Telemedicine for Personalized Nutritional Intervention of Rare Diseases: A Narrative Review on Approaches, Impact, and Future Perspectives
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Advantages and Limitations of Telemedicine in Management of Rare Diseases Compared to Traditional Care
3.2. Telemedicine Approaches in Rare Diseases
Remote Consultations and Real-Time Monitoring: Use of Platforms and Devices in Rare Diseases
3.3. Involvement of Multidisciplinary Teams (Doctors, Nurses, Psychologist, Nutritionists)
3.4. Challenges and Limitations of Telemedicine in Rare Diseases
3.4.1. Technical Issues
3.4.2. Difficulty in Maintaining Continuity of Care
3.4.3. Concerns About Data Security and Privacy
3.4.4. Economic and Organizational Barriers
3.4.5. Disparities in Access to Telemedicine in Different Geographical Areas
3.5. Innovations and Future of Telemedicine in Rare Diseases
3.5.1. Artificial Intelligence (AI) Including Machine Learning for Large Dataset Analysis
- E-diaries: Apps or websites designed to track patients’ daily activities, symptoms, or physiological status in a digital format. Examples include tools for dietary tracking, growth and weight monitoring, and medication adherence.
- Remote patient monitoring (RPM): Wearable devices, mobile apps, or websites used to collect real-time patient data outside traditional healthcare settings and transmit it to a remote location. Examples include heart rates monitors, blood glucose monitors, drug level trackers, and breath ketone analyzers [6,58].
3.5.2. Development of New Telemonitoring Tools and Digital Medical Devices
- Advancing small-scale sensors (e.g., nanoscale sensors) and improving communication technologies for efficient data transmission.
- Creating innovative cloud platforms for secure and efficient data extraction and decision-making.
3.5.3. Future Perspectives and Potential Developments in Telemedicine and Remote Care
- AI provides advanced analytical capabilities, allowing it to address questions related to diagnosis, prediction, and prescription that go beyond traditional methods. AI can outperform human experts in certain medical decision-making processes, achieving lower error rates. Additionally, AI is being applied to acquire processes and analyze medical images using innovative algorithms in different medical fields, for example, in cardiology [64].
- ML excels at recognizing complex patterns in different datasets (e.g., numerical, visual, and textual) and processing large datasets at unparalleled speeds and accuracy. This capability can enhance diagnostic criteria by identifying key features across varied patient populations [62]. The process typically involves structuring raw data into an initial database, followed by analysis to identify and apply significant variables to ML algorithms. These methods have applications in neurology, immunology, allergology, and cardiology [64,65,66].
- In silico models are a burgeoning field that uses mechanistic models, as opposed to purely statistical methods, to stimulate phenomena of interest. A key advantage is the generation of virtual populations for in silico clinical trials (ISCTs). These trials refine inclusion and exclusion criteria, allow testing on underrepresented groups (e.g., pediatrics), and serve as virtual control arms, offering valuable insights for real-world clinical trials [63].
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- WHO. A Health Telematics Policy in Support of WHO’s Health-For-All Strategy for Global Health Development: Report of the WHO Group Consultation on Health Telematics, 11–16 December, Geneva, 1997; World Health Organization: Geneva, Switzerland, 1998.
