Effects of Household Cooking on Mineral Composition and Retention in Widespread Italian Vegetables
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Cooking Methods
- Steaming was carried out using an electric steamer for home use;
- Microwave cooking was conducted at a power of 700 Watts;
- Grilling was performed using a non-stick pan with a stone base.
2.3. Chemical Analyses
2.3.1. Proximate Composition
2.3.2. Analysis of Minerals
2.4. Statistical Methods
2.5. Percentage Change
2.6. Determination of Retention Factors
2.6.1. True Retention Factor
2.6.2. Apparent Retention Factor
3. Results
3.1. Proximate Composition
3.2. Mineral Composition
3.2.1. Romanesche Zucchini
3.2.2. Dark Green Zucchini
3.2.3. Eggplants
3.2.4. Potatoes
4. Discussion
4.1. Proximate Composition
4.2. Minerals
Dietary Consideration: Focus on Fe and Zn
4.3. Retention Factors
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rees, K.; Takeda, A.; Martin, N.; Ellis, L.; Wijesekara, D.; Vepa, A.; Das, A.; Hartley, L.; Stranges, S. Mediterranean-Style Diet for the Primary and Secondary Prevention of Cardiovascular Disease: A Cochrane Review. Glob. Heart 2020, 15, 56. [Google Scholar] [CrossRef]
- Minihane, A.M.; Murphy, K.J. The Health Benefits and Practical Considerations for the Adoption of a Mediterranean-Style Dietary Pattern. Br. J. Nutr. 2022, 128, 1201–1205. [Google Scholar] [CrossRef]
- Madsen, H.; Sen, A.; Aune, D. Fruit and Vegetable Consumption and the Risk of Hypertension: A Systematic Review and Meta-Analysis of Prospective Studies. Eur. J. Nutr. 2023, 62, 1941–1955. [Google Scholar] [CrossRef]
- García-Herrera, P.; Morales, P.; Cámara, M.; Fernández-Ruiz, V.; Tardío, J.; Sánchez-Mata, M.C. Nutritional and Phytochemical Composition of Mediterranean Wild Vegetables after Culinary Treatment. Foods 2020, 9, 1761. [Google Scholar] [CrossRef]
- Fratianni, A.; D’Agostino, A.; Niro, S.; Panfili, G.; Bufano, A.; Paura, B. Loss or Gain of Lipophilic Bioactive Compounds in Vegetables after Domestic Cooking? Effect of Steaming and Boiling. Foods 2021, 10, 690. [Google Scholar] [CrossRef]
- Fratianni, A.; Albanese, D.; Ianiri, G.; Vitone, C.; Malvano, F.; Avino, P.; Panfili, G. Evaluation of the Content of Minerals, B-Group Vitamins, Tocols, and Carotenoids in Raw and In-House Cooked Wild Edible Plants. Foods 2024, 13, 472. [Google Scholar] [CrossRef]
- Lee, K.; Lee, H.; Choi, Y.; Kim, Y.; Jeong, H.S.; Lee, J. Effect of Different Cooking Methods on the True Retention of Vitamins, Minerals, and Bioactive Compounds in Shiitake Mushrooms (Lentinula edodes). Food Sci. Technol. Res. 2019, 25, 115–122. [Google Scholar] [CrossRef]
- Miglio, C.; Chiavaro, E.; Visconti, A.; Fogliano, V.; Pellegrini, N. Effects of Different Cooking Methods on Nutritional and Physicochemical Characteristics of Selected Vegetables. J. Agric. Food Chem. 2008, 56, 139–147. [Google Scholar] [CrossRef]
- Crosby, G. The Key Role of Cooking and Food Preparation in Affecting Nutrient Composition of Foods. Precis. Nutr. Sci. Promise Pers. Nutr. Health 2024, 417–424. [Google Scholar] [CrossRef]
- Bureau, S.; Mouhoubi, S.; Touloumet, L.; Garcia, C.; Moreau, F.; Bédouet, V.; Renard, C.M.G.C. Are Folates, Carotenoids and Vitamin C Affected by Cooking? Four Domestic Procedures Are Compared on a Large Diversity of Frozen Vegetables. LWT 2015, 64, 735–741. [Google Scholar] [CrossRef]
- Landry, M.J.; Burgermaster, M.; van den Berg, A.E.; Asigbee, F.M.; Vandyousefi, S.; Ghaddar, R.; Jeans, M.R.; Yau, A.; Davis, J.N. Barriers to Preparing and Cooking Vegetables Are Associated with Decreased Home Availability of Vegetables in Low-Income Households. Nutrients 2020, 12, 1823. [Google Scholar] [CrossRef]
