Application of Global Warming Potential Star (GWP*) Values to the AUSNUT 2011-13 Food Composition Database: Creation of the GWP*-AUSNUT 2011-13 Database
Abstract
:1. Introduction
2. Materials and Methods
2.1. Stage 1: Direct Matching to a Single GWP* Value
2.2. Stage 2: Calculation of GWP* Values for AUSNUT 2011-13 Foods with Multiple Ingredients
2.3. Stage 3: Approximation of GWP* Values for Other AUSNUT 2011-13 Foods Without Calculated GWP* Values
2.4. Step 4: Identification of AUSNUT 2011-13 Foods with No Appropriate Match
2.5. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Intergovernmental Panel on Climate Change (Ed.) Climate Change 2022—Mitigation of Climate Change: Working Group III Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2023. [Google Scholar]
- Crippa, M.; Solazzo, E.; Guizzardi, D.; Monforti-Ferrario, F.; Tubiello, F.N.; Leip, A. Food systems are responsible for a third of global anthropogenic GHG emissions. Nat. Food 2021, 2, 198–209. [Google Scholar] [CrossRef] [PubMed]
- Ridoutt, B.G.; Hendrie, G.A.; Noakes, M. Dietary Strategies to Reduce Environmental Impact: A Critical Review of the Evidence Base. Adv. Nutr. 2017, 8, 933–946. [Google Scholar] [CrossRef]
- Allen, M.R.; Shine, K.P.; Fuglestvedt, J.S.; Millar, R.J.; Cain, M.; Frame, D.J.; Macey, A.H. A solution to the misrepresentations of CO2-equivalent emissions of short-lived climate pollutants under ambitious mitigation. NPJ Clim. Atmos. Sci. 2018, 1, 16. [Google Scholar] [CrossRef]
- Cain, M.; Lynch, J.; Allen, M.R.; Fuglestvedt, J.S.; Frame, D.J.; Macey, A.H. Improved calculation of warming-equivalent emissions for short-lived climate pollutants. NPJ Clim. Atmos. Sci. 2019, 2, 29. [Google Scholar] [CrossRef] [PubMed]
- Lynch, J.; Cain, M.; Pierrehumbert, R.; Allen, M. Demonstrating GWP*: A means of reporting warming-equivalent emissions that captures the contrasting impacts of short- and long-lived climate pollutants. Environ. Res. Lett. 2020, 15, 044023. [Google Scholar] [CrossRef] [PubMed]
- Ridoutt, B.; Baird, D.; Hendrie, G.A. Diets within Environmental Limits: The Climate Impact of Current and Recommended Australian Diets. Nutrients 2021, 13, 1122. [Google Scholar] [CrossRef]
- Clay, N.; Charlton, K.; Stefoska-Needham, A.; Heffernan, E.; Hassan, H.I.C.; Jiang, X.; Stanford, J.; Lambert, K. What is the climate footprint of therapeutic diets for people with chronic kidney disease? Results from an Australian analysis. J. Hum. Nutr. Diet. 2023, 36, 2246–2255. [Google Scholar] [CrossRef]
- Cobben, R.E.; Collins, C.E.; Charlton, K.E.; Bucher, T.; Stanford, J. Sustainability and cost of typical and heart-healthy dietary patterns in Australia. Am. Heart J. Plus Cardiol. Res. Pract. 2024, 45, 100448. [Google Scholar] [CrossRef]
- O’Brien, R.; Cosier, D.; Lambert, K. The climate footprint of the diabetic and gluten free diet in Australia. Dietetics, 2025; accepted. [Google Scholar]
- Food Standards Australia New Zealand. AUSNUT 2011-13—Australian Food Composition Database; Food Standards Australia New Zealand: Canberra, Australia, 2014.
- Food Standards Australia New Zealand. AUSNUT 2011-13—Food Details File; Food Standards Australia New Zealand: Canberra, Australia, 2014.