- Adachi, T.; El-Hattab, A.W.; Jain, R.; Nogales Crespo, K.A.; Quirland Lazo, C.I.; Scarpa, M.; Summar, M.; Wattanasirichaigoon, D. Enhancing Equitable Access to Rare Disease Diagnosis and Treatment around the World: A Review of Evidence, Policies, and Challenges. Int. J. Envron. Res. Public Health 2023, 20, 4732. [Google Scholar] [CrossRef] [PubMed]
- Chung, C.C.Y.; Hong Kong Genome Project; Chu, A.T.W.; Chung, B.H.Y. Rare Disease Emerging as a Global Public Health Priority. Front. Public Health 2022, 10, 1028545. [Google Scholar] [CrossRef]
- León-Salas, B.; González-Hernández, Y.; Infante-Ventura, D.; De Armas-Castellano, A.; García-García, J.; García-Hernández, M.; Carmona-Rodríguez, M.; Olazarán, J.; Dobato, J.L.; Rodríguez-Rodríguez, L.; et al. Telemedicine for Neurological Diseases: A Systematic Review and Meta-analysis. Eur. J. Neurol. 2023, 30, 241–254. [Google Scholar] [CrossRef]
- Esposito, S.; Rosafio, C.; Antodaro, F.; Argentiero, A.; Bassi, M.; Becherucci, P.; Bonsanto, F.; Cagliero, A.; Cannata, G.; Capello, F.; et al. Use of Telemedicine Healthcare Systems in Children and Adolescents with Chronic Disease or in Transition Stages of Life: Consensus Document of the Italian Society of Telemedicine (SIT), of the Italian Society of Preventive and Social Pediatrics (SIPPS), of the Italian Society of Pediatric Primary Care (SICuPP), of the Italian Federation of Pediatric Doctors (FIMP) and of the Syndicate of Family Pediatrician Doctors (SIMPeF). J. Pers. Med. 2023, 13, 235. [Google Scholar] [CrossRef] [PubMed]
- Höller, A.; Welte, S.; Schönlaub, A.K.; Uhlisch, C.; Scholl-Bürgi, S.; Male-Dressler, A.; Pfeifer, B.; Schreier, G. Telemedicine for Ketogenic Dietary Treatment in Refractory Epilepsy and Inherited Metabolic Disease: State of Play and Future Perspectives. Stud. Health Technol. Inform. 2024, 313, 160–166. [Google Scholar]
- Rovelli, V.; Zuvadelli, J.; Ercoli, V.; Montanari, C.; Paci, S.; Dionigi, A.R.; Scopari, A.; Salvatici, E.; Cefalo, G.; Banderali, G. PKU and COVID19: How the Pandemic Changed Metabolic Control. Mol. Genet. Metab. Rep. 2021, 27, 100759. [Google Scholar] [CrossRef] [PubMed]
- Witt, S.; Schuett, K.; Wiegand-Grefe, S.; Boettcher, J.; Quitmann, J. Living with a Rare Disease-Experiences and Needs in Pediatric Patients and Their Parents. Orphanet. J. Rare Dis. 2023, 18, 242. [Google Scholar] [CrossRef]
- Teutsch, S.; Zurynski, Y.; Eslick, G.D.; Deverell, M.; Christodoulou, J.; Leonard, H.; Dalkeith, T.; Johnson, S.L.J.; Elliott, E.J. Australian Children Living with Rare Diseases: Health Service Use and Barriers to Accessing Care. World J. Pediatr. 2023, 19, 701–709. [Google Scholar] [CrossRef] [PubMed]
- Rosselli, D.; Rueda, J.-D.; Solano, M. Ethical and Economic Considerations of Rare Diseases in Ethnic Minorities: The Case of Mucopolysaccharidosis VI in Colombia. J. Med. Ethics 2012, 38, 699–700. [Google Scholar] [CrossRef]