- Czarnowska-Kujawska, M.; Draszanowska, A.; Chróst, M.; Starowicz, M. The Effect of Sous-Vide Processing Time on Chemical and Sensory Properties of Broccoli, Green Beans and Beetroots. Appl. Sci. 2023, 13, 86. [Google Scholar] [CrossRef]
- Douiri-Bedoui, I.; Abdellaoui, H.; Alexa, R.; Jacolot, P.; Druon, C.; Tessier, F.J.; Laguerre, J.-C. Optimization of Microwave Cooking of Courgette in Terms of Nutrient Preservation and Energy Consumption. Procedia Food Sci. 2011, 1, 805–813. [Google Scholar] [CrossRef]
- Zhong, X.; Dolan, K.D.; Almenar, E. Effect of Steamable Bag Microwaving versus Traditional Cooking Methods on Nutritional Preservation and Physical Properties of Frozen Vegetables: A Case Study on Broccoli (Brassica oleracea). Innov. Food Sci. Emerg. Technol. 2015, 31, 116–122. [Google Scholar] [CrossRef]
- Fabbri, A.D.T.; Crosby, G.A. A Review of the Impact of Preparation and Cooking on the Nutritional Quality of Vegetables and Legumes. Int. J. Gastron. Food Sci. 2016, 3, 2–11. [Google Scholar] [CrossRef]
- Bergstrom, L. Rapport 32/94: Nutrient Losses and Gains in the Preparation of Foods; National Food Administration: Uppsala, Sweden, 1994; pp. 37–41. [Google Scholar]
- Kumar, S.; Aalbersberg, B. Nutrient Retention in Foods after Earth-Oven Cooking Compared to Other Forms of Domestic Cooking. 2. Vitamins. J. Food Compos. Anal. 2006, 19, 311–320. [Google Scholar] [CrossRef]
- Razzak, A.; Mahjabin, T.; Khan, M.R.M.; Hossain, M.; Sadia, U.; Zzaman, W. Effect of Cooking Methods on the Nutritional Quality of Selected Vegetables at Sylhet City. Heliyon 2023, 9, e21709. [Google Scholar] [CrossRef]
- Alajaji, S.A.; El-Adawy, T.A. Nutritional Composition of Chickpea (Cicer arietinum L.) as Affected by Microwave Cooking and Other Traditional Cooking Methods. J. Food Compos. Anal. 2006, 19, 806–812. [Google Scholar] [CrossRef]
- Yuan, X.; Fujiwara, A.; Matsumoto, M.; Tajima, R.; Shinsugi, C.; Koshida, E.; Takimoto, H. Definitions and Assessment Methods of ‘Home Cooking’ in Studies with Dietary Variables: A Scoping Review. Nutrients 2022, 14, 3344. [Google Scholar] [CrossRef]
- Huey, S.L.; Konieczynski, E.M.; Mehta, N.H.; Krisher, J.T.; Bhargava, A.; Friesen, V.M.; Mbuya, M.N.N.; Monterrosa, E.C.; Nyangaresi, A.M.; Mehta, S. A Systematic Review of the Impacts of Post-Harvest Handling on Provitamin A, Iron and Zinc Retention in Seven Biofortified Crops. Nat. Food 2023, 4, 978–985. [Google Scholar] [CrossRef]
- Bell, S.; Becker, W.; Vásquez-Caicedo; Hartmann, A.L. European food information resource network (EuroFIR) Workpackage1.5 Standards Development. In Report on Nutrient Losses and Gains Factors Used in European Food Composition Databases D 1.5.5-NLG-Factors-Inventory; European Food Information Resource Network: Brussels, Belgium, 2006. [Google Scholar]
- Bernhardt, S.; Schlich, E. Impact of Different Cooking Methods on Food Quality: Retention of Lipophilic Vitamins in Fresh and Frozen Vegetables. J. Food Eng. 2006, 77, 327–333. [Google Scholar] [CrossRef]
- Onyeka, U.E.; Ibeawuchi, O.N. Loss of food nutrients orchestrated by cooking pots: A common trend in developing world. J. Food Sci. Technol. 2021, 58, 2906–2913. [Google Scholar] [CrossRef]
- Subramanian, N.K.; White, P.J.; Broadley, M.R.; Ramsay, G. The Three-Dimensional Distribution of Minerals in Potato Tubers. Ann. Bot. 2011, 107, 681–691. [Google Scholar] [CrossRef]
- Kumar, A.; Gupta, K.; Islam Apu, M.A.; Abrol, G.S.; Tomer, V. Effect of Household Processing on Nutritional and Antinutritional Composition, Mineral-Mineral Ratios, and Functional Properties of Colocasia Leaves. Heliyon 2023, 9, e17137. [Google Scholar] [CrossRef]
