Current Evidence on the Impact of Diet, Food, and Supplement Intake on Breast Cancer Health Outcomes in Patients Undergoing Endocrine Therapy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Selection Criteria
3. Results
General Characteristics of the Studies
Author; Year | Country | Participants: Mean/Median Age; BRC Stage; Use of AI/TAM; Menopausal Status | Groups: n of Analyzed Samples; Duration of the Study | Evaluated Parameters | Significant Changes |
---|---|---|---|---|---|
Modified Diets | |||||
Brown et al., (2021) [21] | Pennsylvania, USA | Mean, 59.4 y; Stage I-IIIA BRC; Completed chemotherapy, radiotherapy, and targeted therapy for ≥6 months before baseline data collection; AI/TAM | 1. Exercise plus diet (E and D) (n = 87) 2. Exercise only (E) (n = 87) 3. Diet only (D) (n = 87) 4. Control (C) (n = 87) D: Weeks 0–20: meal replacement program (7 servings of fruits and vegetables daily) Weeks 21–24: behavioral modification regarding shopping and preparation of food Weeks 24–52: behavioral modification regarding problem solving and prevention of relapse E: Weeks 0–6: exercise (resistance and aerobic activity) instructions Weeks 7–52: diet instructions | Physical and mental health (SF-36) | ↑Physical health summary score E + D vs. C (p < 0.05) ↑Physical functioning E + D vs. C (p < 0.05) ↑Role–physical E + D vs. C (p < 0.05) ↑Vitality E + D vs. C (p < 0.05) D vs. C (p < 0.05) |
Murillo Ortiz et al., (2017) [20] | Mexico | Mean; Diet, 50.5 y; Control, 52.3 y; TAM; Postmenopausal | 1. Diet (D) (n = 50) 12% fat, 68% carbohydrates, and 20% protein; Written instructions 2. Control (C) (n = 50) 30% fat, 50% carbohydrates, and 20% protein; Written instructions Duration: 6 months | Body composition (BMI, WC, muscle mass) Blood parameters (estradiol, adiponectin, glucose, IGF-1) | Body composition ↓BMI D vs. C (p = 0.04) D end vs. baseline (p = 0.01) ↓WC D end vs. baseline (p = 0.0001) Blood parameters ↓Estradiol D end vs. baseline (p = 0.003) ↓Adiponectin D end vs. baseline (p = 0.004) ↓Glucose D end vs. baseline (p = 0.0001) |
Papandreou et al., (2021) [22] | Greece | Mean, 49.7 y; Stage I-IIIA BRC; AI/TAM; Postmenopausal | 1. Diet (D) (n = 22) personalized daily dietary plan based on the Mediterranean diet and physical activity guidelines, generated by CDSS; Written instructions 2. Control (C) (n = 22) general lifestyle advice Duration: 3 months | Body composition (BMI, BW, %BFM, WC) Physical activity levels (metabolic equivalent-min/week) Blood parameters (glucose, TAG, total cholesterol, LDL, HDL) Oxidative stress (MDA levels, plasma vitamin C) Quality of life (EORTC-QLQ-C30, EORTC QLQ-BR23, HADS) Adherence to Mediterranean diet | Body composition ↓BW D end vs. baseline (p < 0.001) D vs. C (p < 0.001) ↓BMI D end vs. baseline (p < 0.001) D vs. C (p < 0.001) ↓%BFM D end vs. baseline (p < 0.001) D vs. C (p < 0.001) ↓WC D end vs. baseline (p < 0.001) D vs. C (p < 0.001) ↑Physical activity levels D end vs. baseline (p = 0.001) D vs. C (p = 0.001) Blood parameters ↑Glucose C vs. D (p = 0.043) C end vs. baseline (p = 0.046) ↑TAG C vs. D (p = 0.008) C end vs. baseline (p = 0.016) ↑Total cholesterol C end vs. baseline (p = 0.045) ↑LDL C end vs. baseline (p = 0.037) ↑HDL D end vs. baseline (p = 0.034) Oxidative stress ↑MDA levels C vs. D (p = 0.007) C end vs. baseline (p = 0.017) ↑Plasma vitamin C D baseline vs. end (p < 0.001) D vs. C (p = 0.021) Quality of life ↑EORTC-QLQ-C30 global health-quality of life scale D end vs. baseline (p = 0.035) ↑EORTC-QLQ-C30 role functioning subscale D end vs. baseline (p = 0.047) ↑EORTC-QLQ-C30 emotional functioning subscale D end vs. baseline (p = 0.037) ↓HADS depression scale D end vs. baseline (p = 0.022) ↓HADS anxiety scale D end vs. baseline (p = 0.022) Adherence to Mediterranean diet ↑MedDiet score D end vs. baseline (p < 0.001) D vs. C (p = 0.002) |
Author; Year | Country | Participants: Mean/Median Age; BRC Stage; Use of AI/TAM; Menopausal Status | Groups: n of Analyzed Samples; Duration of the Study | Evaluated Parameters | Significant Changes |
---|---|---|---|---|---|
Omega-3 Fatty Acids | |||||
Hershman et al., (2015) [23] | Multicenter, USA | Mean, 59.2; Stage I-III BRC; AI for at least 90 days before baseline; Postmenopausal | 1. Omega-3 (560 mg of EPA and DHA) (n = 102) 2. Placebo (soybean and corn oil) (n = 107) Duration: 24 weeks | Serum parameters (TAG, total cholesterol, HDL, LDL) Serum markers of inflammation (CRP) Quality of life (FACT-ES) Pain/stiffness (BPI worst pain score, BPI pain interference) | Blood parameters ↓TG Omega-3 vs. placebo (p = 0.01) Pain/stiffness outcomes ↓BPI scores Omega-3 end vs. baseline (p < 0.001) Placebo end vs. baseline (p < 0.001) BPI scores Omega-3 vs. placebo (p > 0.05) |
Hutchins-Wiese et al., (2014) [24] | Connecticut, USA | Mean; Omega-3, 60.9 y; Placebo, 63.6 y; AI for at least 6 months before baseline | 1. Omega-3 (n = 17): 4 g EPA and DHA (2520 mg EPA, 1680 mg DHA) and calcium carbonate (1000 mg/day) and cholecalciferol (800 IU/day) 2. Placebo (n = 17): safflower oil (9% linoleic acid, 83% oleic acid) and calcium carbonate (1000 mg/day) and cholecalciferol (800 IU/day) Duration: 3 months | Bone markers (sCTX, DPD, P1NP, BAP, PTH) Serum markers of inflammation (IL-6, IL-1 β, hsCRP, migratory inhibitory factor, TNFα) Serum fatty acid concentrations | Bone markers ↓sCTX levels Omega-3 (responders) vs. placebo (p = 0.038) Omega-3 (responders) end vs. baseline (p < 0.05) ↓DPD Omega-3 vs. placebo (p = 0.043) Omega-3 end vs. baseline (p < 0.05) ↓P1NP Omega-3 end vs. baseline (p < 0.05) ↓BAP Omega-3 end vs. baseline (p < 0.05) Blood markers of inflammation ↑hsCRP Omega-3 vs. placebo (p = 0.022) Omega-3 end vs. baseline (p = 0.027) Fatty acid status in blood ↑Total and LC omega-3 PUFA Omega-3 end vs. baseline Omega-3 vs. placebo (p < 0.001) ↓Total and LC omega-6 PUFA levels Omega-3 end vs. baseline Omega-3 vs. placebo (p < 0.001) |
Martínez et al., (2019) [25] | Spain | Median, 57.3 y; Stage 0-IIIA BRC; AI/TAM for at least 3 months before baseline; Postmenopausal | 1. Omega-3 (460 mg) and hydroxytyrosol (12.5 mg) and curcumin (47.5 mg curcuminoids) (n = 45) Duration: 30 days | Blood parameters (TAG, LDL, HDL) Blood markers of inflammation (CRP, IL-6, SAA, IFNγ, TNFα, IL-10, IL-15, TGFβ, IGF-1) Pain outcomes (BPI-SF) | Blood parameters ↓TG Omega-3 end vs. baseline (p = 0.011) Blood markers of inflammation ↓CRP Omega-3 end vs. baseline (p = 0.014) ↓IFNγ Omega-3 end vs. baseline (p = 0.056) Musculoskeletal pain ↓BPI worst pain score Omega-3 end vs. baseline (p = 0.011) ↓Pain severity index score Omega-3 end vs. baseline (p = 0.008) |
