0 IGO.
- Debras, C.; Deschasaux-Tanguy, M.; Chazelas, E.; Sellem, L.; Druesne-Pecollo, N.; Esseddik, Y.; Szabo de Edelenyi, F.; Agaësse, C.; De Sa, A.; Lutchia, R.; et al. Artificial Sweeteners and Risk of Type 2 Diabetes in the Prospective NutriNet-Santé Cohort. Diabetes Care 2023, 46, 1681–1690. [Google Scholar] [CrossRef]
- Mohan, V.; Manasa, V.S.; Abirami, K.; Unnikrishnan, R.; Gayathri, R.; Geetha, G.; RamyaBai, M.; Padmavathi, S.; Rajalakshmi, M.; Pradeepa, R.; et al. Effect of Replacing Sucrose in Beverages with Nonnutritive Sweetener Sucralose on Cardiometabolic Risk Factors Among Asian Indian Adults with Type 2 Diabetes: A 12-Week Randomized Controlled Trial. Diabetes Ther. 2024, 15, 2061–2077. [Google Scholar] [CrossRef]
- Scott, C.E.; Stamataki, N.; Harrold, J.A.; Raben, A.; Halford, J.C.G. Health Impact Database Development for Sweeteners and Sweetness Enhancers: The SWEET Project. Nutr. Bull. 2025, 50, 340–344. [Google Scholar] [CrossRef]
- Gauthier, E.; Milagro, F.I.; Navas-Carretero, S. Effect of low-and non-calorie sweeteners on the gut microbiota: A review of clinical trials and cross-sectional studies. Nutrition 2024, 117, 112237. [Google Scholar] [CrossRef]
- Fan, Y.; Pedersen, O. Gut microbiota in human metabolic health and disease. Nat. Rev. Microbiol. 2021, 19, 55–71. [Google Scholar] [CrossRef]
- Pang, M.D.; Kjølbæk, L.; Bastings, J.J.A.J.; Andersen, S.S.H.; Umanets, A.; Sost, M.M.; Navas-Carretero, S.; Reppas, K.; Finlayson, G.; Hodgkins, C.E.; et al. Effect of sweeteners and sweetness enhancers on weight management and gut microbiota composition in individuals with overweight or obesity: The SWEET study. Nat. Metab. 2025, 1–26. [Google Scholar] [CrossRef] [PubMed]
- Rosales-Gómez, C.A.; Martínez-Carrillo, B.E.; Reséndiz-Albor, A.A.; Ramírez-Durán, N.; Valdés-Ramos, R.; Mondragón-Velásquez, T.; Escoto-Herrera, J.A. Chronic Consumption of Sweeteners and Its Effect on Glycaemia, Cytokines, Hormones, and Lymphocytes of GALT in CD1 Mice. BioMed Res. Int. 2018, 1, 1345282. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, D.M.; Abdelgawad, M.A.; Ghoneim, M.M.; Alhossan, A.; Al-Serwi, R.H.; Farouk, A. Impact of Some Natural and Artificial Sweeteners Consumption on Different Hormonal Levels and Inflammatory Cytokines in Male Rats: In Vivo and In Silico Studies. ACS Omega 2024, 9, 30364–30380. [Google Scholar] [CrossRef] [PubMed]
- Guo, M.; Liu, X.; Tan, Y.; Kang, F.; Zhu, X.; Fan, X.; Wang, C.; Wang, R.; Liu, Y.; Qin, X.; et al. Sucralose Enhances the Susceptibility to Dextran Sulfate Sodium (DSS) Induced Colitis in Mice with Changes in Gut Microbiota. Food Funct. 2021, 12, 9380–9390. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Percie Du Sert, N.; Hurst, V.; Ahluwalia, A.; Alam, S.; Avey, M.T.; Baker, M.; Browne, W.J.; Clark, A.; Cuthill, I.C.; Dirnagl, U.; et al. The ARRIVE Guidelines 2.0: Updated Guidelines for Reporting Animal Research. PLoS Biol. 2020, 18, e3000410. [Google Scholar] [CrossRef]
- Hooijmans, C.R.; Rovers, M.M.; De Vries, R.B.; Leenaars, M.; Ritskes-Hoitinga, M.; Langendam, M.W. SYRCLE’s Risk of Bias Tool for Animal Studies. BMC Med. Res. Methodol. 2014, 14, 43. [Google Scholar] [CrossRef]
- Abdel-Salam, O.M.E.; Salem, N.A.; Hussein, J.S. Effect of Aspartame on Oxidative Stress and Monoamine Neurotransmitter Levels in Lipopolysaccharide-Treated Mice. Neurotox. Res. 2012, 21, 245–255. [Google Scholar] [CrossRef]
- Lawal, A.O.; Agboola, O.O.; Akinjiyan, M.O.; Ijatuyi, T.T.; Dahunsi, D.T.; Okeowo, O.M.; Folorunso, I.M.; Olajuyigbe, O.J.; Elekofehinti, O.O. The Antioxidative, Anti-Inflammatory and Anti-Apoptotic Effects of Tetrapleura Tetraptera (Aidan) Ethanol Leaf Extract in the Brain of Wistar Rats Exposed to Aspartame. Mol. Neurobiol. 2025, 62, 9430–9448. [Google Scholar] [CrossRef]