- Lachman, J.; Hamouz, K.; Musilová, J.; Hejtmánková, K.; Kotíková, Z.; Pazderů, K.; Domkářová, J.; Pivec, V.; Cimr, J. Effectofpeeling and three cooking methods on the content of selected phytochemicals in potato tubers with various colour of flesh. Food Chem. 2013, 138, 1189–1197. [Google Scholar] [CrossRef]
- Gelaye, Y. Quality and Nutrient Loss in the Cooking Vegetable and Its Implications for Food and Nutrition Security in Ethiopia: A Review. Nutr. Diet. Suppl. 2023, 15, 47–61. [Google Scholar] [CrossRef]
- De Castro, N.T.; de Alencar, E.R.; Zandonadi, R.P.; Han, H.; Raposo, A.; Ariza-Montes, A.; Araya-Castillo, L.; Botelho, R.B.A. Influence of Cooking Method on the Nutritional Quality of Organic and Conventional Brazilian Vegetables: A Study on Sodium, Potassium, and Carotenoids. Foods 2021, 10, 1782. [Google Scholar] [CrossRef]
- Bognár, A.; Piekarski, J. Guidelines for Recipe Information and Calculation of Nutrient Composition of Prepared Foods (Dishes). J. Food Compos. Anal. 2000, 13, 391–410. [Google Scholar] [CrossRef]
- Lešková, E.; Kubíková, J.; Kováčiková, E.; Košická, M.; Porubská, J.; Holčíková, K. Vitamin Losses: Retention during Heat Treatment and Continual Changes Expressed by Mathematical Models. J. Food Compos. Anal. 2006, 19, 252–276. [Google Scholar] [CrossRef]
- Showell, B.A.; Howe, J.C.; Williams, J.R.; Holden, J.M.; Zeisel, S. Determination of cooking yields and nutrient retention factors of choline in meat products. Exp. Biol. 2007, 25, A314. [Google Scholar] [CrossRef]
- Murphy, E.W.; Criner, P.E.; Gray, B.C. Comparisons of Methods for Calculating Retentions of Nutrients in Cooked Foods. J. Agric. Food Chem. 1975, 23, 1975. [Google Scholar] [CrossRef]
- Badiani, A.; Stipa, S.; Bitossi, F.; Pirini, M.; Bonaldo, A.; Gatta, P.P.; Rotolo, M.; Testi, S. True retention of nutrients upon household cooking of farmed portion-size European sea bass (Dicentrarchus labrax L.). LWT-Food Sci. Technol. 2013, 50, 72–77. [Google Scholar] [CrossRef]
- Wu, X.; Zhao, Y.; Haytowitz, D.B.; Chen, P.; Pehrsson, P.R. Effects of Domestic Cooking on Flavonoids in Broccoli and Calculation of Retention Factors. Heliyon 2019, 5, 1310. [Google Scholar] [CrossRef]
- Lisciani, S.; Camilli, E.; Marletta, L.; Marconi, S. Weight Change of Food after Cooking: Focus on the Italian Food Composition Tables Appendix. Int. J. Gastron. Food Sci. 2022, 30, 100605. [Google Scholar] [CrossRef]
- AOAC International. Official Methods of Analysis of AOAC International, 22nd ed.; AOAC Publications: New York, NY, USA, 2023. [Google Scholar]
- Thiex, N.J.; Anderson, S.; Gildemeister, B. Crude fat, hexanes extraction, in feed, cereal grain, and forage (Randall/Soxtec/submersion method): Collaborative study. J. AOAC Int. 2023, 86, 899–908. [Google Scholar] [CrossRef]
- McCleary, B.V. Measurement of Dietary Fiber: Which AOAC Official Method of AnalysisSM to Use. J. AOAC Int. 2023, 106, 917–930. [Google Scholar] [CrossRef]
- McCleary, B.V.; Charmier, L.M.J.; McKie, V.A. Measurement of Starch: Critical Evaluation of Current Methodology. Starch/Staerke 2019, 71, 1800146. [Google Scholar] [CrossRef]
- Hummel, M.; Talsma, E.F.; Taleon, V.; Londoño, L.; Brychkova, G.; Gallego, S.; Raatz, B.; Spillane, C. Iron, Zinc and Phytic Acid Retention of Biofortified, Low Phytic Acid, and Conventional Bean Varieties When Preparing Common Household Recipes. Nutrients 2020, 12, 658. [Google Scholar] [CrossRef]
- USDA. Table of Nutrient Retention Factors. 2007. Available online: https://catalog.data.gov/dataset/usda-table-of-nutrient-retention-factors-release-6-2007-1b152 (accessed on 4 July 2024).