- Stratton, A.T.; Roberts Iii, R.O.; Kupfer, O.; Carry, T.; Parsons, J.; Apkon, S. Pediatric Neuromuscular Disorders: Care Considerations during the COVID-19 Pandemic. Pediatr. Rehabil. Med. 2020, 13, 405–414. [Google Scholar] [CrossRef] [PubMed]
- Amir Yazdani, P.; St-Jean, M.-L.; Matovic, S.; Spahr, A.; Tran, L.T.; Boucher, R.-M.; Poulin, C.; Osterman, B.; Srour, M.; Rosenblatt, B.; et al. Experience of Parents of Children with Genetically Determined Leukoencephalopathies Regarding the Adapted Health Care Services During the COVID-19 Pandemic. J. Child Neurol. 2022, 37, 237–245. [Google Scholar] [CrossRef] [PubMed]
- MaCdonald, A.; van Rijn, M.; Feillet, F.; Lund, A.M.; Bernstein, L.; Bosch, A.M.; Gizewska, M.; van Spronsen, F.J. Adherence Issues in Inherited Metabolic Disorders Treated by Low Natural Protein Diets. Ann. Nutr. Metab. 2012, 61, 289–295. [Google Scholar] [CrossRef]
- Ho, G.; Ueda, K.; Houben, R.F.A.; Joa, J.; Giezen, A.; Cheng, B.; van Karnebeek, C.D.M. Metabolic Diet App Suite for Inborn Errors of Amino Acid Metabolism. Mol. Genet. Metab. 2016, 117, 322–327. [Google Scholar] [CrossRef] [PubMed]
- Austin, C.P.; Cutillo, C.M.; Lau, L.P.L.; Jonker, A.H.; Rath, A.; Julkowska, D.; Thomson, D.; Terry, S.F.; de Montleau, B.; Ardigò, D.; et al. Future of Rare Diseases Research 2017-2027: An IRDiRC Perspective. Clin. Transl. Sci. 2018, 11, 21–27. [Google Scholar] [CrossRef]
- Augustine, E.F.; Adams, H.R.; Mink, J.W. Clinical Trials in Rare Disease: Challenges and Opportunities. J. Child Neurol. 2013, 28, 1142–1150. [Google Scholar] [CrossRef]
- Long, J.C.; Best, S.; Nic Giolla Easpaig, B.; Hatem, S.; Fehlberg, Z.; Christodoulou, J.; Braithwaite, J. Needs of People with Rare Diseases That Can Be Supported by Electronic Resources: A Scoping Review. BMJ Open 2022, 12, e060394. [Google Scholar] [CrossRef] [PubMed]
- Pfeil, J.N.; Rados, D.V.; Roman, R.; Katz, N.; Nunes, L.N.; Vigo, Á.; Harzheim, E. A Telemedicine Strategy to Reduce Waiting Lists and Time to Specialist Care: A Retrospective Cohort Study. J. Telemed. Telecare 2023, 29, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Peterson, I.S.; Belter, L.T.; Curry, M.A.; Jarecki, J. Telemedicine Use, Comfort, and Perceived Effectiveness in the Spinal Muscular Atrophy Community. Telemed. E-Health 2024, 30, 536–544. [Google Scholar] [CrossRef] [PubMed]
- Zubarioglu, T.; Hopurcuoglu, D.; Uygur, E.; Ahmadzada, S.; Oge-Enver, E.; Isat, E.; Cansever, M.S.; Kiykim, E.; Aktuglu-Zeybek, C. The Impact of Telemedicine for Monitoring and Treatment of Phenylketonuria Patients on Metabolic Outcome During Coronavirus Disease-19 Outbreak. Telemed. E-Health 2022, 28, 258–265. [Google Scholar] [CrossRef]
- Gavazzi, F.; Adang, L.; Waldman, A.; Jan, A.K.; Liu, G.; Lorch, S.A.; DeMauro, S.B.; Shults, J.; Pierce, S.R.; Ballance, E.; et al. Reliability of the Telemedicine Application of the Gross Motor Function Measure-88 in Patients With Leukodystrophy. Pediatr. Neurol. 2021, 125, 34–39. [Google Scholar] [CrossRef]
- Wojtara, M.; Rana, E.; Rahman, T.; Khanna, P.; Singh, H. Artificial Intelligence in Rare Disease Diagnosis and Treatment. Clin. Transl. Sci. 2023, 16, 2106–2111. [Google Scholar] [CrossRef] [PubMed]