- Yang, L.; Wang, S.; Jin, J.; Wang, J.; Chen, W.; Xue, Y.; Sheng, L.; Zhai, Y.; Yao, W. Sucralose Triggers Insulin Resistance Leading to Follicular Dysplasia in Mice. Reprod. Toxicol. 2024, 128, 108644. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Sui, W.; Chen, S.; Guo, Z.; Jing, X.; Wang, X.; Wang, Q.; Yu, X.; Xiong, W.; Ji, J.; et al. Sweetener Aspartame Aggravates Atherosclerosis through Insulin-Triggered Inflammation. Cell Metab. 2025, 37, 1075–1088. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Carrillo, B.E.; Rosales-Gómez, C.A.; Ramírez-Durán, N.; Reséndiz-Albor, A.A.; Escoto-Herrera, J.A.; Mondragón-Velásquez, T.; Valdés-Ramos, R.; Castillo-Cardiel, A. Effect of Chronic Consumption of Sweeteners on Microbiota and Immunity in the Small Intestine of Young Mice. Int. J. Food Sci. 2019, 2019, 9619020. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.-H.; Li, H.-Y.; Wang, S.-H.; Chen, Y.-H.; Chen, Y.-C.; Wu, H.-T. Consumption of Non-Nutritive Sweetener, Acesulfame Potassium Exacerbates Atherosclerosis through Dysregulation of Lipid Metabolism in ApoE−/− Mice. Nutrients 2021, 13, 3984. [Google Scholar] [CrossRef]
- Ma, H.; Deng, J.; Liu, J.; Jin, X.; Yang, J. Daytime Aspartame Intake Results in Larger Influences on Body Weight, Serum Corticosterone Level, Serum/Cerebral Cytokines Levels and Depressive-like Behaviors in Mice than Nighttime Intake. NeuroToxicology 2024, 102, 37–47. [Google Scholar] [CrossRef]
- Finamor, I.A.; Bressan, C.A.; Torres-Cuevas, I.; Rius-Pérez, S.; Da Veiga, M.; Rocha, M.I.; Pavanato, M.A.; Pérez, S. Long-Term Aspartame Administration Leads to Fibrosis, Inflammasome Activation, and Gluconeogenesis Impairment in the Liver of Mice. Biology 2021, 10, 82. [Google Scholar] [CrossRef]
- U-pathi, J.; Yeh, Y.-C.; Chen, C.-W.; Owaga, E.E.; Hsieh, R.-H. Relationship between Aspartame-Induced Cerebral Cortex Injury and Oxidative Stress, Inflammation, Mitochondrial Dysfunction, and Apoptosis in Sprague Dawley Rats. Antioxidants 2023, 13, 2. [Google Scholar] [CrossRef]
- Zhong, M.; Li, L.; Liu, W.; Wen, W.; Ma, L.; Jin, X.; Li, G.; Yang, J. Acceptable Daily Intake of Aspartame Aggravates Enteritis Pathology and Systemic Inflammation in Colitis Mouse Model. J. Food Sci. 2024, 89, 10202–10221. [Google Scholar] [CrossRef]
- Lebda, M.A.; Tohamy, H.G.; El-Sayed, Y.S. Long-Term Soft Drink and Aspartame Intake Induces Hepatic Damage via Dysregulation of Adipocytokines and Alteration of the Lipid Profile and Antioxidant Status. Nutr. Res. 2017, 41, 47–55. [Google Scholar] [CrossRef]
- Babatunde, O.O.; Christiana, A.B.; Sunday, O.I.; Philemon, A.O.; Tolulope, A.S.; Meashack, I.O.; Ganiyu, O. Comparative Effect of Selected Caloric and Non-Caloric Sweeteners on Some Neuroinflammatory Indices in Brain Cortex and Hippocampus of Scopolamine-Induced Rat. Nutrire 2024, 49, 13. [Google Scholar] [CrossRef]
- Farahi, S.M.M.; Forouzanfar, F.; Memar, B.; Rashidi, R.; Mahdipour, R.; Riahi-Zanjani, B.; Sadeghi, M. Aspartame Subacute Exposure Does Not Affect Immune System of BALB/c Mice Following a Tiered Approach. Tissue Cell 2025, 93, 102657. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Gu, J.; Zhao, C.; Hu, Y.; Zhang, B.; Wang, J.; Lv, H.; Ji, X.; Wang, S. Sweeteners Maintain Epithelial Barrier Function Through the miR-15b/RECK/MMP-9 Axis, Remodel Microbial Homeostasis, and Attenuate Dextran Sodium Sulfate-Induced Colitis in Mice. J. Agric. Food Chem. 2022, 70, 171–183. [Google Scholar] [CrossRef] [PubMed]
- Hanawa, Y.; Higashiyama, M.; Kurihara, C.; Tanemoto, R.; Ito, S.; Mizoguchi, A.; Nishii, S.; Wada, A.; Inaba, K.; Sugihara, N.; et al. Acesulfame Potassium Induces Dysbiosis and Intestinal Injury with Enhanced Lymphocyte Migration to Intestinal Mucosa. J. Gastroenterol. Hepatol. 2021, 36, 3140–3148. [Google Scholar] [CrossRef] [PubMed]
- Madbouly, N.; El-Hadad, G.; El Amir, A.; Farid, A. Hazard Effects of Chronic Consumption of Sucralose and Saccharin-Sodium Cyclamate Mixture in Murine Model. Egypt. J. Chem. 2022, 65, 279–289. [Google Scholar] [CrossRef]
- Chuang, H.-C.; Yang, Y.-C.S.H.; Chou, H.-C.; Chen, C.-M. Maternal Aspartame Exposure Alters Lung Th1/Th2 Cytokine Balance in Offspring through Nuclear Factor-κB Activation. Int. Immunopharmacol. 2025, 145, 113800. [Google Scholar] [CrossRef]