Lustberg et al., (2018) [26] | Ohio, USA | Mean, 59.5 y; Stage I-III BRC; AI for less than 21 days before enrollment; Postmenopausal | 1. Omega-3 (4.3 g) (n = 22) 2. Placebo (n = 22) Duration: 24 weeks | Blood markers of inflammation (IL-6, TNFR-2, IL-17) Fatty acids status in red blood cells Quality of life (FACT-ES) Pain outcomes (BPI-SF) | Fatty acids status ↑LC omega-3 Omega-3 end vs. baseline (p < 0.001) ↓Total omega-6 PUFA Omega-3 end vs. baseline (p < 0.001) Quality of life ↓FACT-ES scores Placebo 12 weeks vs. baseline (p = 0.04) Placebo vs. omega-3 12 weeks (p = 0.06) |
Author; Year | Country | Participants: Mean/Median Age; BRC Stage; Use of AI/TAM; Menopausal Status | Groups: n of Analyzed Samples; Duration of the Study | Evaluated Parameters | Significant Changes |
---|---|---|---|---|---|
Minerals and Vitamins | |||||
Campbell et al., (2018) [31] | Texas, USA | Stage I-III BRC; AI; Postmenopausal | 1.Vitamin B12 (2500 mcg) (n = 41) Duration: 3 months | Quality of life (FACT-ES) Pain outcomes (BPI-SF) Blood markers of inflammation (CRP, HCys, MMA) Serum B12 levels | Quality of life ↑ Physical well-being Vitamin B12 end vs. baseline (p < 0.0001) ↑Endocrine symptom subscale Vitamin B12 end vs. baseline (p < 0.0001) Pain outcomes ↓Worst pain score Vitamin B12 end vs. baseline (p = 0.0003) ↓Average pain scores Vitamin B12 end vs. baseline (p < 0.0001) Blood markers of inflammation ↓HCys Vitamin B12 end vs. baseline (p < 0.0001) ↓MMA Vitamin B12 end vs. baseline (p < 0.0001) ↑Serum B12 levels Vitamin B12 end vs. baseline (p < 0.0001) |
Khan et al., (2017) [29] | Kansas, USA | Median, 61 y; Stage I-III BRC; Scheduled to start treatment with AI; Postmenopausal | 1. Vitamin D (n = 70) 30,000 IU oral vitamin D3/week and calcium 1200 mg and 600 IU of vitamin D 2. Placebo (n = 77) matched capsules and calcium 1200 mg and 600 IU of vitamin D Duration: 24 weeks | Serum vitamin D Quality of life (BFI, FACT-B, MENQOL) Pain outcomes (HAQ-II, CPIS, BPI) Grip strength | ↑Serum vitamin D levels Vitamin D vs. placebo (p < 0.001) Vitamin D end vs. baseline (p < 0.001) Pain outcomes ↑Worsening of AIMSS Placebo vs. vitamin D (only post hoc, p = 0.024) |
Niravath et al., (2019) [32] | Texas and Washington, USA | Median, 64 y; Stage I-III BRC; Scheduled to start treatment with AI; Postmenopausal | 1. Standard-dose vitamin D3 (800 IU daily) and calcium carbonate 600 mg (n = 47) 2. High-dose vitamin D3 (50,000 IU weekly for 12 weeks, followed by 2000 IU daily for 40 weeks) and calcium carbonate 600 mg (n = 46) Duration: 52 weeks | Serum vitamin D Pain outcomes (HAQ-II scores) Grip strength | ↑Serum vitamin D levels High-dose vitamin D vs. standard-dose vitamin D at 12 weeks (p < 0.0001) High-dose vitamin D 12 weeks vs. baseline (p < 0.0001) Pain outcomes ↑AI-induced arthralgia developed in both groups in ~50% of patients |
Park et al., (2011) [28] | Virginia, USA | Mean, 53.5 y; TAM/AI; Postmenopausal | 1. Magnesium (n = 25) (400 mg once a day first 2 weeks, those whose symptoms did not improve used 2× day next 2 weeks) Duration: 4 weeks | Quality of life (menopausal symptoms) | Quality of life Menopausal symptoms ↓Hot flash frequency Magnesium end vs. baseline (p = 0.02) ↓Hot flashes score Magnesium end vs. baseline (p = 0.04) ↓Level of fatigue Magnesium end vs. baseline (p = 0.03) ↓Abnormal sweating Magnesium end vs. baseline (p = 0.0004) ↓Perceived distress level due to hot flashes Magnesium end vs. baseline (p = 0.0003) |
Rhee et al., (2013) [27] | South Korea | Mean: Supplement, 57.1 y; Placebo 58.5 y; AI; Postmenopausal | 1. Supplement (n = 45) 5 mg of alendronate and 0.5-μg of active metabolite of vitamin D (Maxmarvil®) and 500 mg elementary calcium with 400 IU cholecalciferol (vitamin D) 2. Placebo (n = 46) placebo and 500 mg elementary calcium with 400 IU cholecalciferol (vitamin D) Duration: 24 weeks | Bone mineral density (lumbar, total hip, and femur neck) Bone markers (OCN, CTX, serum calcium, and phosphate) | ↓Lumbar bone mineral density Placebo vs. supplement (p < 0.05) Placebo end vs. baseline (p < 0.05) (more pronounced in recently menopausal women) Bone markers ↑CTX Placebo vs. supplement (p < 0.05) Placebo end vs. baseline (p < 0.05) ↑OCN Placebo vs. supplement (p = 0.08) |
Shahvegharasl et al., (2020) [33] | Iran | Mean; Intervention, 44.9 y; Placebo 41.1 y; Stage I-III RBC; TAM; Premenopausal and postmenopausal | 1. Vitamin D group (50,000 IU vitamin D3 weekly) (n = 22) 2. Placebo (n = 22) Duration: 8 weeks | Body composition (BMI, BW, WC, height, wrist) Blood markers of inflam-mation (hsCRP) Angiogenic biomarkers (Ang-2, VEGF-A, Hif-1) | Angiogenic biomarkers premenopausal women ↓Ang-2 Vitamin D end vs. baseline (p < 0.05) ↓VEGF-A Vitamin D vs. placebo (p < 0.05) Women with the absence of vascular invasion ↓Ang-2 Vitamin D vs. placebo (p < 0.05) Women with the infiltration of tumors into vascular or lymphatic vessels ↑Hif-1 Vitamin D vs. placebo (p < 0.05) |
Vani et al., (2016) [30] | India | Mean, 55.8 y; AI; Postmenopausal | 1. Control (had adequate baseline serum vitamin D concentrations) no supplementation during study (n = 11) 2. Group 1 (had insufficient baseline serum vitamin D concentrations) (n = 60) supplementation with 2000 IU vitamin D3 and 1000 mg of calcium 3. Group 2 (had deficient serum vitamin D concentrations) (n = 11) supplementation with 4000 IU vitamin D3 and 1000 mg of calcium Duration: 12 weeks | Body composition (height, BW) Bone markers (Serum 25 (OH) vitamin D, phosphorus, calcium, PTH, alkaline phosphatase) Quality of life (HAQ-II) | Bone markers ↑Serum 25 (OH) vitamin D ↑Calcium, ↑Phosphorus, ↓PTH, ↓Alkaline phosphatase activity Group 1 + Group 2 end vs. baseline (p = 0.000) ↓Serum 25 (OH) vitamin D Control group end vs. baseline (p < 0.05) Negative correlation between score (musculoskeletal symptoms) and serum 25 (OH) vitamin D concentration (p = 0.000) |
Author; Year | Country | Participants: Mean/Median Age; BRC Stage; Use of AI/TAM; Menopausal Status | Groups: n of Analyzed Samples; Duration of the Study | Evaluated Parameters | Significant Changes |
---|---|---|---|---|---|
Plant/Fungi Foods and Supplements | |||||
Ávila-Gálvez et al., (2021) [36] | Spain | Mean; Intervention, 54 y; Placebo, 55 y; No neoadjuvant treatment; Some of them menopausal | 1. Supplement (turmeric and red clover and flaxseed extracts and resveratrol; 296.4 mg phenolics per capsule) 3× day (n = 26) 2. Control (n = 13) Duration: 5 ± 2 days | Disposition and metabolic profiles (curcuminoids, isoflavones, resveratrol derivatives, and lignans) | Phase-II metabolites detected in urine, plasma, normal and malignant mammary tissue Free curcumin detected in normal and malignant mammary tissue in the supplement group |
Braal et al., (2020) [39] | The Netherlands | Mean, 58.5 y; TAM | 1. Green tea (1 g twice daily; containing 300 mg EGCG) and TAM (n = 7), 14 days 2. Control (TAM) (n = 7) 28 days Cross-over, n = 14 Duration: 42 days | Pharmacokinetic interaction between green tea supplements and endoxifen (active metabolite of TAM) | Pharmacokinetic interaction Geometric mean endoxifen AUC0–24h Green tea vs. control (p = 0.92) Cmax Green tea vs. control (p = 0.47) Cthrough Green tea vs. control (p = 0.77) |