- Groft, S.C.; Posada, M.; Taruscio, D. Progress, Challenges and Global Approaches to Rare Diseases. Acta Paediatr. 2021, 110, 2711–2716. [Google Scholar] [CrossRef]
- Graessner, H.; Reinhard, C.; Bäumer, T.; Baumgärtner, A.; Brockmann, K.; Brüggemann, N.; Bültmann, E.; Erdmann, J.; Heise, K.; Höglinger, G.; et al. Recommendations for Optimal Interdisciplinary Management and Healthcare Settings for Patients with Rare Neurological Diseases. Orphanet. J. Rare Dis. 2024, 19, 62. [Google Scholar] [CrossRef] [PubMed]
- Baynam, G.; Hartman, A.L.; Letinturier, M.C.V.; Bolz-Johnson, M.; Carrion, P.; Grady, A.C.; Dong, X.; Dooms, M.; Dreyer, L.; Graessner, H.; et al. Global Health for Rare Diseases through Primary Care. Lancet Glob. Health 2024, 12, e1192–e1199. [Google Scholar] [CrossRef]
- World Health Organization. Implementing Telemedicine Services During COVID-19: Guiding Principles and Considerations for a Stepwise Approach; World Health Organization: Geneva, Switzerland, 2020.
- Anderson, M. Mobile Technology and Home Broadband 2019. Pew Res. Cent. 2019, 2, 2–10. [Google Scholar]
- Vegesna, A.; Tran, M.; Angelaccio, M.; Arcona, S. Remote Patient Monitoring via Non-Invasive Digital Technologies: A Systematic Review. Telemed. J. E Health 2017, 23, 3–17. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Yang, J.; Chuah, M.C.; Chen, Y. Mobile Phone Enabled Social Community Extraction for Controlling of Disease Propagation in Healthcare. In Proceedings of the 2011 IEEE Eighth International Conference on Mobile Ad-Hoc and Sensor Systems, Valencia, Spain, 17–21 October 2011; pp. 646–651. [Google Scholar]
- Smith, C.I.E.; Bergman, P.; Hagey, D.W. Estimating the Number of Diseases-the Concept of Rare, Ultra-Rare, and Hyper-Rare. iScience 2022, 25, 104698. [Google Scholar] [CrossRef]
- Obici, L.; Callaghan, R.; Ablett, J.; Bibiloni, C.; Bueser, T.; Conceição, I.; Dongiglio, F.; Farrugia, A.; Knebel, F.; Lane, T.; et al. Consensus recommendations on holistic care in hereditary ATTR amyloidosis: An international Delphi survey of patient advocates and multidisciplinary healthcare professionals. BMJ Open 2023, 13, e073130. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Anderson, C.L.; Munawar, S.; Reilly, L.; Kamp, T.J.; January, C.T.; Delisle, B.P.; Eckhardt, L.L. How Functional Genomics Can Keep Pace With VUS Identification. Front. Cardiovasc. Med. 2022, 9, 900431. [Google Scholar] [CrossRef] [PubMed]
- Romaszko-Wojtowicz, A.; Jaśkiewicz, Ł.; Jurczak, P.; Doboszyńska, A. Telemedicine in Primary Practice in the Age of the COVID-19 Pandemic—Review. Medicina 2023, 59, 1541. [Google Scholar] [CrossRef] [PubMed]
- Monaghesh, E.; Hajizadeh, A. The Role of Telehealth during COVID-19 Outbreak: A Systematic Review Based on Current Evidence. BMC Public Health 2020, 20, 1193. [Google Scholar] [CrossRef] [PubMed]