- Ashok, I.; Sheeladevi, R. Oxidant Stress Evoked Damage in Rat Hepatocyte Leading to Triggered Nitric Oxide Synthase (NOS) Levels on Long Term Consumption of Aspartame. J. Food Drug Anal. 2015, 23, 679–691. [Google Scholar] [CrossRef]
- Li, X.; Liu, Y.; Wang, Y.; Li, X.; Liu, X.; Guo, M.; Tan, Y.; Qin, X.; Wang, X.; Jiang, M. Sucralose Promotes Colitis-Associated Colorectal Cancer Risk in a Murine Model Along with Changes in Microbiota. Front. Oncol. 2020, 10, 710. [Google Scholar] [CrossRef]
- Choudhary, A.K.; Sheela Devi, R. Longer Period of Oral Administration of Aspartame on Cytokine Response in Wistar Albino Rats. Endocrinol. Nutr. 2015, 62, 114–122. [Google Scholar] [CrossRef]
- Bridge-Comer, P.E.; Vickers, M.H.; Ferraro, S.; Pagnon, A.; Reynolds, C.M.; Sigaudo-Roussel, D. Maternal Intake of Either Fructose or the Artificial Sweetener Acesulfame-K Results in Differential and Sex-Specific Alterations in Markers of Skin Inflammation and Wound Healing Responsiveness in Mouse Offspring: A Pilot Study. Nutrients 2023, 15, 2534. [Google Scholar] [CrossRef]
- He, X.; Zhong, Q.; Yan, K.; Li, G.; Yang, J. Oral Exposure to an Acceptable Daily Intake Dose of Aspartame Induced a Delayed Proinflammatory Cytokine Response in the Cerebrospinal Fluid of Rats. Food Chem. Toxicol. 2023, 178, 113931. [Google Scholar] [CrossRef]
- Zhai, Z.; Zhang, Y.; Liang, X.; Li, J.; Chen, Z.; Zhang, J.; Li, W.; Wang, T.; He, Q.; Li, F.; et al. Acesulfame Potassium Triggers Inflammatory Bowel Disease via the Inhibition of Focal Adhesion Pathway. J. Hazard. Mater. 2024, 476, 134901. [Google Scholar] [CrossRef]
- Escoto, J.A.; Martínez-Carrillo, B.E.; Ramírez-Durán, N.; Ramírez-Saad, H.; Aguirre-Garrido, J.F.; Valdés-Ramos, R. Consumo crónico de edulcorantes en ratones y su efecto sobre el sistema inmunitario y la microbiota del intestino delgado. Biomédica 2021, 41, 504–530. [Google Scholar] [CrossRef]
- Lü, K.; Song, X.; Zhang, P.; Zhao, W.; Zhang, N.; Yang, F.; Guan, W.; Liu, J.; Huang, H.; Ho, C.-T.; et al. Effects of Siraitia Grosvenorii Extracts on High Fat Diet-Induced Obese Mice: A Comparison with Artificial Sweetener Aspartame. Food Sci. Hum. Wellness 2022, 11, 865–873. [Google Scholar] [CrossRef]
- Liu, Q.K. Mechanisms of Action and Therapeutic Applications of GLP-1 and Dual GIP/GLP-1 Receptor Agonists. Front. Endocrinol. 2024, 15, 1431292. [Google Scholar] [CrossRef]
- Dai, X.; Guo, Z.; Chen, D.; Li, L.; Song, X.; Liu, T.; Jin, G.; Li, Y.; Liu, Y.; Ajiguli, A.; et al. Maternal Sucralose Intake Alters Gut Microbiota of Offspring and Exacerbates Hepatic Steatosis in Adulthood. Gut Microbes 2020, 11, 1043–1063. [Google Scholar] [CrossRef] [PubMed]
- Farid, A.; Hesham, M.; El-Dewak, M.; Amin, A. The hidden hazardous effects of stevia and sucralose consumption in male and female albino mice in comparison to sucrose. Saudi Pharm. J. 2020, 28, 1290–1300. [Google Scholar] [CrossRef] [PubMed]
- Dai, X.; Wang, C.; Guo, Z.; Li, Y.; Liu, T.; Jin, G.; Wang, S.; Wang, B.; Jiang, K.; Cao, H. Maternal sucralose exposure induces Paneth cell defects and exacerbates gut dysbiosis of progeny mice. Food Funct. 2021, 12, 12634–12646. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Tapia, M.; Miller, A.W.; Granados-Portillo, O.; Tovar, A.R.; Torres, N. The Development of Metabolic Endotoxemia Is Dependent on the Type of Sweetener and the Presence of Saturated Fat in the Diet. Gut Microbes 2020, 12, 1801301. [Google Scholar] [CrossRef]
- Sánchez-Tapia, M.; Martínez-Medina, J.; Tovar, A.R.; Torres, N. Natural and Artificial Sweeteners and High Fat Diet Modify Differential Taste Receptors, Insulin, and TLR4-Mediated Inflammatory Pathways in Adipose Tissues of Rats. Nutrients 2019, 11, 880. [Google Scholar] [CrossRef]
- Shou, N.; Rensing, C.; Lin, Q.; Xu, W.; Fu, K.; Yuan, X.; Wu, D.; Wang, F.; Li, Y.; Shi, Z. Acesulfame Potassium Induces Hepatic Inflammation and Fatty Acids Accumulation via Disturbance of Carnitine Metabolism and Gut Microbiota. Food Biosci. 2024, 62, 105101. [Google Scholar] [CrossRef]