Desideri et al., (2022) [40] | Italy | Mean, 59 y; Stage Ia-IIIb BRC; AI; Postmenopausal | 1. Supplement (n = 46) α-Lipoic acid (240 mg) and Boswellia serrate (40 mg) and methylsulfonyl methane (200 mg) and Bromelain (20 mg)] OPERA® Duration: 6 months | Pain outcomes AI-induced arthralgia (VAS, PRAI, CTCAE) | Pain outcomes ↓CTCAE scale Supplement end vs. baseline (p = 0.0009) ↓VAS score Supplement end vs. baseline (p = 0.0222). ↓PRAI score Supplement end vs. baseline (p = 0.0001) |
Ferraris et al., (2019) [37] | Italy | Mean; Supplement, 44.4 y; Placebo 44.6 y,; TAM/TAM and LHRH analogs; Premenopausal | 1. Red clover (n = 42) (Promensil® Forte, 80 mg red clover extract) and recommended Mediterranean diet 2. Placebo (n = 39) and recommended Mediterranean diet Duration: 24 months | Body composition (BMI, WC, HC) Blood parameters (Total cholesterol, HDL, LDL, TAG, glucose, HOMA-IR, estradiol, testosterone, DHEAS) Cancer-related parameters (endometrial thickness, breast density) Quality of life (menopausal symptoms) | Body composition ↓BMI Red clover vs. placebo (p = 0.0013) Red clover end vs. baseline (p < 0.0001) ↓WC Red clover vs. placebo (p = 0.04) Red clover end vs. baseline (p < 0.0001) ↓HC Red clover end vs. baseline (p < 0.0001) Blood parameters ↑HDL Red clover end vs. baseline (p = 0.01) Placebo end vs. baseline (p = 0.01) Cancer-related parameters ↓Breast density Red clover end vs. baseline (p < 0.0001) Placebo end vs. baseline (p < 0.0001) ↓Menopausal rating score Red clover end vs. baseline (p < 0.0001) Placebo end vs. baseline (p < 0.0001) Red clover vs. placebo (p = 0.69) |
MacGregor et al., (2005) [38] | United Kingdom | Median, 51 y; TAM/adjuvant chemo; With menopausal symptoms | 1. Soy extract (235 mg with 17.5 mg of isoflavones) (n = 33) 2. Placebo (n = 35) Duration: 12 weeks | Quality of life (EORTC QLQ-C30, menopausal symptoms) | Quality of life Menopausal symptoms Soy vs. placebo (p > 0.05) |
Radi et al., (2023) [35] | Iraq | Mean; Premenopausal 37.9 y; Postmenopausal 55.2 y; TAM/AI | 1. Low-dose soy milk isoflavones (35 mg) (n = 120) 2. High-dose soy milk isoflavones (70 mg) (n = 120) Duration: 2 months | Urinary estrogens levels and urinary isoflavones | ↓Urinary level of estradiol Low-dose soy milk isoflavones end vs. baseline (p < 0.0001) High-dose soy milk isoflavones (p < 0.0001) ↑Urinary level of estrone High-dose soy milk isoflavones (p < 0.0001) ↑Urinary level of genistein Low-dose soy milk isoflavones end vs. baseline (p < 0.0001) High-dose soy milk isoflavones (p < 0.0001) ↑Urinary level of daidzein Low-dose soy milk isoflavones end vs. baseline (p = 0.002) High-dose soy milk isoflavones (p < 0.0001) PostM vs. PreM Low-dose soy milk isoflavones (p = 0.039) PostM vs. PreM High-dose soy milk isoflavones (p = 0.03) |
Simonavice et al., (2014) [34] | Georgia, USA | Mean, 64 y; Stage 0-III BRC; Finished/still on hormone suppressant therapies | 1. Dried plum (90 g) and exercise (2 days/week of 10 strength and resistance training) (DP and E) (n = 11) 2. Exercise (E) strength training and resistance (n = 12) Duration: 6 months | Body composition (BMI, BW, BF, WC, HC, lean mass) Muscular strength (chest press, leg extension) Bone markers (BAP, TRAP-5b) Blood markers of inflammation (CRP) | Muscular strength ↑Upper and lower muscular strength DP + E end vs. baseline (p ≤ 0.05) E end vs. baseline (p ≤ 0.05) Bone markers ↓TRAP-5b DP + E end vs. baseline (p ≤ 0.05), E end vs. baseline (p ≤ 0.05) |
Wen Su et al., (2024) [41] | Taiwan | Median, 57.4; Stage I-III BRC; TAM/AI | 1. Supplement Ganoderma Microsporum immunomodulatory protein (n = 18) Once a day Duration: 6 months | Quality of life (QoL) Blood markers of inflammation (granulocytes, NK cells, NK cells with inhibitory surface markers, NK cells with activating surface markers, TNF-α, IL-6) | Quality of life ↑Cognitive function Supplement, 3 months vs. baseline (p < 0.05) Supplement, end vs. baseline (p > 0.05) ↓Fatigue Supplement 3 months vs. baseline (p < 0.05) Supplement end vs. baseline (p > 0.05) ↓Insomnia Supplement, end vs. baseline (p < 0.05) Blood markers of inflammation ↑CD19+ lymphocytes ↓NKG2A+ ↓NKp30+ NK cells Supplement, end vs. baseline (p < 0.05) |
Author; Year | Country | Participants: Mean/Median Age; BRC Stage; Use of AI/TAM; Menopausal Status | Groups: n of Analyzed Samples; Duration of the Study | Evaluated Parameters | Significant Changes |
---|---|---|---|---|---|
Coenzyme Q10 | |||||
Premkumar et al., (2007) [43] | India | Median, 57 y; TAM | 1. BRC, untreated (n = 84) 2. TAM and CoQ10 (100 mg) and riboflavin (10 mg) and niacin (50 mg) (n = 84) Duration: 90 days | Blood markers of inflammation (IL-1β, IL-6, IL-8, TNF-α, VEGF) | Serum cytokine levels ↓ IL-1β ↓ IL-6 ↓ IL-8, ↓ TNF-α ↓ VEGF TAM + CoQ10 end vs. baseline (p < 0.05) TAM + CoQ10 45 days vs. baseline (p < 0.05) TAM + CoQ10 vs. BRC, untreated (p < 0.05) |
Premkumar et al., (2008) [42] | India | Median, 57 y; TAM | 1. BRC, untreated (n = 84) 2. TAM and CoQ10 (100 mg) and riboflavin (10 mg and niacin (50 mg) (n = 84) Duration: 90 days | Pro-angiogenic markers | ↓Levels of pro-angiogenic markers TAM + CoQ10 end vs. baseline (p < 0.05) TAM + CoQ10 45 days vs. baseline (p < 0.05) TAM + CoQ10 vs. BRC, untreated (p < 0.05) |
Yuvaraj et al., (2009) [44] | India | Mean, 49 y; TAM; Postmenopausal | 1. BRC, untreated (n = 78) 2. TAM and CoQ10 (100 mg) and riboflavin (10 mg) and niacin (50 mg) (n = 78) Duration: 90 days | Blood parameters (LPL, LCAT) | Blood parameters ↑Activity of LPL TAM + CoQ10 end vs. baseline (p < 0.001) TAM + CoQ10 45 days vs. baseline (p < 0.001) |
Zahrooni et al., (2019) [45] | Iran | Mean, 40.7 y; Placebo, 36.3 y; Stage I-II BRC | 1. CoQ10 100 mg (n = 15) 2. Placebo (n = 15) Duration: 2 months | Blood markers of inflammation (IL-8, IL-6, VEGF) | Blood markers of inflammation ↓IL-8 CoQ10 vs. placebo (p < 0.05) ↓IL-6 CoQ10 vs. placebo (p < 0.05) |
4. Discussion
4.1. Body Composition and Weight as Outcomes
4.2. Cardiovascular Disease Risk Factors as Outcomes
4.3. Inflammation as an Outcome
4.4. Quality of Life as an Outcome
4.5. Additional Possibilities with Diet Interventions
4.5.1. Cyclic Fasting-Mimicking Diets and Their Role in Breast Cancer
4.5.2. Whole Grains and Their Role in Breast Cancer
4.6. Limitations
5. Conclusions
Closing the Gaps and Recommendations for Future Research
- Long-term studies on the combined effects of dietary patterns and pharmacological treatments on body composition, cardiovascular diseases, inflammation, and QoL, as well as the other numerous consequences of cancer treatment.