- Food Standards Australia New Zealand. AUSNUT 2011-13—Food Recipe File; Food Standards Australia New Zealand: Canberra, Australia, 2014.
- Nikodijevic, C.J.; Probst, Y.C.; Tan, S.Y.; Neale, E.P. Metabolisable energy from nuts and patterns of nut consumption in the Australian population: A secondary analysis of the 2011–2012 National Nutrition and Physical Activity Survey. J. Hum. Nutr. Diet. 2024, 37, 538–549. [Google Scholar] [CrossRef]
- Carbon Cloud. Salt (NaCl). Available online: https://apps.carboncloud.com/climatehub/product-reports/id/5403842093 (accessed on 2 August 2024).
- Food Standards Australia New Zealand. Classification of Foods and Dietary Supplements. Available online: https://www.foodstandards.gov.au/science-data/food-composition-databases/ausnut/classificationofsupps (accessed on 14 January 2025).
- Galea, L.M.; Dalton, S.M.C.; Beck, E.J.; Cashman, C.J.; Probst, Y.C. Update of a database for estimation of whole grain content of foods in Australia. J. Food Compos. Anal. 2016, 50, 23–29. [Google Scholar] [CrossRef]
- Stanford, J.; McMahon, S.; Lambert, K.; Charlton, K.E.; Stefoska-Needham, A. Expansion of an Australian food composition database to estimate plant and animal intakes. Br. J. Nutr. 2023, 130, 1950–1960. [Google Scholar] [CrossRef] [PubMed]
- Brooker, P.G.; Hendrie, G.A.; Anastasiou, K.; Woodhouse, R.; Pham, T.; Colgrave, M.L. Marketing strategies used for alternative protein products sold in Australian supermarkets in 2014, 2017, and 2021. Front. Nutr. 2022, 9, 1087194. [Google Scholar] [CrossRef]
- Kalocsay, K.; Eassom, S.; King, T.; O’Neill, S.; Cogo, K.; Redmond, M. 2023 State of the Industry: Australia’s Plant-Based Meat Industry; Food Frontier: Melbourne, Australia, 2024. [Google Scholar]
- Johnson, J.L.; Zamzow, B.K.; Taylor, N.T.; Moran, M.D. Reported U.S. wild game consumption and greenhouse gas emissions savings. Hum. Dimens. Wildl. 2021, 26, 65–75. [Google Scholar] [CrossRef]
- Nunes, A.V.; Peres, C.A.; Constantino, P.d.A.L.; Fischer, E.; Nielsen, M.R. Wild meat consumption in tropical forests spares a significant carbon footprint from the livestock production sector. Sci. Rep. 2021, 11, 19001. [Google Scholar] [CrossRef]
- Ridoutt, B. Short communication: Climate impact of Australian livestock production assessed using the GWP* climate metric. Livest. Sci. 2021, 246, 104459. [Google Scholar] [CrossRef]
- Semba, R.D.; Ramsing, R.; Rahman, N.; Kraemer, K.; Bloem, M.W. Legumes as a sustainable source of protein in human diets. Glob. Food Secur. 2021, 28, 100520. [Google Scholar] [CrossRef]
- Willett, W.; Rockström, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A.; et al. Food in the Anthropocene: The EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef]
- Hitaj, C.; Rehkamp, S.; Canning, P.; Peters, C.J. Greenhouse Gas Emissions in the United States Food System: Current and Healthy Diet Scenarios. Environ. Sci. Technol. 2019, 53, 5493–5503. [Google Scholar] [CrossRef]
- Hoolohan, C.; Berners-Lee, M.; McKinstry-West, J.; Hewitt, C. Mitigating the greenhouse gas emissions embodied in food through realistic consumer choices. Energy Policy 2013, 63, 1065–1074. [Google Scholar] [CrossRef]