- Riboli, E.; Beland, F.A.; Lachenmeier, D.W.; Marques, M.M.; Phillips, D.H.; Schernhammer, E.; Afghan, A.; Assunção, R.; Caderni, G.; Corton, J.C.; et al. Carcinogenicity of Aspartame, Methyleugenol, and Isoeugenol. Lancet Oncol. 2023, 24, 848–850. [Google Scholar] [CrossRef] [PubMed]
- Huwart, S.J.P.; Fayt, C.; Gangarossa, G.; Luquet, S.; Cani, P.D.; Everard, A. TLR4-Dependent Neuroinflammation Mediates LPS-Driven Food-Reward Alterations during High-Fat Exposure. J. Neuroinflamm. 2024, 21, 305. [Google Scholar] [CrossRef]
- Baird, I.M.; Shephard, N.W.; Merritt, R.J.; Hildick-Smith, G. Repeated Dose Study of Sucralose Tolerance in Human Subjects. Food Chem. Toxicol. Int. J. Publ. Br. Ind. Biol. Res. Assoc. 2000, 38, 123–129. [Google Scholar] [CrossRef]
- Schiffman, S.S.; Rother, K.I. Sucralose, a Synthetic Organochlorine Sweetener: Overview of Biological Issues. J. Toxicol. Environ. Health B Crit. Rev. 2013, 16, 399–451. [Google Scholar] [CrossRef]
- Aguayo-Guerrero, J.A.; Méndez-García, L.A.; Solleiro-Villavicencio, H.; Viurcos-Sanabria, R.; Escobedo, G. Sucralose: From Sweet Success to Metabolic Controversies-Unraveling the Global Health Implications of a Pervasive Non-Caloric Artificial Sweetener. Life 2024, 14, 323. [Google Scholar] [CrossRef]
- EFSA Panel on Food Additives and Flavourings (FAF); Castle, L.; Andreassen, M.; Aquilina, G.; Bastos, M.L.; Boon, P.; Fallico, B.; FitzGerald, R.; Frutos Fernandez, M.J.; Grasl-Kraupp, B.; et al. Re-Evaluation of Acesulfame K (E 950) as Food Additive. EFSA J. Eur. Food Saf. Auth. 2025, 23, e9317. [Google Scholar] [CrossRef]
- EFSA Panel on Food Additives and Flavourings (FAF); Castle, L.; Andreassen, M.; Aquilina, G.; Bastos, M.L.; Boon, P.; Fallico, B.; FitzGerald, R.; Frutos Fernandez, M.J.; Grasl-Kraupp, B.; et al. Re-Evaluation of Saccharin and Its Sodium, Potassium and Calcium Salts (E 954) as Food Additives. EFSA J. Eur. Food Saf. Auth. 2024, 22, e9044. [Google Scholar] [CrossRef]
- Sylvetsky, A.C.; Mitchell, E.L.; Grilo, M.F.; Um, C.Y.; Wang, Y.; Hodge, R.A.; Patel, A.V.; McCullough, M.L. Cross-Sectional Associations between Consumption of Non-Nutritive Sweeteners and Diet Quality among United States Adults in the Cancer Prevention Study-3. Am. J. Clin. Nutr. 2025, 121, 663–674. [Google Scholar] [CrossRef]
- Miller, P.E.; Perez, V. Low-calorie sweeteners and body weight and composition: A meta-analysis of randomized controlled trials and prospective cohort studies. Am. J. Clin. Nutr. 2014, 100, 765–777. [Google Scholar] [CrossRef]
- McGlynn, N.D.; Khan, T.A.; Wang, L.; Zhang, R.; Chiavaroli, L.; Au-Yeung, F.; Lee, J.J.; Noronha, J.C.; Comelli, E.M.; Blanco Mejia, S.; et al. Association of Low- and No-Calorie Sweetened Beverages as a Replacement for Sugar-Sweetened Beverages With Body Weight and Cardiometabolic Risk: A Systematic Review and Meta-analysis. JAMA Netw. Open 2022, 5, e222092. [Google Scholar] [CrossRef]
- Fitch, S.E.; Payne, L.E.; van de Ligt, J.L.G.; Doepker, C.; Handu, D.; Cohen, S.M.; Anyangwe, N.; Wikoff, D. Use of acceptable daily intake (ADI) as a health-based benchmark in nutrition research studies that consider the safety of low-calorie sweeteners: A systematic map. BMC Public Health 2021, 21, 956. [Google Scholar] [CrossRef]
- Knezovic, Z.; Jurcevic Zidar, B.; Pribisalic, A.; Luetic, S.; Jurcic, K.; Knezovic, N.; Sutlovic, D. Artificial Sweeteners in Food Products: Concentration Analysis, Label Practices, and Cumulative Intake Assessment in Croatia. Nutrients 2025, 17, 1110. [Google Scholar] [CrossRef]

| Criteria | Definition |
|---|---|
| Participants | Animals (e.g., rodents or primates) are used in controlled laboratory experiments |
| Exposure | Any artificial sweeteners, oral consumption: ASP, SUC, saccharin, Ace-K, neotame, or advantame |
| Comparator | Any alternative intervention: any other type of caloric or non-caloric sweetener, any sugar, placebo, or plain water |
| Outcomes | Between-group variations in inflammation-related biomarkers:
|
| Study design | All animal studies |
| First Author, Year of Publication | Animal Type | Animal Sex | Animal Weight | Animal | Studied Artificial Sweeteners |
|---|---|---|---|---|---|