- (a)
- Regarding body composition, beyond a low-fat diet and reduced energy intake, other nutritional strategies, like bioactive food components with their antioxidative and anti-inflammatory properties (see more under item #3), along with exercise regimens and lifestyle modifications, can positively affect body composition and survival in these patients. Additionally, these studies underscore the importance of bone health, not addressed unless in metastatic bone cancer patients;
- (b)
- CVD risk is particularly important for this segment of the population (overweight/obese, pre- to postmenopausal women). Despite the importance of the coexistence of both conditions, there is a lack of randomized clinical trials with more specific CVD conditions, as well as with various types of cancers;
- (c)
- Chronic inflammation is a hallmark of any cancer and subsequent chemo- or radiation therapies. Therefore, the research should not be limited to just breast cancer patients, but should include other more difficult cases and those with metastatic developments;
- (d)
- The worsening of quality of life is an important side effect of any cancer and its treatment, affecting both the physiological and psychological well-being of patients. Therefore, improving QoL in breast cancer survivors must involve a holistic approach and the integration of dietary and lifestyle interventions to alleviate the many side effects and enhance physical functioning, ultimately contributing to faster recovery and reducing the risk of cancer recurrence and mortality.
- Exploration of cyclic fasting-mimicking diet regimens in diverse cancer patients, particularly in those with metastatic changes, and their synergism with standard-of-care treatment or other pharmacological agents. Since this research is in its infancy, more animal studies and phase-2 clinical trials will be needed to progress to randomized, phase-3 clinical trials. However, it is a very promising and novel approach.
- Evaluation of whole-grain cereal composition and its potential as a preventative strategy for breast cancer initiation or its recurrence is also an unexplored topic with great potential. As addressed above, these foods are rich in fiber and bioactive components and present a safe, natural, and relatively cheap choice for widespread, long-term use, not only in breast cancer patients but in other diverse populations. Unfortunately, due to the limited studies in cancer patients and the limitations of the existing studies, it is still unclear which grains were used (from which geographic region) and which specific phytochemicals showed beneficial effects on specific types of cancer cells.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Abbreviations
AIs | Aromatase inhibitors |
AIA | Aromatase inhibitor-induced arthralgia |
AIMSS | Aromatase inhibitor-associated musculoskeletal symptoms |
AMPK | Adenosine 5′ monophosphate-activated protein kinase |
Ang | Angiopoietin |
apo A1 | Apolipoprotein A1 |
BAP | Bone specific alkaline phosphatase |
BFI | Brief fatigue inventory |
BFM | Body fat mass |
BMD | Bone mineral density |
BMI | Body mass index |
BPI-S | Brief Pain Intensity Score |
BPI-SF | Brief pain inventory–short form |
BRC | Breast cancer |
BRCS | Breast cancer survivors |
BW | Body weight |
CD19+ | Cluster of differentiation |
CDSS | Clinical Decision Support System |
CFS | Cancer Fatigue Scale |
CoQ10 | Coenzyme Q10 |
CPIS | Categorical pain intensity scale |
CRP | C-reactive protein |
CTX | Serum C-telopeptide |
CVD | Cardiovascular disease |
DHA | Docosahexaenoic acid |
DHEAS | Dehydroepiandrosterone sulfate |
DPD | Deoxypyridinoline |
DP | Dried plum |
EORTC | The European Organization for Research and Treatment of Cancer |
EORTC QLQ-BR23 | European organization for research and treatment of cancer quality of life questionnaire the breast cancer supplementary module |
EORTC QLQ-C30 | European organization for research and treatment of cancer quality of life questionnaire core 30 |
EPA | Eicosapentaenoic acid |
ER | Estrogen receptor |
FACT-B | Functional assessment of cancer therapy breast |
FACT-ES | Functional Assessment of Cancer Therapy–General |
FMD | Fasting-mimicking diet |
HADS | Hospital anxiety and depression scale |
HAQ II scores | Health assessment questionnaire II |
HC | Hip circumference |
HCys | Homocysteine |
HDL | High-density lipoprotein |
Hif | Hypoxia-inducible factor |
HOMA-IR | Homeostatic model assessment for insulin resistance |
HR+ | Hormone-receptor-positive |
hs-CRP (CRP) | High-sensitivity C-reactive protein |
IFNγ | Interferone gamma |
IGF-1 | Insulin-like growth factor 1 |
IL-1 | Interleukin-1 |
IL-6 | Interleukin-6 |
IL-8 | Interleukin-8 |
IL-10 | Interleukin-10 |
IL-15 | Interleukin-15 |
IL-17 | Interleukin-17 |
LC | Long chain |
LCAT | Lecithin: cholesterol acyl transferase |
LDL | Low-density lipoprotein |
LDL cholesterol | Low-density lipoprotein cholesterol |
LPL | Lipoprotein lipase |
MAPK | Mitogen-activated protein kinase |
MDA | Malondialdehyde |
MedDiet score | Mediterranean diet score |
MENQOL | Menopause-specific quality of life |
MMA | Methylmalonic acid |
mTOR | Mechanistic (mammalian) target of rapamycin |
NCI-CTCAE | National Cancer Institute–common toxicity criteria for adverse event |
NK | Natural killer |
NKG2A+ | Natural killer group 2 member A |
NKp30+ | Natural cytotoxicity receptor 3 |
Nrf2 | Nuclear factor E-2 related factor 2 |
NS | Not significant |
OCN | Osteocalcin |
P1NP | Procollagen type 1 N-terminal propeptide |
PPARα | Peroxisome proliferator-activated receptor α |
PRAI | Patient-reported arthralgia inventory |
PTH | Parathyroid hormone |
QoL | Quality of life |
SAA | Serum amyloid A |
sCTX | Serum C-terminal telopeptide |
SF-36 | 36-Item Short-Form Survey |
TG | Triglycerides |
TAM | Tamoxifen |
TC | Total cholesterol |
TG | Triglycerides |
TGFβ | Transforming growth factor beta |
TNFR-2 | Tumor necrosis factor receptor 2 |
TNF-α | Tumor necrosis factor alpha |
TRAP-5b | Tartrate-resistant acid phosphatase isoform 5b |
VAS | Visual analog pain scale |
VEGF | Vascular endothelial growth factor |
VEGFR | Vascular endothelial growth factor receptor |
WC | Waist circumference |
References
- Barzaman, K.; Karami, J.; Zarei, Z.; Hosseinzadeh, A.; Kazemi, M.H.; Moradi-Kalbolandi, S.; Safari, E.; Farahmand, L. Breast cancer: Biology, biomarkers, and treatments. Int. Immunopharmacol. 2020, 84, 106535. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Qi, J.; Du, B.; Weng, X.; Lai, J.; Wu, R. Combined influence of nutritional and inflammatory status and breast cancer: Findings from the NHANES. BMC Public Health 2024, 24, 2245. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Wang, F.; Shi, L.; Cai, H.; Zheng, Y.; Zheng, W.; Bao, P.; Shu, X.O. Accelerated aging in breast cancer survivors and its association with mortality and cancer recurrence. Breast Cancer Res. Treat. 2020, 180, 449–459. [Google Scholar] [CrossRef] [PubMed]