- Burlingame, B.; Mouillé, B.; Charrondière, R. Nutrients, Bioactive Non-Nutrients and Anti-Nutrients in Potatoes. J. Food Compos. Anal. 2009, 22, 494–502. [Google Scholar] [CrossRef]
- Bnv, P.; Gvs, S. Potato—Powerhouse for Many Nutrients. Potato Res. 2023, 66, 563–580. [Google Scholar] [CrossRef]
- Ur-Rehman, Z.; Islam, M.; Shah, W.H. Effect of Microwave and Conventional Cooking on Insoluble Dietary Fibre Components of Vegetables. Food Chem. 2003, 80, 237–240. [Google Scholar] [CrossRef]
- Dhingra, D.; Michael, M.; Rajput, H.; Patil, R.T. Dietary Fibre in Foods: A Review. J. Food Sci. Technol. 2012, 49, 255–266. [Google Scholar] [CrossRef]
- Jayanty, S.S.; Diganta, K.; Raven, B. Effects of Cooking Methods on Nutritional Content in Potato Tubers. Am. J. Potato Res. 2019, 96, 183–194. [Google Scholar] [CrossRef]
- Wei, S.; Lu, G.; Cao, H. Effects of Cooking Methods on Starch and Sugar Composition of Sweetpotato Storage Roots. PLoS ONE 2017, 12, 2604. [Google Scholar] [CrossRef]
- Kumar, S.; Aalbersberg, B. Nutrient Retention in Foods after Earth-Oven Cooking Compared to Other Forms of Domestic Cooking. 1. Proximates, Carbohydrates and Dietary Fibre. J. Food Compos. Anal. 2006, 19, 302–310. [Google Scholar] [CrossRef]
- Coe, S.; Spiro, A. Cooking at Home to Retain Nutritional Quality and Minimise Nutrient Losses: A Focus on Vegetables, Potatoes and Pulses. Nutr. Bull. 2022, 47, 538–562. [Google Scholar] [CrossRef]
- Burgos, G.; Amoros, W.; Morote, M.; Stangoulis, J.; Bonierbale, M. Iron and Zinc Concentration of Native Andean Potato Cultivars from a Human Nutrition Perspective. J. Sci. Food Agric. 2007, 87, 668–675. [Google Scholar] [CrossRef]
- Kapusta-Duch, J.; Florkiewicz, A.; Leszczyńska, T.; Borczak, B. Directions of Changes in the Content of Selected Macro-and Micronutrients of Kale, Rutabaga, Green and Purple Cauliflower Due to Hydrothermal Treatment. Appl. Sci. 2021, 11, 3452. [Google Scholar] [CrossRef]
- Bethke, P.C.; Jansky, S.H. The Effects of Boiling and Leaching on the Content of Potassium and Other Minerals in Potatoes. J. Food Sci. 2008, 73, H80–H85. [Google Scholar] [CrossRef]
- Mehri, A. Trace elements in human nutrition (II)—An update. Int. J. Prev. Med. 2020, 11, 2. [Google Scholar] [CrossRef]
- Poonam, S.; Surendra, P. A review on iron, zinc and calcium biological significance and factors affecting their absorption and bioavailability. J. Food Compos. Anal. 2023, 123, 105529. [Google Scholar] [CrossRef]
- SINU, Società Italiana di Nutrizione Umana. Livelli di Assunzione di Riferimento di Nutrienti ed Energia per la Popolazione Italiana; (V Revisione); Biomedia Editore: Milano, Italy, 2024. [Google Scholar]
- Williams-Ngegba, M.S.E.; Onabanjo, O.O.; Anthony, N.M.; Alamu, E.O.; Maziya-Dixon, B.; Oguntona, E.B. Variations in Micronutrient Concentrations and Retentions in Fufu Made from Yellow-Fleshed Cassava as a Function of Genotype and Processing Methods. Front. Nutr. 2024, 11, 5609. [Google Scholar] [CrossRef]
- Vasquez-Caicedo, A.L.; Bell, S.; Hartmann, B. Eurofir. Report on Recipe Calculation Procedures for Composite Foods. 2008. Available online: https://www.eurofir.org/report-on-collection-of-rules-on-use-of-recipe-calculation-procedures-including-the-use-of-yield-and-retention-factors-for-imputing-nutrient-values-for-composite-foods/ (accessed on 2 September 2024).