| Abdel-Salam, 2012 [21] | Wistar albino rats | male | 20–22 g | n.r. | ASP |
| Ashok, 2015 [38] | Wistar strain Albino rats | male | 200–220 g | n.r. | ASP |
| Babatunde, 2024 [32] | C57BL/6 Mice | male | 180–230 g | n.r. | ASP |
| Bian, 2017 [5] | C57BL/6 Mice | male | 23 g | 8 weeks old | SAC |
| Bian, 2017 [6] | CD-1 Mice | male | n.r. | 8 weeks old | SUC |
| Bridge-Comer, 2023 [41] | Sprague Dawley rats | female | n.r. | 10 weeks old | Ace-K |
| Choudhary, 2015 [40] | Wistar rats | male | 200–220 g | n.r. | ASP |
| Chuang, 2025 [37] | Wistar albino rats | female | 25 g | n.r. | ASP |
| Dai, 2020 [47] | BALB/c Mice | female | n.r. | 8 weeks old | SUC |
| Dai, 2021 [49] | ApoE-/- Mice | female | n.r. | 8 weeks old | SUC |
| Escoto, 2021 [44] | BALB/c Albino Mice | male | n.r. | 3 weeks old | SUC |
| Farahi, 2025 [33] | C57BL/6J (mice) | female | 19–21 g | 6–8-week-old | ASP |
| Farid, 2020 [48] | Swiss Mice | male, female | 18–20 g | 6 weeks old | SUC |
| Finamor, 2021 [28] | C57BL/6J Mice | male | 30 g | 3 months old | ASP |
| Guo, 2021 [17] | C57BL/6 Mice | male | 20–25 g | n.r. | SUC |
| Hanawa, 2021 [35] | C57BL/6 Mice | male | n.r. | 8 weeks old | Ace-K, SAC, SUC |
| He, 2023 [42] | Sprague Dawley rats | female | 230–250 g | 9–10 weeks old | ASP |
| Lawal, 2025 [22] | Wistar rats | male | 80–100 g | 5 weeks old | ASP |
| Lebda, 2017 [31] | C57BL/6J Mice | male | 187.67 ± 15.14 g | 6–8 weeks old | ASP |
| Li, 2020 [39] | Wistar rats | n.r. | n.r. | 4 weeks old | SUC |
| Lin, 2021 [26] | C57BL/6 Mice | male | n.r. | 8 weeks old | Ace-K |
| Liu, 2024 [46] | BALB/c Mice | male | n.r. | n.r. | ASP |
| Lü, 2022 [45] | C57BL/6J Mice | n.r. | n.r. | 6 weeks old | ASP |
| Ma, 2024 [27] | C57BL/6 Mice | male | 21.55–21.65 g | 6 months old | ASP |
| Madbouly, 2022 [36] | Wistar rats | male | 17–20 g | 4–6 weeks old | SUC, SAC |
| Martínez-Carrillo, 2019 [25] | C57BL/6 mice | n.r. | n.r. | 21 days old | SUC |
| Mohammed, 2024 [16] | C57BL/6 Mice | male | 180 ± 20 g | 2 months | ASP, SUC |
| Rosales-Gómez, 2018 [15] | Wistar rats | n.r. | n.r. | 21 days old | SUC |
| Sánchez-Tapia, 2019 [51] | 72 CD1 Mice | male | n.r. | 5 weeks old | SUC |
| Sánchez-Tapia, 2020 [50] | BALB/c albino mice | male | n.r. | 5 weeks old | SUC |
| Shou, 2024 [52] | Swiss albino Mice | male | n.r. | 8 weeks old | Ace-K |
| U-pathi, 2024 [29] | C57BL/6 Mice | female | 120–140 g | 7 weeks old | ASP |
| Wu, 2025 [24] | Mice and Monkeys | male | n.r. | 6–8 weeks | ASP |
| Yang, 2024 [23] | C57BL/6 Mice, zebrafish | female | n.r. | 8 weeks old | SUC |
| Zhai, 2024 [43] | Sprague Dawley Rats | male | 22–25 g | 8 weeks old | Ace-K |
| Zhang, 2022 [34] | C57Bl/6 Mice | male | 18–22 g | 6–8 weeks old | SUC, SAC |
| Zhong, 2024 [30] | C57BL/6J Mice | male | n.r. | 8 weeks old | ASP |
| Study | Animal Type | Sample Size | Time Exposure | Dose Exposure | Control Type | Outcomes | Significant * Variations of Inflammation Markers Between the Initiation and Final Timepoints | Non-Significant Variations of Inflammation Markers Between the Initiation and Final Timepoints |
|---|---|---|---|---|---|---|---|---|
| Abdel-Salam, 2012 [21] | Swiss albino Mice | N = 60 (6 × 10 groups) | 4 h | 0.625, 1.875, 5.625, 11.25, 22.5, and 45 mg/kg | Saline, LPS | TNF-α | At 22.5 and 45 mg/kg: ↑ TNF-α (+16.7% and +44%) vs. saline | TNF-α (ASP + LPS vs. LPS) at 0.625, 1.875, 5.625, 11.25, 22.5 mg/kg |
| Ashok, 2015 [38] | Wistar albino rats | N = 18 (6/6/6) | 90 days | 40 mg/kg | Saline, MTX | iNOS c-fos TNF-α Hsp70 JNK3 NFkB | ↑ iNOS, c-fos, Hsp70, TNF-α, JNK3, NF-κB (mRNA) in ASP + MTX vs. saline and MTX ↑ iNOS, c-fos, Hsp70, JNK3 in ASP + MTX vs. saline and MTX | |
| Choudhary, 2015 [40] | Wistar albino rats | N = 48 (6 × 8 groups) | 90 days | 40 mg/kg | Saline | TNF-α IL-2 IL-4 IFN-γ | ↓ IL-2, TNF-α, IFN-γ vs. saline ↑ IL-4 vs. saline | |
| Lebda, 2017 [31] | Wistar strain albino rats | N = 30 (10/10/10) | 2 months | 240 mg/kg | Water, soft drink | Leptin Adiponectin PPAR-γ | ↑ Leptin vs. water ↓ Adiponectin, PPAR-γ vs. water | |