- Forma, A.; Grunwald, A.; Zembala, P.; Januszewski, J.; Brachet, A.; Zembala, R.; Świątek, K.; Baj, J. Micronutrient Status and Breast Cancer: A Narrative Review. Int. J. Mol. Sci. 2024, 25, 4968. [Google Scholar] [CrossRef]
- Jiang, Y.; Li, Y. Nutrition Intervention and Microbiome Modulation in the Management of Breast Cancer. Nutrients 2024, 16, 2644. [Google Scholar] [CrossRef]
- Skafida, E.; Andrikopoulou, A.; Terpos, E.; Markellos, C.; Moustafa, S.; Pectasides, D.; Dimopoulos, M.A.; Zagouri, F.; Vassilopoulos, D. Impact of CDK4/6 Inhibitors on Aromatase Inhibitor-Associated Musculoskeletal Syndrome (AIMSS) in the Adjuvant Setting. Breast J. 2023, 2023, 3614296. [Google Scholar] [CrossRef]
- Kavishahi, N.N.; Rezaee, A.; Jalalian, S. The Impact of miRNAs on the Efficacy of Tamoxifen in Breast Cancer Treatment: A Systematic Review. Clin. Breast Cancer 2024, 24, 341–350. [Google Scholar] [CrossRef]
- Bérczi, B.; Farkas, N.; Hegyi, P.; Tóth, B.; Csupor, D.; Németh, B.; Lukács, A.; Czumbel, L.M.; Kerémi, B.; Kiss, I.; et al. Aromatase Inhibitors and Plasma Lipid Changes in Postmenopausal Women with Breast Cancer: A Systematic Review and Meta-Analysis. J. Clin. Med. 2024, 13, 1818. [Google Scholar] [CrossRef]
- Janowska, S.; Holota, S.; Lesyk, R.; Wujec, M. Aromatase Inhibitors as a Promising Direction for the Search for New Anticancer Drugs. Molecules 2024, 29, 346. [Google Scholar] [CrossRef]
- Yu, Q.; Xu, Y.; Yu, E.; Zheng, Z. Risk of cardiovascular disease in breast cancer patients receiving aromatase inhibitors vs. tamoxifen: A systematic review and meta-analysis. J. Clin. Pharm. Ther. 2022, 47, 575–587. [Google Scholar] [CrossRef]
- Yoo, J.J.; Jung, E.A.; Kim, Z.; Kim, B.Y. Risk of Cardiovascular Events and Lipid Profile Change in Patients with Breast Cancer Taking Aromatase Inhibitor: A Systematic Review and Meta-Analysis. Curr. Oncol. 2023, 30, 1831–1843. [Google Scholar] [CrossRef] [PubMed]
- Dowling, M.; McDonagh, B.; Meade, E. Arthralgia in breast cancer survivors: An integrative review of endocrine therapy. Oncol. Nurs. Forum 2017, 44, 337–349. [Google Scholar] [CrossRef]
- Bahçaci, U.; Uysal, S.A.; Iyigün, Z.E.; Ordu, Ç.; Soybir, G.R.; Ozmen, V. Progressive relaxation training in patients with breast cancer receiving aromatase inhibitor therapy-randomized controlled trial. PLoS ONE 2024, 19, e0301020. [Google Scholar] [CrossRef] [PubMed]
- Martino, G.; Catalano, A.; Agostino, R.M.; Bellone, F.; Morabito, N.; Lasco, C.G.; Vicario, C.M.; Schwarz, P.; Feldt-Rasmussen, U. Quality of life and psychological functioning in postmenopausal women undergoing aromatase inhibitor treatment for early breast cancer. PLoS ONE 2020, 15, e0230681. [Google Scholar] [CrossRef]
- Ashin, Z.F.; Sadeghi-Mohammadi, S.; Vaezi, Z.; Najafi, F.; AdibAmini, S.; Sadeghizadeh, M.; Naderi-Manesh, H. Synergistic effect of curcumin and tamoxifen loaded in pH-responsive gemini surfactant nanoparticles on breast cancer cells. BMC Complement. Med. Ther. 2024, 24, 337. [Google Scholar] [CrossRef]
- Johnson, C.M.; Stubblefield, E.; Godinich, B.M.; Walker, M.; Salcedo Price, R.; Allicock, M.A. A Scoping Review to Explore the Potential Benefits of Nutrition Interventions for Latino/a Adult Cancer Survivors in the US. Nutrients 2023, 15, 4963. [Google Scholar] [CrossRef]
- Lake, B.; Damery, S.; Jolly, K. Effectiveness of weight loss interventions in breast cancer survivors: A systematic review of reviews. BMJ Open 2022, 12, e062288. [Google Scholar] [CrossRef]
- Garutti, M.; Noto, C.; Pastò, B.; Cucciniello, L.; Alajmo, M.; Casirati, A.; Pedrazzoli, P.; Caccialanza, R.; Puglisi, F. Nutritional Management of Oncological Symptoms: A Comprehensive Review. Nutrients 2023, 15, 5068. [Google Scholar] [CrossRef]
- Xie, M.; Liu, J.; Tsao, R.; Wang, Z.; Sun, B.; Wang, J. Whole Grain Consumption for the Prevention and Treatment of Breast Cancer. Nutrients 2019, 11, 1769. [Google Scholar] [CrossRef]
- Murillo-Ortiz, B.; Martínez-Garza, S.; Landeros, V.C.; Velázquez, G.C.; García, D.S. Effect of reduced dietary fat on estradiol, adiponectin, and IGF-1 levels in postmenopausal women with breast cancer. Breast Cancer Targets Ther. 2017, 9, 359–364. [Google Scholar] [CrossRef]
- Brown, J.C.; Sarwer, D.B.; Troxel, A.B.; Sturgeon, K.; DeMichele, A.M.; Denlinger, C.S.; Schmitz, K.H. A randomized trial of exercise and diet on health-related quality of life in survivors of breast cancer with overweight or obesity. Cancer 2021, 127, 3856–3864. [Google Scholar] [CrossRef] [PubMed]
- Papandreou, P.; Gioxari, A.; Nimee, F.; Skouroliakou, M. Application of clinical decision support system to assist breast cancer patients with lifestyle modifications during the COVID-19 pandemic: A randomised controlled trial. Nutrients 2021, 13, 2115. [Google Scholar] [CrossRef] [PubMed]
- Hershman, D.L.; Unger, J.M.; Crew, K.D.; Awad, D.; Dakhil, S.R.; Gralow, J.; Greenlee, H.; Lew, D.L.; Minasian, L.M.; Till, C.; et al. Randomized Multicenter Placebo-Controlled Trial of Omega-3 Fatty Acids for the Control of Aromatase Inhibitor-Induced Musculoskeletal Pain: SWOG S0927. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2015, 33, 1910–1917. [Google Scholar] [CrossRef]
- Hutchins-Wiese, H.L.; Picho, K.; Watkins, B.A.; Li, Y.; Tannenbaum, S.; Claffey, K.; Kenny, A.M. High-Dose eicosapentaenoic acid and docosahexaenoic acid supplementation reduces bone resorption in postmenopausal breast cancer survivors on aromatase inhibitors: A pilot study. Nutr. Cancer 2014, 66, 68–76. [Google Scholar] [CrossRef]
- Martínez, N.; Herrera, M.; Frías, L.; Provencio, M.; Pérez-Carrión, R.; Díaz, V.; Morse, M.; Crespo, M.C. A combination of hydroxytyrosol, omega-3 fatty acids and curcumin improves pain and inflammation among early stage breast cancer patients receiving adjuvant hormonal therapy: Results of a pilot study. Clin. Transl. Oncol. 2019, 21, 489–498. [Google Scholar] [CrossRef]
- Lustberg, M.B.; Orchard, T.S.; Reinbolt, R.; Andridge, R.; Pan, X.; Belury, M.; Cole, R.; Logan, A.; Layman, R.; Ramaswamy, B.; et al. Randomized placebo-controlled pilot trial of omega 3 fatty acids for prevention of aromatase inhibitor-induced musculoskeletal pain. Breast Cancer Res. Treat. 2018, 167, 709–718. [Google Scholar] [CrossRef]
- Rhee, Y.; Song, K.; Park, S.; Park, H.S.; Lim, S.-K.; Park, B.W. Efficacy of a combined alendronate and calcitriol agent (Maxmarvil®) in Korean postmenopausal women with early breast cancer receiving aromatase inhibitor: A double-blind, randomized, placebo-controlled study. Endocr. J. 2013, 60, 167–172. [Google Scholar] [CrossRef]