- Fortunato, F.; Bianchi, F.; Ricci, G.; Torri, F.; Gualandi, F.; Neri, M.; Farnè, M.; Giannini, F.; Malandrini, A.; Volpi, N.; et al. Digital Health and Clinical Patient Management System (CPMS) Platform Utility for Data Sharing of Neuromuscular Patients: The Italian EURO-NMD Experience. Orphanet. J. Rare Dis. 2023, 18, 196. [Google Scholar] [CrossRef] [PubMed]
- Teoli, D.; Aeddula, N.R. Telemedicine. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Yoo, T.K.; Choi, J.Y.; Jang, Y.; Oh, E.; Ryu, I.H. Toward Automated Severe Pharyngitis Detection with Smartphone Camera Using Deep Learning Networks. Comput. Biol. Med. 2020, 125, 103980. [Google Scholar] [CrossRef]
- Romano, C.; van Wynckel, M.; Hulst, J.; Broekaert, I.; Bronsky, J.; Dall’Oglio, L.; Mis, N.F.; Hojsak, I.; Orel, R.; Papadopoulou, A.; et al. European Society for Paediatric Gastroenterology, Hepatology and Nutrition Guidelines for the Evaluation and Treatment of Gastrointestinal and Nutritional Complications in Children With Neurological Impairment. J. Pediatr. Gastroenterol. Nutr. 2017, 65, 242–264. [Google Scholar] [CrossRef] [PubMed]
- Santos, R.S.; Hirata, G.C. Rehabilitation of Oropharyngeal Dysphagia in Children with Cerebral Palsy: A Systematic Review of the Speech Therapy Approach. Int. Arch. Otorhinolaryngol. 2012, 16, 396–399. [Google Scholar] [CrossRef] [PubMed]
- Benfer, K.A.; Weir, K.A.; Bell, K.L.; Ware, R.S.; Davies, P.S.W.; Boyd, R.N. Oropharyngeal Dysphagia and Gross Motor Skills in Children with Cerebral Palsy. Pediatrics 2013, 131, e1553–e1562. [Google Scholar] [CrossRef]
- Velde, S.V.; Van Biervliet, S.; De Bruyne, R.; Van Renterghem, K.; Plasschaert, F.; Van Winckel, M. Gastric Dysmotility Following Orthopaedic Scoliosis Surgery in Patients with Cerebral Palsy: A Case Series. Neuropediatrics 2010, 41, 182–185. [Google Scholar] [CrossRef]
- Bell, K.L.; Samson-Fang, L. Nutritional Management of Children with Cerebral Palsy. Eur. J. Clin. Nutr. 2013, 67 (Suppl. S2), S13–S16. [Google Scholar] [CrossRef]
- Brotherton, A.M.; Abbott, J.; Aggett, P.J. The Impact of Percutaneous Endoscopic Gastrostomy Feeding in Children; the Parental Perspective. Child Care Health Dev. 2007, 33, 539–546. [Google Scholar] [CrossRef] [PubMed]
- Rihm, L.; Dreier, M.; Rezvani, F.; Wiegand-Grefe, S.; Dirmaier, J. The Psychosocial Situation of Families Caring for Children with Rare Diseases during the COVID-19 Pandemic: Results of a Cross-Sectional Online Survey. Orphanet. J. Rare Dis. 2022, 17, 449. [Google Scholar] [CrossRef] [PubMed]
- Pinquart, M.; Teubert, D. Academic, Physical, and Social Functioning of Children and Adolescents with Chronic Physical Illness: A Meta-Analysis. J. Pediatr. Psychol. 2012, 37, 376–389. [Google Scholar] [CrossRef] [PubMed]
- Scott Kruse, C.; Karem, P.; Shifflett, K.; Vegi, L.; Ravi, K.; Brooks, M. Evaluating Barriers to Adopting Telemedicine Worldwide: A Systematic Review. J. Telemed. Telecare 2018, 24, 4–12. [Google Scholar] [CrossRef]