Sample | Food Preparation | Cooking Method | Timing (min.) | Weight After Cooking/Weight Before Cooking |
---|---|---|---|---|
Romanesche Zucchini | Unpeeled, whole | Steaming | 30 ± 0.0 | 0.9 ± 0.01 |
Unpeeled, whole + 125 mL of tap water, covered with cling film | Microwave | 13 ± 0.0 | 0.8 ± 0.03 | |
Unpeeled, longitudinal slices | Grilling | 16 ± 5.7 | 0.4 ± 0.05 | |
Dark green Zucchini | Unpeeled, whole | Steaming | 30 ± 0.0 | 0.9 ± 0.01 |
Unpeeled, whole + 200 mL of tap water, covered with cling film | Microwave | 14 ± 1.4 | 0.9 ± 0.03 | |
Longitudinal slices | Grilling | 20 ± 0.7 | 0.5 ± 0.09 | |
Eggplant | Unpeeled, cut in cubes + 170 mL of tap water, covered with cling film | Microwave | 16 ± 1.4 | 0.9 ± 0.09 |
Unpeeled, cut in transversal slices | Grilling | 14 ± 1.4 | 0.6 ± 0.08 | |
Potato | Peeled, cut into cubes | Steaming | 25 ± 0.0 | 1.0 ± 0.01 |
Peeled, cut into cubes + 125 mL of tap water, covered with cling film | Microwave | 20 ± 0.0 | 0.8 ± 0.08 |
Minerals | mg/L |
---|---|
Na | 7.3 ± 0.0 |
K | 13. 9 ± 0.0 |
Ca | 74.3 ± 0.0 |
Mg | 15.0 ± 0.0 |
P | 0.85 ± 0.01 |
Fe | 0.10 ± 0.00 |
Zn | 0.84 ± 0.01 |
Mn | 0.00 ± 0.00 |
Method Parameter | Values |
---|---|
Plasma view | Axial/Attenuate axial |
View distance | 15 mm |
Plasma gas flow | 10 L/min |
Auxiliary gas flow | 0.2 L/min |
Pump flow rate | 1.00 mL/min |
Detector | Dual backside-illuminated charge-coupled device. |
Power | 1500 watt |
Nebulizer | 0.65 L/min |
Read | Peak area |
(a) | |||
Minerals | Certified Values (mg/100) | Measured Values (mg/100) | Recovery (%) |
Na | 1818.0 | 1846.6 ± 92.43 | 101.6 |
K | 2903.0 | 2897.7 ± 102.37 | 99.8 |
Ca | 1527.0 | 1445.8 ± 52.23 | 94.7 |
P | 518.0 | 510.3 ± 17.52 | 98.5 |
Zn | 8.2 | 7.5 ± 0.17 | 91.6 |
Mn | 7.6 | 7.0 ± 0.22 | 92.3 |
(b) | |||
Na | 58.0 | 49.8 ± 1.87 | 85.8 |
K | 3250.0 | 2998.8 ± 310.86 | 92.3 |
Ca | 1850.0 | 1834.1 ± 11.76 | 99.1 |
Mg | 216.0 | 204.5 ± 23.71 | 94.7 |
Fe | 14.8 | 12.3 ± 0.32 | 82.9 |
Zn | 3.9 | 3.5 ± 0.52 | 90.4 |
Mn | 3.2 | 2.9 ± 0.42 | 91.4 |
Sample | Protein | Lipid | Total Starch | Soluble Sugars | Total Dietary Fiber | Ash | |
---|---|---|---|---|---|---|---|
Romanesche Zucchini | Raw | 30.0 ± 4.29 a | 1.5 ± 0.10 a | tr * | 36.2 ± 2.05 a | 19.5 ± 0.35 a | 13.7 ± 0.68 a |