- Park, H.; Parker, G.L.; Boardman, C.H.; Morris, M.M.; Smith, T.J. A pilot phase II trial of magnesium supplements to reduce menopausal hot flashes in breast cancer patients. Support. Care Cancer 2011, 19, 859–863. [Google Scholar] [CrossRef]
- Khan, Q.J.; Kimler, B.F.; Reddy, P.S.; Sharma, P.; Klemp, J.R.; Nydegger, J.L.; Yeh, H.W.; Fabian, C.J. Randomized trial of vitamin D3 to prevent worsening of musculoskeletal symptoms in women with breast cancer receiving adjuvant letrozole. The VITAL trial. Breast Cancer Res. Treat. 2017, 166, 491–500. [Google Scholar] [CrossRef]
- Arul Vijaya Vani, S.; Ananthanarayanan, P.H.; Kadambari, D.; Harichandrakumar, K.T.; Niranjjan, R.; Nandeesha, H. Effects of vitamin D and calcium supplementation on side effects profile in patients of breast cancer treated with letrozole. Clin. Chim. Acta 2016, 459, 53–56. [Google Scholar] [CrossRef]
- Campbell, A.; Heydarian, R.; Ochoa, C.; Dwivedi, A.K.; Nahleh, Z.A. Single arm phase II study of oral vitamin B12 for the treatment of musculoskeletal symptoms associated with aromatase inhibitors in women with early stage breast cancer. Breast J. 2018, 24, 260–268. [Google Scholar] [CrossRef] [PubMed]
- Niravath, P.; Hilsenbeck, S.G.; Wang, T.; Jiralerspong, S.; Nangia, J.; Pavlick, A.; Ademuyiwa, F.; Frith, A.; Ma, C.; Park, H.; et al. Randomized controlled trial of high-dose versus standard-dose vitamin D3 for prevention of aromatase inhibitor-induced arthralgia. Breast Cancer Res. Treat. 2019, 177, 427–435. [Google Scholar] [CrossRef] [PubMed]
- Shahvegharasl, Z.; Pirouzpanah, S.; Mahboob, S.A.; Montazeri, V.; Adili, A.; Asvadi, I.; Sanaat, Z.; Esfehani, A.; Pirouzpanah, S.S.; Mesgari, M. Effects of cholecalciferol supplementation on serum angiogenic biomarkers in breast cancer patients treated with tamoxifen: A controlled randomized clinical trial. Nutrition 2020, 72, 110656. [Google Scholar] [CrossRef] [PubMed]
- Simonavice, E.; Liu, P.-Y.; Ilich, J.Z.; Kim, J.-S.; Arjmandi, B.; Panton, L.B. The effects of a 6-month resistance training and dried plum consumption intervention on strength, body composition, blood markers of bone turnover, and inflammation in breast cancer survivors. Appl. Physiol. Nutr. Metab. Physiol. Appl. Nutr. Metab. 2014, 39, 730–739. [Google Scholar] [CrossRef]
- Radi, I.A.; Al-Hashimi, O.; Ameen, N.A.; Alhilfi, H.S.; Abdullah, A.; Alshewered, A. Phytochemical effects of soy isoflavones consumption on urinary estrogen levels in premenopausal and postmenopausal women with breast cancer. Rom. J. Diabetes, Nutr. Metab. Dis. 2023, 30, 222–230. [Google Scholar] [CrossRef]
- Ávila-Gálvez, M.Á.; González-Sarrías, A.; Martínez-Díaz, F.; Abellán, B.; Martínez-Torrano, A.J.; Fernández-López, A.J.; Giménez-Bastida, J.A.; Espín, J.C. Disposition of Dietary Polyphenols in Breast Cancer Patients’ Tumors, and Their Associated Anticancer Activity: The Particular Case of Curcumin. Mol. Nutr. Food Res. 2021, 65, 2100163. [Google Scholar] [CrossRef]
- Ferraris, C.; Ballestra, B.; Listorti, C.; Cappelletti, V.; Reduzzi, C.; Scaperrotta, G.P.; Pulice, I.; Ferrari, E.G.A.; Folli, S.; Mariani, L.; et al. Red clover and lifestyle changes to contrast menopausal symptoms in premenopausal patients with hormone-sensitive breast cancer receiving tamoxifen. Breast Cancer Res. Treat. 2020, 180, 157–165. [Google Scholar] [CrossRef]
- MacGregor, C.A.; Canney, P.A.; Patterson, G.; McDonald, R.; Paul, J. A randomised double-blind controlled trial of oral soy supplements versus placebo for treatment of menopausal symptoms in patients with early breast cancer. Eur. J. Cancer 2005, 41, 708–714. [Google Scholar] [CrossRef]
- Braal, C.L.; Hussaarts, K.G.A.M.; Seuren, L.; Oomen-de Hoop, E.; de Bruijn, P.; Buck, S.A.J.; Bos, M.E.M.M.; Thijs-Visser, M.F.; Zuetenhorst, H.J.M.; Mathijssen-van Stein, D.; et al. Influence of green tea consumption on endoxifen steady-state concentration in breast cancer patients treated with tamoxifen. Breast Cancer Res. Treat. 2020, 184, 107–113. [Google Scholar] [CrossRef]
- Desideri, I.; Lucidi, S.; Francolini, G.; Meattini, I.; Ciccone, L.P.; Salvestrini, V.; Valzano, M.; Morelli, I.; Angelini, L.; Scotti, V.; et al. Use of an alfa-lipoic, Methylsulfonylmethane, Boswellia serrata and Bromelain dietary supplement (OPERA®) for aromatase inhibitors-related arthralgia management (AIA): A prospective phase II trial (NCT04161833). Med. Oncol. 2022, 39, 113. [Google Scholar] [CrossRef]
- Su, Y.W.; Huang, W.Y.; Lin, S.H.; Yang, P.S. Effects of Reishimmune-S, a Fungal Immunomodulatory Peptide Supplement, on the Quality of Life and Circulating Natural Killer Cell Profiles of Patients with Early Breast Cancer Receiving Adjuvant Endocrine Therapy. Integr. Cancer Ther. 2024, 23, 15347354241242120. [Google Scholar] [CrossRef]
- Premkumar, V.G.; Yuvaraj, S.; Sathish, S.; Shanthi, P.; Sachdanandam, P. Anti-angiogenic potential of CoenzymeQ10, riboflavin and niacin in breast cancer patients undergoing tamoxifen therapy. Vascul. Pharmacol. 2008, 48, 191–201. [Google Scholar] [CrossRef]
- Premkumar, V.G.; Yuvaraj, S.; Vijayasarathy, K.; Gangadaran, S.G.D.; Sachdanandam, P. Serum cytokine levels of interleukin-1β, -6, -8, tumour necrosis factor-α and vascular endothelial growth factor in breast cancer patients treated with tamoxifen and supplemented with co-enzyme Q10, riboflavin and niacin. Basic Clin. Pharmacol. Toxicol. 2007, 100, 387–391. [Google Scholar] [CrossRef] [PubMed]
- Yuvaraj, S.; Premkumar, V.G.; Shanthi, P.; Vijayasarathy, K.; Gangadaran, S.G.D.; Sachdanandam, P. Effect of Coenzyme Q10, Riboflavin and Niacin on Tamoxifen treated postmenopausal breast cancer women with special reference to blood chemistry profiles. Breast Cancer Res. Treat. 2009, 114, 377–384. [Google Scholar] [CrossRef] [PubMed]
- Zahrooni, N.; Hosseini, S.A.; Ahmadzadeh, A.; Angali, K.A.; Assarehzadegan, M.A. The effect of coenzyme q10 supplementation on vascular endothelial growth factor and serum levels of interleukin 6 and 8 in women with breast cancer: A double-blind, placebo-controlled, randomized clinical trial. Ther. Clin. Risk Manag. 2019, 15, 1403–1410. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Chen, N.; Reid, P. Current and future advances in practice: Aromatase inhibitor-induced arthralgia. Rheumatol. Adv. Pract. 2024, 8, rkae024. [Google Scholar] [CrossRef]
- Kim, S.; Yeo, Y.; Shin, J.; Shin, D.W.; Cho, B.; Song, Y.-M. Factors Associated with Long-Term Dietary Supplement Use among Korean Breast Cancer Survivors: A Cross-Sectional Study. Nutrients 2023, 15, 4087. [Google Scholar] [CrossRef]
- Cucciniello, L.; Garufi, G.; Di Rienzo, R.; Martinelli, C.; Pavone, G.; Giuliano, M.; Arpino, G.; Montemurro, F.; Del Mastro, L.; De Laurentiis, M.; et al. Estrogen deprivation effects of endocrine therapy in breast cancer patients: Incidence, management and outcome. Cancer Treat. Rev. 2023, 120, 102624. [Google Scholar] [CrossRef]