- Nittari, G.; Khuman, R.; Baldoni, S.; Pallotta, G.; Battineni, G.; Sirignano, A.; Amenta, F.; Ricci, G. Telemedicine Practice: Review of the Current Ethical and Legal Challenges. Telemed. E-Health 2020, 26, 1427–1437. [Google Scholar] [CrossRef]
- Burke, B.L.; Hall, R.W.; Section on Telehealth Care. Telemedicine: Pediatric Applications. Pediatrics 2015, 136, e293–e308. [Google Scholar] [CrossRef] [PubMed]
- Gurupur, V.P.; Miao, Z. A Brief Analysis of Challenges in Implementing Telehealth in a Rural Setting. Mhealth 2022, 8, 17. [Google Scholar] [CrossRef] [PubMed]
- Stuckey, R.; Domingues-Montanari, S. Telemedicine Is Helping the Parents of Children with Neurodevelopmental Disorders Living in Remote and Deprived Areas. ResearchGate 2024, 37, 155–157. [Google Scholar] [CrossRef] [PubMed]
- Lindgren, S.; Wacker, D.; Suess, A.; Schieltz, K.; Pelzel, K.; Kopelman, T.; Lee, J.; Romani, P.; Waldron, D. Telehealth and Autism: Treating Challenging Behavior at Lower Cost. Pediatrics 2016, 137 (Suppl. S2), S167–S175. [Google Scholar] [CrossRef]
- Petersen, C.; DeMuro, P. Legal and Regulatory Considerations Associated with Use of Patient-Generated Health Data from Social Media and Mobile Health (mHealth) Devices. Appl. Clin. Inf. 2015, 6, 16–26. [Google Scholar] [CrossRef]
- Crico, C.; Renzi, C.; Graf, N.; Buyx, A.; Kondylakis, H.; Koumakis, L.; Pravettoni, G. mHealth and Telemedicine Apps: In Search of a Common Regulation. Ecancermedicalscience 2018, 12, 853. [Google Scholar] [CrossRef]
- Ekeland, A.G.; Bowes, A.; Flottorp, S. Effectiveness of Telemedicine: A Systematic Review of Reviews. Int. J. Med. Inf. 2010, 79, 736–771. [Google Scholar] [CrossRef] [PubMed]
- Goharinejad, S.; Hajesmaeel-Gohari, S.; Jannati, N.; Goharinejad, S.; Bahaadinbeigy, K. Review of Systematic Reviews in the Field of Telemedicine. Med. J. Islam. Repub. Iran 2021, 35, 184. [Google Scholar] [CrossRef]
- Roberts, E.T.; Mehrotra, A. Assessment of Disparities in Digital Access Among Medicare Beneficiaries and Implications for Telemedicine. JAMA Intern. Med. 2020, 180, 1386–1389. [Google Scholar] [CrossRef]
- Nangalia, V.; Prytherch, D.R.; Smith, G.B. Health Technology Assessment Review: Remote Monitoring of Vital Signs–Current Status and Future Challenges. Crit. Care 2010, 14, 233. [Google Scholar] [CrossRef]
- Portnoy, J.M.; Pandya, A.; Waller, M.; Elliott, T. Telemedicine and Emerging Technologies for Health Care in Allergy/Immunology. J. Allergy Clin. Immunol. 2020, 145, 445–454. [Google Scholar] [CrossRef] [PubMed]
- Sadhu, P.K.; Yanambaka, V.P.; Abdelgawad, A. Internet of Things: Security and Solutions Survey. Sensors 2022, 22, 7433. [Google Scholar] [CrossRef] [PubMed]
- Gardašević, G.; Katzis, K.; Bajić, D.; Berbakov, L. Emerging Wireless Sensor Networks and Internet of Things Technologies-Foundations of Smart Healthcare. Sensors 2020, 20, 3619. [Google Scholar] [CrossRef] [PubMed]
- Varghese, J.; Niewöhner, S.; Soto-Rey, I.; Schipmann-Miletić, S.; Warneke, N.; Warnecke, T.; Dugas, M. A Smart Device System to Identify New Phenotypical Characteristics in Movement Disorders. Front. Neurol. 2019, 10, 48. [Google Scholar] [CrossRef]