Steam | 28.3 ± 0.44 a | 1.4 ± 0.08 a | tr | 35.2 ± 2.00 a | 19.0 ± 0.75 a | 16.9 ± 0.43 a | |
Microwave | 29.1 ± 0.39 a | 1.4 ± 0.07 a | tr | 37.0 ± 1.22 a | 20.1 ± 0.11 a | 12.7 ± 0.00 b | |
Grill | 30.4 ± 0.58 a | 1.3 ± 0.10 a | tr | 37.2 ± 0.55 a | 18.5 ± 1.01 a | 12.7 ± 0.19 b | |
Dark green Zucchini | Raw | 22.2 ± 0.40 a | 1.6 ± 0.16 a | tr | 43.1 ± 0.99 a | 18.9 ± 0. 20 a | 14.4 ± 0.20 a |
Steam | 23.3 ± 0.37 a | 1.4 ± 0.26 a | tr | 39.8 ± 1.10 b | 21.4 ± 1.06 c | 13.8 ± 0.00 a,b | |
Microwave | 22.3 ± 0.50 a | 1.5 ± 0.04 a | tr | 44.3 ± 0.09 a | 18.4 ± 0.45 a,b | 13.2 ± 0.71 b | |
Grill | 22.5 ± 0.52 a | 1.5 ± 0.05 a | tr | 47.1 ± 0.22 a | 17.1 ± 0.40 b | 11.2 ± 0.10 c | |
Eggplants | Raw | 12.8 ± 0.80 a | 6.2 ± 0.09 a | tr | 38.8 ± 1.10 a | 33.7 ± 1.55 a | 8.7 ± 0.09 a |
Microwave | 11.9 ± 0.17 a | 5.8 ± 0.16 a | tr | 39.2 ± 0.67 a | 34.0 ± 1.90 a | 8.0 ± 0.15 b | |
Grill | 11.6 ± 0.55 a | 5.8 ± 0.05 a | tr | 43.3 ± 1.04 b | 33.2 ± 1.53 a | 8.1 ± 0.14 b | |
Potatoes | Raw | 12.5 ± 0.89 a | 4.8 ± 0.01 a | 76.6 ± 0.25 a | 1.1 ± 0.28 a | 7.9 ± 0.15 a | 4.9 ± 0.89 a |
Steam | 10.7 ± 1.46 a | 5.1 ± 0.09 a | 71.1 ± 3.04 b | 1.3 ± 0.12 a | 7.9 ± 0.19 a | 5.4 ±0.70 a | |
Microwave | 10.9 ± 0.32 a | 4.8 ± 0.03 a | 64.5 ± 1.22 c | 5.3 ± 0.12 b | 7.7 ± 0.94 a | 5.6 ± 0.53 a |
Minerals | Raw | Steam | Microwave | Grill |
---|---|---|---|---|
Na | 19 ± 1.7 a,b,c | 16 ± 0.5 b | 24 ± 0.2 c | 19 ± 0.47 a |
K | 5382 ± 220.0 a | 4974 ± 89.0 a | 5247 ± 76.0 a | 6710 ± 45.4 b |
Ca | 296 ± 0.9 a | 240 ± 3.2 b | 283 ± 1.3 a | 387 ± 8.7 c |
Mg | 437 ± 4.9 a | 428 ± 3.0 a | 451 ± 4.2 a | 433 ± 8.5 a |
P | 892 ± 33.1 a | 865 ± 0.8 a | 922 ± 4.7 a | 848 ± 13.2 a |
Fe | 5.7 ± 0.16 a | 6.7 ± 0.32 a,b | 6.7 ± 0.03 b | 5.5 ± 0.19 a |
Zn | 5.0 ± 0.05 a | 5.0 ± 0.08 a | 5.0 ± 0.03 a | 4.9 ± 0.14 a |
Mn | 1.9 ± 0.01 a | 1.9 ± 0.03 a | 2.0 ± 0.00 a | 2.0 ± 0.04 a |
Minerals | Steam | Microwave | Grill | ||||||
---|---|---|---|---|---|---|---|---|---|
Percentage Change (%) | AR (%) | TR (%) | Percentage Change (%) | AR (%) | TR (%) | Percentage Change (%) | AR (%) | TR (%) | |
Na | −17 | 83 | 84 | 24 | 124 | 126 | −2 | 99 | 97 |
K | −8 | 92 | 93 | −2 | 98 | 100 | 25 | 125 | 121 |