- Brauer, E.R.; Long, E.F.; Melnikow, J.; Ravdin, P.M.; Ganz, P.A. Communicating Risks of Adjuvant Chemotherapy for Breast Cancer: Getting Beyond the Laundry List. J. Oncol. Pract. 2019, 15, e98–e109. [Google Scholar] [CrossRef]
- Ilich, J.Z.; Kelly, O.J.; Inglis, J.E.; Panton, L.B.; Duque, G.; Ormsbee, M.J. Interrelationship among muscle, fat, and bone: Connecting the dots on cellular, hormonal, and whole body levels. Ageing Res. Rev. 2014, 15, 51–60. [Google Scholar] [CrossRef]
- Ilich, J.Z.; Pokimica, B.; Ristić-Medić, D.; Petrović, S.; Arsić, A.; Vasiljević, N.; Vučić, V.; Kelly, O.J. Osteosarcopenic adiposity and its relation to cancer and chronic diseases: Implications for research to delineate mechanisms and improve clinical outcomes. Ageing Res. Rev. 2024, 103, 102601. [Google Scholar] [CrossRef]
- Yokoyama, S.-I.; Kodera, M.; Hirai, A.; Nakada, M.; Ueno, Y.; Osawa, T. Red Clover (Trifolium pratense L.) Sprout Prevents Metabolic Syndrome. J. Nutr. Sci. Vitaminol. 2020, 66, 48–53. [Google Scholar] [CrossRef]
- Janthongkaw, A.; Klaophimai, S.; Khampaya, T.; Yimthiang, S.; Yang, Y.; Ma, R.; Bumyut, A.; Pouyfung, P. Effect of Green and Red Thai Kratom (Mitragyna speciosa) on pancreatic digestive enzymes (alpha-glucosidase and lipase) and acetyl-carboxylase 1 activity: A possible therapeutic target for obesity prevention. PLoS ONE 2023, 18, e0291738. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-M.; Wang, I.-L.; Zhu, X.-Y.; Chiu, W.-C.; Chiu, Y.-S. Red Clover Isoflavones Influence Estradiol Concentration, Exercise Performance, and Gut Microbiota in Female Mice. Front. Nutr. 2021, 8, 623698. [Google Scholar] [CrossRef] [PubMed]
- Lizcano, F.; Guzmán, G. Estrogen Deficiency and the Origin of Obesity during Menopause. Biomed Res. Int. 2014, 2014, 757461. [Google Scholar] [CrossRef]
- Hooshmand, S.; Chai, S.C.; Saadat, R.L.; Payton, M.E.; Brummel-Smith, K.; Arjmandi, B.H. Comparative effects of dried plum and dried apple on bone in postmenopausal women. Br. J. Nutr. 2011, 106, 923–930. [Google Scholar] [CrossRef] [PubMed]
- Heshmati, H.M.; Khosla, S.; Robins, S.P.; O’Fallon, W.M.; Melton III, L.J.; Riggs, B.L. Role of Low Levels of Endogenous Estrogen in Regulation of Bone Resorption in Late Postmenopausal Women. J. Bone Miner. Res. 2002, 17, 172–178. [Google Scholar] [CrossRef]
- Ali, Z.; Al-Ghouti, M.A.; Abou-Saleh, H.; Rahman, M.M. Unraveling the Omega-3 Puzzle: Navigating Challenges and Innovations for Bone Health and Healthy Aging. Mar. Drugs 2024, 22, 446. [Google Scholar] [CrossRef]
- Boszkiewicz, K.; Piwowar, A.; Petryszyn, P. Aromatase Inhibitors and Risk of Metabolic and Cardiovascular Adverse Effects in Breast Cancer Patients-A Systematic Review and Meta-Analysis. J. Clin. Med. 2022, 11, 3133. [Google Scholar] [CrossRef]
- Ko, S.-H.; Kim, H.-S. Menopause-Associated Lipid Metabolic Disorders and Foods Beneficial for Postmenopausal Women. Nutrients 2020, 12, 202. [Google Scholar] [CrossRef]
- He, T.; Li, X.; Li, J.; Wang, Z.; Fan, Y.; Li, X.; Fu, Z.; Wu, Y.; Lv, Q.; Luo, T.; et al. Lipid Changes During Endocrine Therapy in Breast Cancer Patients: The Results of a 5-Year Real-World Retrospective Analysis. Front. Oncol. 2021, 11, 670897. [Google Scholar] [CrossRef]
- Atalay, G.; Dirix, L.; Biganzoli, L.; Beex, L.; Nooij, M.; Cameron, D.; Lohrisch, C.; Cufer, T.; Lobelle, J.P.; Mattiaci, M.R.; et al. The effect of exemestane on serum lipid profile in postmenopausal women with metastatic breast cancer: A companion study to EORTC Trial 10951, ‘Randomized phase II study in first line hormonal treatment for metastatic breast cancer with exemestane or tam. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2004, 15, 211–217. [Google Scholar] [CrossRef] [PubMed]
- Zahedi, H.; Eghtesadi, S.; Seifirad, S.; Rezaee, N.; Shidfar, F.; Heydari, I.; Golestan, B.; Jazayeri, S. Effects of CoQ10 Supplementation on Lipid Profiles and Glycemic Control in Patients with Type 2 Diabetes: A randomized, double blind, placebo-controlled trial. J. Diabetes Metab. Disord. 2014, 13, 81. [Google Scholar] [CrossRef] [PubMed]
- Kaur, J.; Kamboj, K.; Yadav, A.K.; Kaur, P.; Kumar, V.; Jha, V. Cholecalciferol supplementation and angiogenic markers in chronic kidney disease. PLoS ONE 2022, 17, e0268946. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Wu, L.; Yan, G.; Chen, Y.; Zhou, M.; Wu, Y.; Li, Y. Inflammation and tumor progression: Signaling pathways and targeted intervention. Signal Transduct. Target. Ther. 2021, 6, 263. [Google Scholar] [CrossRef]
- Sproston, N.R.; Ashworth, J.J. Role of C-Reactive Protein at Sites of Inflammation and Infection. Front. Immunol. 2018, 9, 754. [Google Scholar] [CrossRef]
- Rahman, H.U.; Mahmood, M.H.; Sama, N.U.; Afzal, M.; Asaruddin, M.R.; Khan, M.S.A. Impact of Olive Oil Constituents on C-reactive Protein: In silico Evidence. J. Oleo Sci. 2022, 71, 1199–1206. [Google Scholar] [CrossRef]
- Shakour, N.; Cabezas, R.; Santos, J.G.; Barreto, G.E.; Jamialahmadi, T.; Hadizadeh, F.; Sahebkar, A. Curcumin Can Bind and Interact with CRP: An in silico Study. Adv. Exp. Med. Biol. 2021, 1308, 91–100. [Google Scholar] [CrossRef]
- Bagheri, A.; Soltani, S.; Asoudeh, F.; Esmaillzadeh, A. Effects of omega-3 supplementation on serum albumin, pre-albumin and the CRP/albumin ratio in hospitalized patients: A systematic review and meta-analysis. Nutr. Rev. 2023, 81, 237–251. [Google Scholar] [CrossRef]
- Hou, S.; Tian, Z.; Zhao, D.; Liang, Y.; Dai, S.; Ji, Q.; Fan, Z.; Liu, Z.; Liu, M.; Yang, Y. Efficacy and Optimal Dose of Coenzyme Q10 Supplementation on Inflammation-Related Biomarkers: A GRADE-Assessed Systematic Review and Updated Meta-Analysis of Randomized Controlled Trials. Mol. Nutr. Food Res. 2023, 67, e2200800. [Google Scholar] [CrossRef]
- Su, N.-Y.; Ng, M.Y.; Liao, H.-Y.; Liao, Y.-W.; Wu, M.; Chao, S.-C.; Yu, C.-C.; Chang, Y.-C. Ganoderma Microsporum Immunomodulatory Protein Alleviates Inflammaging and Oxidative Stress in Diabetes-Associated Periodontitis via Nrf2 Signaling Activation: An In Vitro Study. Antioxidants 2024, 13, 817. [Google Scholar] [CrossRef] [PubMed]
- Aaronson, N.K.; Ahmedzai, S.; Bergman, B.; Bullinger, M.; Cull, A.; Duez, N.J.; Filiberti, A.; Flechtner, H.; Fleishman, S.B.; de Haes, J.C. The European Organization for Research and Treatment of Cancer QLQ-C30: A quality-of-life instrument for use in international clinical trials in oncology. J. Natl. Cancer Inst. 1993, 85, 365–376. [Google Scholar] [CrossRef] [PubMed]
- Nrayanana, V.; Koshy, C. Fatigue in cancer: A review of literature. Indian J. Palliat. Care 2009, 15, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Sturdee, D.W.; Hunter, M.S.; Maki, P.M.; Gupta, P.; Sassarini, J.; Stevenson, J.C.; Lumsden, M.A. The menopausal hot flush: A review. Climacteric 2017, 20, 296–305. [Google Scholar] [CrossRef]