- Green, R.; Milner, J.; Dangour, A.D.; Haines, A.; Chalabi, Z.; Markandya, A.; Spadaro, J.; Wilkinson, P. The potential to reduce greenhouse gas emissions in the UK through healthy and realistic dietary change. Clim. Change 2015, 129, 253–265. [Google Scholar] [CrossRef]
- Sugimoto, M.; Murakami, K.; Asakura, K.; Masayasu, S.; Sasaki, S. Diet-related greenhouse gas emissions and major food contributors among Japanese adults: Comparison of different calculation methods. Public Health Nutr. 2021, 24, 973–983. [Google Scholar] [CrossRef] [PubMed]
- van de Kamp, M.E.; van Dooren, C.; Hollander, A.; Geurts, M.; Brink, E.J.; van Rossum, C.; Biesbroek, S.; de Valk, E.; Toxopeus, I.B.; Temme, E.H. Healthy diets with reduced environmental impact?–The greenhouse gas emissions of various diets adhering to the Dutch food based dietary guidelines. Food Res. Int. 2018, 104, 14–24. [Google Scholar] [CrossRef]
- Sjörs, C.; Raposo, S.E.; Sjölander, A.; Bälter, O.; Hedenus, F.; Bälter, K. Diet-related greenhouse gas emissions assessed by a food frequency questionnaire and validated using 7-day weighed food records. Environ. Health 2016, 15, 15. [Google Scholar] [CrossRef] [PubMed]
- Saxe, H.; Larsen, T.M.; Mogensen, L. The global warming potential of two healthy Nordic diets compared with the average Danish diet. Clim. Change 2013, 116, 249–262. [Google Scholar] [CrossRef]
- Masset, G.; Vieux, F.; Verger, E.O.; Soler, L.-G.; Touazi, D.; Darmon, N. Reducing energy intake and energy density for a sustainable diet: A study based on self-selected diets in French adults. Am. J. Clin. Nutr. 2014, 99, 1460–1469. [Google Scholar] [CrossRef] [PubMed]
- Hartikaiinen, H.; Pulkkinen, H. Summary of the Chosen Methodologies and Practices to Produce GHGE-Estimates for an Average European Diet; Natural Resources Institute Finland: Helsinki, Finland, 2016. [Google Scholar]
- Baker, P.; Machado, P.; Santos, T.; Sievert, K.; Backholer, K.; Hadjikakou, M.; Russell, C.; Huse, O.; Bell, C.; Scrinis, G.; et al. Ultra-processed foods and the nutrition transition: Global, regional and national trends, food systems transformations and political economy drivers. Obes. Rev. 2020, 21, e13126. [Google Scholar] [CrossRef]
- Anastasiou, K.; Baker, P.; Hadjikakou, M.; Hendrie, G.A.; Lawrence, M. A conceptual framework for understanding the environmental impacts of ultra-processed foods and implications for sustainable food systems. J. Clean. Prod. 2022, 368, 133155. [Google Scholar] [CrossRef]
- Godrich, S.L.; Macau, F.; Kent, K.; Lo, J.; Devine, A. Food Supply Impacts and Solutions Associated with the COVID-19 Pandemic: A Regional Australian Case Study. Int. J. Environ. Res. Public Health 2022, 19, 4116. [Google Scholar] [CrossRef]
- Louie, S.; Shi, Y.; Allman-Farinelli, M. The effects of the COVID-19 pandemic on food security in Australia: A scoping review. Nutr. Diet. 2022, 79, 28–47. [Google Scholar] [CrossRef]
- Australian Bureau of Statistics. 4363.0.55.001—Australian Health Survey: Users’ Guide, 2011–2013; Australian Bureau of Statistics: Canberra, Australia, 2013.