| Finamor, 2021 [28] | Swiss Mice | N = 12 (6/6) | 12 weeks | 80 mg/kg | Water | IL-6 CXCL1 IL-1b IL-18 IL-10 | ↑ IL-6, CXCL1 (IL-8), IL-1b, IL-18 (mRNA) vs. water ↓ IL-10 (mRNA) vs. water | |
| Lü, 2022 [45] | C57BL/6J Mice | n.r. | 18 weeks | 0.5 mg/mL | Control, HFD, HFD + SG | Leptin MCP-1 TNF-α | ↑ leptin, TNF-α, MCP-1 vs. SG | |
| He, 2023 [42] | Sprague Dawley rats | N = 96 (24/24/24/24) | 1, 2, 4 or 8 weeks | 40 mg/kg | Distilled water | TNF-α IL-6 IL-1β IL-4 | ↑ IL-1β, IL-6, TNF-α in blood vs. water ↑ IL-1β, IL-6, TNF-α in brain vs. water ↑ IL-1β, IL-6, TNF-α (mRNA) in brain vs. water ↑ IL-1β, IL-6, TNF-α in CSF vs. water ↑ IL-4 in serum vs. water ↑ IL-4 in CSF vs. water | IL-4 in brain vs. water |
| Liu, 2024 [46] | C57BL/6J Mice | N = 50 (10/10/10/10/10) | 14 days | 25, 50, 100 mg/kg | Saline | IL-1 IL-6 TNF-α | IL-1β, IL-6, TNF-α in serum at 100 mg/kg | |
| Zhong, 2024 [30] | C57BL/6 Mice | N = 48 (12/12/12/12) N = 24 (6/6/6/6) | 7 days | 40 mg/kg | Distilled water, DSS | TNF-α IL-6 IL-1β Macrophages Neutrophils | ↑ TNF-α, IL-1β, IL-6 in colon (ASP + DSS vs. DSS) ↑ TNF-α, IL-1β, IL-6 in serum (ASP + DSS vs. DSS) ↑ Macrophages and neutrophils in colon (ASP + DSS vs. DSS) | IL-1β, IL-6, TNF-α in colon vs. water IL-1β, IL-6, TNF-α in serum vs. water Macrophages and neutrophils in colon vs. water |
| Mohammed, 2024 [16] | Sprague Dawley Rats | N = 30 (6/6/6/6/6) | 12 weeks | 40 mg/kg | Saline, Sucrose, Sorbitol | TNF-α IL-6 IL-1 IL-1β IL-10 IFN-γ | ↑ TNF-α, IFN-γ, IL-1, IL-6, IL-10, IL-1β vs. all groups | |
| Ma, 2024 [27] | C57BL/6 Mice | N = 40 (10/10/10/10) | 4 weeks | 80 mg/kg | Saline | IFN-γ TNF-α IL-6 IL-4 IL-10 | ↑ TNF-α, IFN-γ, IL-6, IL-4 in serum vs. saline ↓ IL-10 in serum vs. saline ↑ TNF-α, IL-6, IFN-γ, IL-4 in the prefrontal cortex and hippocampus vs. saline ↓ IL-10 in the prefrontal cortex and hippocampus vs. saline | |
| U-pathi, 2024 [29] | Sprague Dawley rats | N = 19 (5/7/7) | 8 weeks | 30 mg/kg (LA), 60 mg/kg (HA) | Water | TNFα IL-6 IL-1β NFκB iNOS IκB | ↑ TNF-α, IL-6, IL-1β in cerebral cortex vs. water (HA > LA) ↑ NF-κB, iNOS vs. water (HA > LA) ↓ IκB vs. water (HA > LA) | |
| Babatunde, 2024 [32] | Wistar rats | N = 36 (6 × 6 groups) | 14 days | 17 mg/kg (LA) and 67 mg/kg (HA) | Water, Sucrose, SCOP | TNF-α IBA1 cells | ↑ TNF-α in hippocampus and cortex (ASP + SCOP vs. water) ↑ TNF-α in hippocampus and cortex (SUC + SCOP > ASP + SCOP) ↑ IBA1 in hippocampus and cortex (ASP + SCOP vs. water) ↑ IBA1 in cortex ASP + SCOP > all groups | TNF-α in hippocampus and cortex SCOP + ASP vs. SCOP |
| Wu, 2025 [24] | Mice C57BL/6J and Monkeys | n.r. | n.r. | 0.05%, 0.1% or 0.15%, p/p | Sucrose, Water | CX3CL1 | ↑ CX3CL1 vs. controls | |
| Farahi, 2025 [33] | BALB/c Mice | N = 54 (6 × 9 groups) | 2 weeks | 400, 2000 mg/kg | Saline | Neutrophils Lymphocytes Monocytes White blood cells IFN-γ IL-4 | Neutrophils, lymphocytes, monocytes, and white blood cells at 400 and 2000 mg/kg (p > 0.05) IFN-γ and IL-4 vs. saline (p-value for IFN-γ = 0.47. p-value for IL-4 = 0.21) | |
| Chuang, 2025 [37] | BALB/c Mice | n.r. | 3 weeks | 0.25 g/L (4 mL/day) | Water | IL-4 IL-5 IL-13 IL-17 IFN-γ NF-κB IκBα | Results in offspring: ↑ IL-4, IL-5, IL-13, IL-17 in lungs vs. water ↓ IFN-γ in lungs vs. water ↑NF-κB vs. water ↓ IκBα in lungs vs. water | |
| Lawal, 2025 [22] | Wistar rats | N = 30 (5 × 6) | 14 days | 40 mg/kg | Water TT | TNF-α IL-6 IL-1β IL-10 | ↑ TNF-α, IL-6, IL-1β vs. all groups ↓ IL-10 vs. all groups |
| Study | Animal Type | Sample Size | Time Exposure | Dose Exposure | Control Type | Outcomes | Significant * Variations in Inflammation Markers Between the Initiation and Final Timepoints | Non-Significant Variations in Inflammation Markers Between the Initiation and Final Timepoints |
|---|---|---|---|---|---|---|---|---|
| Bian, 2017 [5] | C57BL/6 Mice | 20 (10/10) | 6 months | 0.1 mg/mL (5 mg/kg/day) | Water | MMP-2 iNOS TNF-α IL-6 MMP-9 IL-1β | ↑ MMP-2, iNOS (mRNA) in the liver vs. water | TNF-α, IL-6, MMP-9, IL-1β (mRNA) in the liver vs. control |