- Nazarinasab, M.; Behrouzian, F.; Abdi, L.; Sadegh Moghaddam, A.A.; Sadeghi, S. Investigating the effect of magnesium supplement in patients with major depressive disorder under selective serotonin reuptake inhibitor treatment. J. Fam. Med. Prim. care 2022, 11, 7800–7805. [Google Scholar] [CrossRef]
- Viscardi, G.; Back, S.; Ahmed, A.; Yang, S.; Mejia, S.B.; Zurbau, A.; Khan, T.A.; Selk, A.; Messina, M.; Kendall, C.W.C.; et al. Effect of Soy Isoflavones on Measures of Estrogenicity: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Adv. Nutr. 2024, 16, 100327. [Google Scholar] [CrossRef]
- Kanadys, W.; Barańska, A.; Błaszczuk, A.; Polz-Dacewicz, M.; Drop, B.; Malm, M.; Kanecki, K. Effects of Soy Isoflavones on Biochemical Markers of Bone Metabolism in Postmenopausal Women: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Int. J. Environ. Res. Public Health 2021, 18, 5346. [Google Scholar] [CrossRef]
- Taku, K.; Melby, M.K.; Kronenberg, F.; Kurzer, M.S.; Messina, M. Extracted or synthesized soybean isoflavones reduce menopausal hot flash frequency and severity: Systematic review and meta-analysis of randomized controlled trials. Menopause 2012, 19, 776–790. [Google Scholar] [CrossRef]
- Khapre, S.; Deshmukh, U.; Jain, S. The Impact of Soy Isoflavone Supplementation on the Menopausal Symptoms in Perimenopausal and Postmenopausal Women. J. Midlife. Health 2022, 13, 175–184. [Google Scholar] [CrossRef]
- Fan, Y.; Wang, M.; Li, Z.; Jiang, H.; Shi, J.; Shi, X.; Liu, S.; Zhao, J.; Kong, L.; Zhang, W.; et al. Intake of Soy, Soy Isoflavones and Soy Protein and Risk of Cancer Incidence and Mortality. Front. Nutr. 2022, 9, 847421. [Google Scholar] [CrossRef]
- Yang, J.; Shen, H.; Mi, M.; Qin, Y. Isoflavone Consumption and Risk of Breast Cancer: An Updated Systematic Review with Meta-Analysis of Observational Studies. Nutrients 2023, 15, 2402. [Google Scholar] [CrossRef] [PubMed]
- Arsic, A.; Krstic, P.; Paunovic, M.; Nedovic, J.; Jakovljevic, V.; Vucic, V. Anti-inflammatory effect of combining fish oil and evening primrose oil supplementation on breast cancer patients undergoing chemotherapy: A randomized placebo-controlled trial. Sci. Rep. 2023, 13, 6449. [Google Scholar] [CrossRef] [PubMed]
- Arsic, A.C.; Kojadinovic, M.I. Cancer Survivorship and Omega-3 Dietary Intervention: A Review of Current Studies. In Interdisciplinary Cancer Research; Springer International Publishing: Cham, Switzerland, 2024; pp. 1–18. [Google Scholar]
- Krstic, P.; Vucic, V.; Paunovic, M.; Petrovic, S.; Nedovic, N.; Kostic, S.; Arsic, A. Similar fatty acid status of plasma lipids in postmenopausal women newly diagnosed with breast cancer and those receiving aromatase inhibitor therapy. Vojnosanit. Pregl. 2021, 78, 1140–1145. [Google Scholar] [CrossRef]
- Shen, S.; Unger, J.M.; Crew, K.D.; Till, C.; Greenlee, H.; Gralow, J.; Dakhil, S.R.; Minasian, L.M.; Wade, J.L., 3rd; Fisch, M.J.; et al. Omega-3 fatty acid use for obese breast cancer patients with aromatase inhibitor-related arthralgia (SWOG S0927). Breast Cancer Res. Treat. 2018, 172, 603–610. [Google Scholar] [CrossRef]
- Superti, F.; Russo, R. Alpha-Lipoic Acid: Biological Mechanisms and Health Benefits. Antioxidants 2024, 13, 1228. [Google Scholar] [CrossRef]
- Desideri, I.; Francolini, G.; Becherini, C.; Terziani, F.; Delli Paoli, C.; Olmetto, E.; Loi, M.; Perna, M.; Meattini, I.; Scotti, V.; et al. Use of an alpha lipoic, methylsulfonylmethane and bromelain dietary supplement (Opera(®)) for chemotherapy-induced peripheral neuropathy management, a prospective study. Med. Oncol. 2017, 34, 46. [Google Scholar] [CrossRef]
- Muscaritoli, M.; Arends, J.; Bachmann, P.; Baracos, V.; Barthelemy, N.; Bertz, H.; Bozzetti, F.; Hütterer, E.; Isenring, E.; Kaasa, S.; et al. ESPEN practical guideline: Clinical Nutrition in cancer. Clin. Nutr. 2021, 40, 2898–2913. [Google Scholar] [CrossRef]
- Caffa, I.; Spagnolo, V.; Vernieri, C.; Valdemarin, F.; Becherini, P.; Wei, M.; Brandhorst, S.; Zucal, C.; Driehuis, E.; Ferrando, L.; et al. Fasting-mimicking diet and hormone therapy induce breast cancer regression. Nature 2020, 583, 620–624. [Google Scholar] [CrossRef]
- Vernieri, C.; Ligorio, F.; Tripathy, D.; Longo, V.D. Cyclic fasting-mimicking diet in cancer treatment: Preclinical and clinical evidence. Cell Metab. 2024, 36, 1644–1667. [Google Scholar] [CrossRef]
- Liang, Y.; Liu, C.; Lu, M.; Dong, Q.; Wang, Z.; Wang, Z.; Xiong, W.; Zhang, N.; Zhou, J.; Liu, Q.; et al. Calorie restriction is the most reasonable anti-ageing intervention: A meta-analysis of survival curves. Sci. Rep. 2018, 8, 5779. [Google Scholar] [CrossRef]
- Koppold, D.A.; Breinlinger, C.; Hanslian, E.; Kessler, C.; Cramer, H.; Khokhar, A.R.; Peterson, C.M.; Tinsley, G.; Vernieri, C.; Bloomer, R.J.; et al. International consensus on fasting terminology. Cell Metab. 2024, 36, 1779–1794.e4. [Google Scholar] [CrossRef] [PubMed]
- Hanahan, D. Hallmarks of Cancer: New Dimensions. Cancer Discov. 2022, 12, 31–46. [Google Scholar] [CrossRef] [PubMed]
- Vernieri, C.; Casola, S.; Foiani, M.; Pietrantonio, F.; de Braud, F.; Longo, V. Targeting Cancer Metabolism: Dietary and Pharmacologic Interventions. Cancer Discov. 2016, 6, 1315–1333. [Google Scholar] [CrossRef] [PubMed]
- Warburg Otto The metabolism of carcinoma cells. J. Cancer Res. 1925, 9, 148–163. [CrossRef]
- Okarter, N.; Liu, R.H. Health benefits of whole grain phytochemicals. Crit. Rev. Food Sci. Nutr. 2010, 50, 193–208. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Žuža Praštalo, M.; Pokimica, B.; Arsić, A.; Ilich, J.Z.; Vučić, V. Current Evidence on the Impact of Diet, Food, and Supplement Intake on Breast Cancer Health Outcomes in Patients Undergoing Endocrine Therapy. Nutrients 2025, 17, 456. https://doi.org/10.3390/nu17030456
Žuža Praštalo M, Pokimica B, Arsić A, Ilich JZ, Vučić V. Current Evidence on the Impact of Diet, Food, and Supplement Intake on Breast Cancer Health Outcomes in Patients Undergoing Endocrine Therapy. Nutrients. 2025; 17(3):456. https://doi.org/10.3390/nu17030456
Chicago/Turabian StyleŽuža Praštalo, Milena, Biljana Pokimica, Aleksandra Arsić, Jasminka Z. Ilich, and Vesna Vučić. 2025. "Current Evidence on the Impact of Diet, Food, and Supplement Intake on Breast Cancer Health Outcomes in Patients Undergoing Endocrine Therapy" Nutrients 17, no. 3: 456. https://doi.org/10.3390/nu17030456
APA StyleŽuža Praštalo, M., Pokimica, B., Arsić, A., Ilich, J. Z., & Vučić, V. (2025). Current Evidence on the Impact of Diet, Food, and Supplement Intake on Breast Cancer Health Outcomes in Patients Undergoing Endocrine Therapy. Nutrients, 17(3), 456. https://doi.org/10.3390/nu17030456