Ca | −19 | 81 | 82 | −4 | 96 | 98 | 31 | 131 | 127 |
Mg | −2 | 98 | 99 | 3 | 103 | 105 | −1 | 99 | 96 |
P | −3 | 97 | 98 | 3 | 103 | 106 | −5 | 95 | 92 |
Fe | 17 | 117 | 118 | 17 | 117 | 121 | −3 | 97 | 95 |
Zn | −1 | 99 | 99 | −1 | 99 | 101 | −3 | 97 | 94 |
Mn | 3 | 103 | 106 | 6 | 106 | 109 | 5 | 105 | 106 |
Minerals | Raw | Steam | Microwave | Grill |
---|---|---|---|---|
Na | 14 ± 1.3 a | 14 ± 0.0 a | 16 ± 0.7 a,b | 20 ± 1.3 b |
K | 4309 ± 76.9 a | 4070 ± 43.3 a | 4103 ± 0.5 a | 4101 ± 320.0 a |
Ca | 234 ± 8.8 a | 245 ± 0.6 a | 258 ± 2.3 a | 244 ± 14.6 a |
Mg | 367 ± 16.1 a | 360 ± 0.9 a | 347 ± 0.0 a | 363 ± 24.7 a |
P | 696 ± 27.0 a | 712 ± 2.0 a | 688 ± 13.7 a | 701 ± 40.8 a |
Fe | 8.3 ± 0.63 a | 8.9 ± 0.27 a | 7.4 ± 0.01 a | 8.0 ± 0.45 a |
Zn | 6.2 ± 0.18 a | 6.1 ± 0.02 a | 5.8 ± 0.09 a | 5.9 ± 0.17 a |
Mn | 5.2 ± 0.21 a | 4.1 ± 0.04 b | 4.8 ± 0.07 a,b | 4.2 ± 0.34 b |
Minerals | Steam | Microwave | Grill | ||||||
---|---|---|---|---|---|---|---|---|---|
Percentage Change (%) | AR (%) | TR (%) | Percentage Change (%) | AR (%) | TR (%) | Percentage Change (%) | AR (%) | TR (%) | |
Na | 1 | 101 | 99 | 18 | 118 | 133 | 42 | 142 | 134 |
K | −8 | 92 | 92 | −7 | 93 | 108 | −7 | 93 | 90 |
Ca | 5 | 105 | 103 | 11 | 111 | 125 | 4 | 104 | 99 |
Mg | −2 | 98 | 96 | −6 | 94 | 107 | −1 | 99 | 93 |
P | 2 | 102 | 100 | −1 | 99 | 112 | 1 | 101 | 95 |
Fe | 8 | 108 | 104 | −10 | 90 | 100 | −7 | 93 | 87 |
Zn | −2 | 98 | 97 | −5 | 95 | 108 | −5 | 95 | 90 |
Mn | −22 | 78 | 76 | −8 | 92 | 104 | −19 | 81 | 77 |
Minerals | Raw | Microwave | Grill |
---|---|---|---|
Na | 38 ± 0.1 a | 39 ± 0.0 b | 36 ± 0.2 c |
K | 2851 ± 106.9 a | 3095 ± 32.4 a | 2977 ± 17.3 a |
Ca | 222 ± 2.5 a | 228 ± 0.8 a | 158 ± 0.5 b |
Mg | 198 ± 0.5 a | 212 ± 2.3 b | 209 ± 4.1 b |
P | 297 ± 1.5 a | 321 ± 2.2 b | 326 ± 4.6 b |
Fe | 2.9 ± 0.04 a | 2.5 ± 0.00 a | 2.8 ± 0.03 a |
Zn | 1.5 ± 0.03 a | 2.0 ± 0.07 b | 1.6 ± 0.02 a |
Mn | 1.4 ± 0.00 a | 1.4 ± 0.01 a | 1.6 ± 0.03 b |
Minerals | Microwave | Grill | ||||
---|---|---|---|---|---|---|
Percentage Change (%) | AR (%) | TR (%) | Percentage Change (%) | AR (%) | TR (%) | |
Na | 4 | 104 | 96 | −5 | 95 | 96 |
K | 9 | 109 | 101 | 4 | 104 | 105 |
Ca | 3 | 103 | 96 | −29 | 71 | 72 |