| Rosales-Gómez, 2018 [15] | CD-1 Mice | 72 (8/32/32) | 6 weeks, 12 weeks | 4.16 mg/mL | Water, Sucrose, Stevia | IL-4 IL-5 IL-10 IFN-γ TNF-α | ↓ IFN-γ in Peyer’s patches vs. water/sucrose ↑ TNF-α in Peyer’s patches vs. water/sucrose ↓ IL-4 in Peyer’s patches vs. all groups ↑ IL-5 in Peyer’s patches vs. water ↓ IL-10 in Peyer’s patches vs. all groups ↑ TNF-α in lamina propria vs. water/sucrose ↑ IL-4 in lamina propria vs. all groups | |
| Martínez-Carrillo, 2019 [25] | CD1 Mice | 72 (8 × 9) | 6 weeks, 12 weeks | 4.1 mg/mL (Splenda®, Svetia®) | Water, Sucrose, | TNF-α IL-6 IL-17 CD8+ CD4+ CD3+ | ↑ CD8+, IL-6 and IL-17 in Peyer’s patches vs. water/sucrose ↑ CD4+, IL-6 and IL-17 in lamina propria vs. water/sucrose ↓ CD8+ in lamina propria vs. water/sucrose | CD3+ in lamina propria vs. water/sucrose TNF-α vs. water/sucrose |
| Sánchez-Tapia, 2019 [51] | Wistar rats | 108 (18 × 6) | 4 months | 1.5% | Water, Sucrose, Glucose, Honey, Fructose, Brown sugar | TNF-α TLR4 Myd88 JNK NF-kB | ↑ TLR4, Myd88, JNK, TNF-α in adipose tissue vs. water | NF-kB in adipose tissue vs. water |
| Farid, 2020 [48] | BALB/c albino mice | 80 (16 × 5) | 8 weeks, 16 weeks | 5.2 mg/mL | Water, Sucrose, Stevia | LPS IL-10 IL-8 IL-6 | ↑ LPS, IL-6, IL-8 vs. water ↓ IL-10 vs. water | |
| Sánchez-Tapia, 2020 [50] | Wistar rats | 108 (18 × 6) | 4 months | 1.5% in water | Water, Sucrose, Glucose, Honey, Fructose, Brown sugar | TLR-4 TLR-2 NF-kB | ↑ TLR4, TLR-2, NF-kB in colon | |
| Li, 2020 [39] | C57BL/6 mice | n.r. | 36 days | 1.5 mg/mL | Water, AOM/DSS | TNFα IL-1β IL-6 IL-10 TLR4 Myd88 NF-κB TRAF6 IκBα | ↑ TNF-α, TLR4 (mRNA) in colon vs. water ↑ TNF-α, IL-1β (mRNA) in colon (AOM/DSS + SUC vs. AOM/DSS) ↓ IL-10, TRAF6 (mRNA) in colon (AOM/DSS + SUC vs. AOM/DSS) ↑ TNF-α, TLR4, MyD88 in colon vs. water ↓ IL-10, IκBα in colon vs. water ↑ TNF-α, TLR4, MyD88 in colon (AOM/DSS + SUC vs. AOM/DSS) ↓ IL-10, IκBα, TRAF6 in colon (AOM/DSS + SUC vs. AOM/DSS) | |
| Dai, 2020 [47] | C57BL/6 Mice | n.r. | 6 weeks | 5–15 mg/kg | Water | TNF-α IFN-γ IL-1β IL-6 | ↑ IL-1β, IFN-γ, TNF-α (mRNA) in colon vs. water ↑ TNF-α, IL-1β, IL-6 in colon vs. water ↑ IL-6, TNF-α (mRNA) in liver vs. water | |
| Dai, 2021 [49] | C57BL/6 Mice | 8 (then 12/12 pups) | 6 weeks | 5 mg/kg | Water | IL-6 IL-1β TNFα IFN-γ | ↑ IL-1β, TNF-α (mRNA) in small intestine vs. water | IL-6, IFN-γ (mRNA) in small intestine vs. water |
| Guo, 2021 [17] | C57BL/6 Mice | 24 (6/6/6/6) | 6 weeks | 1.5 mg/mL | Water, DSS | TLR5 MyD88 NF-κB TNFα IL1-β IL-10 IL-18 IL-17a IL-22 NLRP6 NLRP3 NLRP12 | ↑ NF-κB, MyD88, TLR5 (mRNA) in colon vs. water ↑ IL-22, ↓ IL-10, ↓ NLRP12 in colon vs. water ↑ TNFα, IL1-β, IL-18, IL-17a, IL-22, NLRP3 in colon (SUC + DSS vs. DSS) ↓ IL-10, NLRP12 in colon (SUC + DSS vs. DSS) | |
| Escoto, 2021 [44] | CD1 Mice | 54 (6/24/24) | 6–12 weeks | 4.16 mg/mL | Sucrose, Stevia | TGF-β IL-12 IL-17 | ↑ IL-12, IL-17 vs. control ↓ TGF-β vs. control | |
| Zhang, 2022 [34] | C57BL/6 Mice | 50 (10/10/10/10/10) | 28 days | 5 mg/kg | Water, DSS | TNF-α IL-6 IL-17A | ↑ IL-6, IL-17A, TNF-α (mRNA) in colonic tissue (DSS + SUC vs. water) ↓ TNF-α, IL-17A, IL-6 (mRNA) in colonic tissue (DSS + SUC vs. DSS) ↑ IL-6, IL-17A, TNF-α in colonic tissue (DSS + SUC vs. water) ↓ TNF-α, IL-17A, IL-6 in colonic tissue (DSS + SUC vs. DSS) | |
| Madbouly, 2022 [36] | BALB/c Albino Mice | 100 (5 × 20) | 8 weeks, 16 weeks | 0.3 mg/mL | Water, SAC- cyclamate mixture | TNF-α IL-6 LPS | ↑ IL-6 vs. water ↑ LPS vs. water ↑ LPS vs. SAC- cyclamate | TNF-α vs. water TNF-α, IL-6 vs. SAC- cyclamate |
| Yang, 2024 [23] | C57BL/6 Mice | 21 (7/7/7) | 12 weeks | 0.1 mg/mL | Water | LPS IL-6 | ↑ LPS and IL-6 vs. control | |
| Mohammed, 2024 [16] | Sprague Dawley Rats | N = 30 (6/6/6/6/6) | 12 weeks | 5 mg/kg | Saline, Sucrose, Sorbitol | TNF-α IL-6 IL-1 IL-1β IL-10 IFN-γ | ↑ TNF-α, IFN-γ, IL-1, IL-6, IL-10, IL-1β vs. controls | |
| Hanawa, 2021 [35] | C57BL/6J Mice | n.r. | 8 weeks | 150 mg/kg | Water | TNF-α IFN-γ IL1-β MAdCAM-1 GLP1R GLP2R | IFN-γ, IL-1β, and TNF-α vs. control |