- Patel, U.K.; Anwar, A.; Saleem, S.; Malik, P.; Rasul, B.; Patel, K.; Yao, R.; Seshadri, A.; Yousufuddin, M.; Arumaithurai, K. Artificial Intelligence as an Emerging Technology in the Current Care of Neurological Disorders. J. Neurol. 2021, 268, 1623–1642. [Google Scholar] [CrossRef]
- El-Bouri, W.K.; Gue, Y.X.; Lip, G.Y.H. “Rise of the Machines”: The next Frontier in Individualized Medicine. Cardiovasc. Res. 2021, 117, e129–e131. [Google Scholar] [CrossRef] [PubMed]
- Dorado-Díaz, P.I.; Sampedro-Gómez, J.; Vicente-Palacios, V.; Sánchez, P.L. Applications of Artificial Intelligence in Cardiology. The Future Is Already Here. Rev. Esp. Cardiol. 2019, 72, 1065–1075. [Google Scholar] [CrossRef]
- Manickam, P.; Mariappan, S.A.; Murugesan, S.M.; Hansda, S.; Kaushik, A.; Shinde, R.; Thipperudraswamy, S.P. Artificial Intelligence (AI) and Internet of Medical Things (IoMT) Assisted Biomedical Systems for Intelligent Healthcare. Biosensors 2022, 12, 562. [Google Scholar] [CrossRef] [PubMed]
- Rider, N.L.; Srinivasan, R.; Khoury, P. Artificial Intelligence and the Hunt for Immunological Disorders. Curr. Opin. Allergy Clin. Immunol. 2020, 20, 565–573. [Google Scholar] [CrossRef]
Aspect | Telemedicine | Traditional Treatment |
---|---|---|
Accessibility | High (remote access) | Limited (in person visits) |
Timeliness | Quick (immediate consultations) | Long (waiting for appointments) |
Costs | Lower (less travel expenses) | Higher (travel costs) |
Monitoring | Continuous (real-time feedback) | Periodic |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eletti, F.; Tagi, V.M.; Greco, I.P.; Stucchi, E.; Fiore, G.; Bonaventura, E.; Bruschi, F.; Tonduti, D.; Verduci, E.; Zuccotti, G. Telemedicine for Personalized Nutritional Intervention of Rare Diseases: A Narrative Review on Approaches, Impact, and Future Perspectives. Nutrients 2025, 17, 455. https://doi.org/10.3390/nu17030455
Eletti F, Tagi VM, Greco IP, Stucchi E, Fiore G, Bonaventura E, Bruschi F, Tonduti D, Verduci E, Zuccotti G. Telemedicine for Personalized Nutritional Intervention of Rare Diseases: A Narrative Review on Approaches, Impact, and Future Perspectives. Nutrients. 2025; 17(3):455. https://doi.org/10.3390/nu17030455
Chicago/Turabian StyleEletti, Francesca, Veronica Maria Tagi, Ilenia Pia Greco, Eliana Stucchi, Giulia Fiore, Eleonora Bonaventura, Fabio Bruschi, Davide Tonduti, Elvira Verduci, and Gianvincenzo Zuccotti. 2025. "Telemedicine for Personalized Nutritional Intervention of Rare Diseases: A Narrative Review on Approaches, Impact, and Future Perspectives" Nutrients 17, no. 3: 455. https://doi.org/10.3390/nu17030455
APA StyleEletti, F., Tagi, V. M., Greco, I. P., Stucchi, E., Fiore, G., Bonaventura, E., Bruschi, F., Tonduti, D., Verduci, E., & Zuccotti, G. (2025). Telemedicine for Personalized Nutritional Intervention of Rare Diseases: A Narrative Review on Approaches, Impact, and Future Perspectives. Nutrients, 17(3), 455. https://doi.org/10.3390/nu17030455