Stage and Step of Matching Process | Number (%) of AUSNUT 2011-13 Foods Matched * |
---|---|
Stage 1: Direct matching to a single GWP* value | 2022 (35.23) |
- Direct match to GWP* item | 883 (15.38) |
- Approximate match to GWP* item | 1139 (19.84) |
Stage 2: Calculation of GWP* values for AUSNUT 2011-13 foods with multiple ingredients | 3136 (54.63) |
- Calculated using AUSNUT 2011-13 food recipe file | 2709 (47.20) |
- Calculated based on a description of ingredient quantities in AUSNUT 2011-13 food details file | 31 (0.54) |
- Calculated based on label or manufacturer data | 104 (1.81) |
- Calculated using proportion and type of nuts based on Nikodijevic et al. [14] | 24 (0.42) |
- Based on calculated GWP* value for similar food | 258 (4.49) |
- Calculated based on online recipe | 10 (0.17) |
Stage 3: Approximation of GWP* values for other AUSNUT 2011-13 foods without calculated GWP* values | 344 (5.99) |
- Approximated using the average of food group | 326 (5.68) |
- Processing factor applied | 18 (0.31) |
Step 4: Identification of AUSNUT 2011-13 foods with no appropriate match | 238 (4.15) |
AUSNUT 2011-13 Major Food Group | GWP* (kg CO2e/kg) (Mean ± SD) |
---|---|
Non-alcoholic beverages | 0.87 ± 1.72 |
Cereals and cereal products | 0.58 ± 0.41 |
Cereal-based products and dishes | 1.87 ± 1.50 |
Fats and oils | 2.99 ± 2.44 |
Fish and seafood products and dishes | 4.35 ± 4.07 |
Fruit products and dishes | 0.72 ± 0.46 |
Egg products and dishes | 1.76 ± 0.49 |
Meat, poultry, and game products and dishes | 5.63 ± 7.55 |
Milk products and dishes | 2.92 ± 2.16 |
Dairy and meat substitutes | 0.18 ± 0.12 |
Soup | 0.70 ± 0.77 |
Seed and nut products and dishes | 1.94 ± 0.98 |
Savoury sauces and condiments | 1.30 ± 1.37 |
Vegetable products and dishes | 0.66 ± 0.61 |
Legume and pulse products and dishes | 0.28 ± 0.13 |
Snack foods | 2.68 ± 1.16 |
Sugar products and dishes | 1.24 ± 1.20 |
Confectionery and cereal/nut/fruit/seed bars | 2.31 ± 1.23 |
Alcoholic beverages | 0.54 ± 0.35 |
Special dietary foods | 0.45 ± 0.47 |
Miscellaneous | 0.36 ± 0.78 |
Infant formulae and foods | 0.70 ± 0.56 |
Reptiles, amphibia, and insects † | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neale, E.; Balvert, T.; Crinnion, H.; Craddock, J.; Lambert, K.; Charlton, K. Application of Global Warming Potential Star (GWP*) Values to the AUSNUT 2011-13 Food Composition Database: Creation of the GWP*-AUSNUT 2011-13 Database. Nutrients 2025, 17, 464. https://doi.org/10.3390/nu17030464
Neale E, Balvert T, Crinnion H, Craddock J, Lambert K, Charlton K. Application of Global Warming Potential Star (GWP*) Values to the AUSNUT 2011-13 Food Composition Database: Creation of the GWP*-AUSNUT 2011-13 Database. Nutrients. 2025; 17(3):464. https://doi.org/10.3390/nu17030464
Chicago/Turabian StyleNeale, Elizabeth, Troy Balvert, Hannah Crinnion, Joel Craddock, Kelly Lambert, and Karen Charlton. 2025. "Application of Global Warming Potential Star (GWP*) Values to the AUSNUT 2011-13 Food Composition Database: Creation of the GWP*-AUSNUT 2011-13 Database" Nutrients 17, no. 3: 464. https://doi.org/10.3390/nu17030464
APA StyleNeale, E., Balvert, T., Crinnion, H., Craddock, J., Lambert, K., & Charlton, K. (2025). Application of Global Warming Potential Star (GWP*) Values to the AUSNUT 2011-13 Food Composition Database: Creation of the GWP*-AUSNUT 2011-13 Database. Nutrients, 17(3), 464. https://doi.org/10.3390/nu17030464