Mg | 7 | 107 | 100 | 6 | 106 | 107 |
P | 8 | 108 | 101 | 10 | 110 | 111 |
Fe | −13 | 87 | 81 | −2 | 98 | 101 |
Zn | 32 | 132 | 117 | 7 | 107 | 108 |
Mn | −3 | 97 | 90 | 10 | 110 | 113 |
Minerals | Raw | Steam | Microwave |
---|---|---|---|
Na | 11 ± 1.5 a | 8 ± 0.2 b | 10 ± 0.7 a |
K | 2232 ± 86.3 a | 2102 ± 58.6 a,b | 2008 ± 102.3 b |
Ca | 38 ± 1.0 a | 31 ± 0.6 b | 33 ± 1.3 b |
Mg | 106 ± 1.6 a | 100 ± 2.2 b | 108 ± 1.3 a |
P | 209 ± 6.5 a,b | 222 ± 6.5 a | 196 ± 9.5 b |
Fe | 1.6 ± 0.04 a | 1.4 ± 0.03 c | 1.3 ± 0.04 b |
Zn | 1.38 ± 0.05 a | 1.22 ± 0.05 b | 1.17 ± 0.13 b |
Mn | 0.41 ± 0.01 a | 0.40 ± 0.01 a | 0.42 ± 0.02 a |
Minerals | Steam | Microwave | ||||
---|---|---|---|---|---|---|
Percentage Change (%) | AR (%) | TR (%) | Percentage Change (%) | AR (%) | TR (%) | |
Na | −24 | 76 | 67 | −5 | 95 | 88 |
K | −6 | 94 | 89 | −10 | 90 | 83 |
Ca | −18 | 82 | 78 | −13 | 87 | 80 |
Mg | −6 | 94 | 89 | 1 | 101 | 94 |
P | 6 | 106 | 101 | −6 | 94 | 87 |
Fe | −16 | 84 | 81 | −22 | 78 | 75 |
Zn | −11 | 89 | 83 | −15 | 85 | 77 |
Mn | −2 | 98 | 89 | 3 | 103 | 89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lisciani, S.; Aguzzi, A.; Gabrielli, P.; Camilli, E.; Gambelli, L.; Marletta, L.; Marconi, S. Effects of Household Cooking on Mineral Composition and Retention in Widespread Italian Vegetables. Nutrients 2025, 17, 423. https://doi.org/10.3390/nu17030423
Lisciani S, Aguzzi A, Gabrielli P, Camilli E, Gambelli L, Marletta L, Marconi S. Effects of Household Cooking on Mineral Composition and Retention in Widespread Italian Vegetables. Nutrients. 2025; 17(3):423. https://doi.org/10.3390/nu17030423
Chicago/Turabian StyleLisciani, Silvia, Altero Aguzzi, Paolo Gabrielli, Emanuela Camilli, Loretta Gambelli, Luisa Marletta, and Stefania Marconi. 2025. "Effects of Household Cooking on Mineral Composition and Retention in Widespread Italian Vegetables" Nutrients 17, no. 3: 423. https://doi.org/10.3390/nu17030423
APA StyleLisciani, S., Aguzzi, A., Gabrielli, P., Camilli, E., Gambelli, L., Marletta, L., & Marconi, S. (2025). Effects of Household Cooking on Mineral Composition and Retention in Widespread Italian Vegetables. Nutrients, 17(3), 423. https://doi.org/10.3390/nu17030423