| Study | Animal Type | Sample Size | Time Exposure | Dose Exposure | Control Type | Outcomes | Significant * Variations in Inflammation Markers Between the Initiation and Final Timepoints | Non-Significant Variations in Inflammation Markers Between the Initiation and Final Timepoints |
|---|---|---|---|---|---|---|---|---|
| Zhai, 2024 [43] | C57BL/6 Mice, zebrafish | 15 (5/5/5) 36 (12/12/12) | 28 days 21 days | 21 mg/L, 7 mg/L, 10 μg/L, 100 μg/L | Water | Inflammatory cells Mucin Transcriptomic analyses | ↑ infiltration of inflammatory Cells in colon vs. water ↓ secretion of protective Mucin in colon vs. water ↑ inflammation, destruction to the crypt and epithelial cells, depletion of mucus ↑ genes related to cytokine-cytokine receptor, chemokine signaling, and IBD | |
| Bridge-Comer, 2023 [41] | C57Bl/6 Mice | 36 (6/6/6/6/6/6) | 11 weeks offspring | 12.5 mM ACK in drinking water | Water, Fructose | TNF-α IL1b Nlrp3 Vegfa Tgfb Pparg | ↑ TNF-α (mRNA) female offspring in skin Tissue vs. water, fructose | IL-1b, Nlrp3, Vegfa, Tgfb, Pparg (mRNA) female offspring in skin Tissue vs. water, fructose TNF-α, IL-1b, Nlrp3, Vegfa, Tgfb, Pparg (mRNA) male offspring in skin Tissue vs. water, fructose |
| Lin, 2021 [26] | ApoE-/- Mice | 36 (9/9/9/9) | 8 weeks | 15 mg/kg | Saline | TNF-α Ccl2 IL-6 | TNF-α, Ccl2, IL-6 (mRNA) vs. control | |
| Hanawa, 2021 [35] | C57BL/6J Mice | n.r. | 8 weeks | 150 mg/kg | Water | TNF-α IFN-γ IL1-β MAdCAM-1 | ↑ IFN-γ, IL-1β, and TNF-α, MAdCAM-1 (mRNA) in small intestinal mucosa vs. water | |
| Shou, 2024 [52] | C57BL/6 Mice | 24 (8/8/8) | 11 weeks | 40 mg/kg, 120 mg/kg | Water | TNF-α IL-6 IL-1β LPS | ↑ TNFα, IL-6 in high dose vs. water ↑ LPS vs. water | IL-6 in low dose vs. water IL-1β vs. water |
| Study | Animal Type | Sample Size | Time Exposure | Dose Exposure | Control Type | Outcomes | Significant * Variations in Inflammation Markers Between the Initiation and Final Timepoints | Non-Significant Variations in Inflammation Markers Between the Initiation and Final Timepoints |
|---|---|---|---|---|---|---|---|---|
| Zhang, 2022 [34] | C57BL/6 mice | 50 (10/10/10/10/10) | 28 days | 5 mg/kg | Water, DSS | TNF-α IL-6 IL-17A | ↑ IL-6, IL-17A, TNF-α (mRNA) in colonic tissue (DSS + SAC vs. water) ↓ TNF-α, IL-17A, IL-6 (mRNA) in colonic tissue (DSS + SAC vs. DSS) ↑ IL-6, IL-17A, TNF-α in colonic tissue (DSS + SAC vs. water) ↓ TNF-α, IL-17A, IL-6 in colonic tissue (DSS + SAC vs. DSS) | |
| Hanawa, 2021 [35] | C57BL/6J mice | n.r. | 8 weeks | 50 mg/kg | Water | TNF-α IFN-γ IL1-β | IFN-γ, IL-1β, and TNF-α vs. control | |
| Bian, 2017 [5] | C57BL/6J mice | 20 (10/10) | 6 months | 0.3 mg/mL | Water | iNOS TNF-α IL-6 IL-1β | ↑ iNOS & TNF-α (mRNA) vs. control | IL-1β, IL-6 vs. control |
| Madbouly, 2022 [36] | BALB/c albino mice | 100 (5 × 20) | 8 weeks, 16 weeks | 20 mg/mL | Water SUC | TNF-α IL-6 LPS | ↑ IL-6 vs. water ↑ TNF-α vs. water ↑ LPS vs. controls | TNF-α vs. SUC IL-6 vs. SUC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raoul, P.C.; Romano, M.; Galli, F.S.; Cintoni, M.; Capristo, E.; Mora, V.; Mele, M.C.; Gasbarrini, A.; Rinninella, E. Impact of Artificial Sweeteners on Inflammation Markers: A Systematic Review of Animal Studies. Nutrients 2025, 17, 3251. https://doi.org/10.3390/nu17203251
Raoul PC, Romano M, Galli FS, Cintoni M, Capristo E, Mora V, Mele MC, Gasbarrini A, Rinninella E. Impact of Artificial Sweeteners on Inflammation Markers: A Systematic Review of Animal Studies. Nutrients. 2025; 17(20):3251. https://doi.org/10.3390/nu17203251
Chicago/Turabian StyleRaoul, Pauline Celine, Maurizio Romano, Francesca Sofia Galli, Marco Cintoni, Esmeralda Capristo, Vincenzina Mora, Maria Cristina Mele, Antonio Gasbarrini, and Emanuele Rinninella. 2025. "Impact of Artificial Sweeteners on Inflammation Markers: A Systematic Review of Animal Studies" Nutrients 17, no. 20: 3251. https://doi.org/10.3390/nu17203251
APA StyleRaoul, P. C., Romano, M., Galli, F. S., Cintoni, M., Capristo, E., Mora, V., Mele, M. C., Gasbarrini, A., & Rinninella, E. (2025). Impact of Artificial Sweeteners on Inflammation Markers: A Systematic Review of Animal Studies. Nutrients, 17(20), 3251. https://doi.org/10.3390/nu17203251

