Perspectives on Diet and Exercise Interaction for Healthy Aging: Opportunities to Reduce Malnutrition Risk and Optimize Fitness
Abstract
:1. Introduction
2. Exercise and Future Perspectives Related to Non-Responders
3. Controlling Dietary Strategies to Support Exercise Effects
4. Nutritional Supplementation Combined with Exercise
5. The Need for Sex Personalization in Nutritional and Exercise Interventions
6. Emerging Insights into the Role of the Gut Microbiota
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- World Health Organization. World Report on Ageing and Health; World Health Organization: Geneva, Switzerland, 2015. Available online: https://iris.who.int/handle/10665/186463 (accessed on 26 January 2024).
- World Health Organization. Decade of Healthy Ageing: Baseline Report; World Health Organization: Geneva, Switzerland, 2020; ISBN 9789240017900.
- Govindaraju, T.; Sahle, B.W.; McCaffrey, T.A.; McNeil, J.J.; Owen, A. Dietary Patterns and Quality of Life in Older Adults: A Systematic Review. Nutrients 2018, 10, 971. [Google Scholar] [CrossRef] [PubMed]
- Campbell, E.; Petermann-Rocha, F.; Welsh, P.; Celis-Morales, C.; Pell, J.P.; Ho, F.K.; Gray, S.R. The effect of exercise on quality of life and activities of daily life in frail older adults: A systematic review of randomised control trials. Exp. Gerontol. 2021, 147, 111287. [Google Scholar] [CrossRef]
- Dent, E.; Wright, O.R.L.; Woo, J.; Hoogendijk, E.O. Malnutrition in older adults. Lancet 2023, 401, 951–966. [Google Scholar] [CrossRef] [PubMed]
- Eurostat. Overweight and Obesity-BMI Statistics. Statistics Explained; Eurostat: Luxembourg, 2024. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Overweight_and_obesity_-_BMI_statistics (accessed on 28 January 2024).
- Sanchez-Rodriguez, D.; Locquet, M.; Reginster, J.-Y.; Cavalier, E.; Bruyère, O.; Beaudart, C. Mortality in malnourished older adults diagnosed by ESPEN and GLIM criteria in the SarcoPhAge study. J. Cachexia Sarcopenia Muscle 2020, 11, 1200–1211. [Google Scholar] [CrossRef]
- Carr, P.R.; Webb, K.L.; Neumann, J.T.; Thao, L.T.P.; Beilin, L.J.; Ernst, M.E.; Fitzgibbon, B.; Gasevic, D.; Nelson, M.R.; Newman, A.B.; et al. Associations of body size with all-cause and cause-specific mortality in healthy older adults. Sci. Rep. 2023, 13, 3799. [Google Scholar] [CrossRef] [PubMed]
- Sieber, C.C. Malnutrition and sarcopenia. Aging Clin. Exp. Res. 2019, 31, 793–798. [Google Scholar] [CrossRef] [PubMed]
- Verlaan, S.; Ligthart-Melis, G.C.; Wijers, S.L.J.; Cederholm, T.; Maier, A.B.; de van der Schueren, M.A.E. High prevalence of physical frailty among community-dwelling malnourished older adults—A systematic review and meta-analysis. J. Am. Med. Dir. Assoc. 2017, 18, 374–382. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Kiesswetter, E.; Drey, M.; Sieber, C.C. Nutrition, frailty, and sarcopenia. Aging Clin. Exp. Res. 2017, 29, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Kodama, S.; Saito, K.; Tanaka, S.; Maki, M.; Yachi, Y.; Asumi, M.; Sugawara, A.; Totsuka, K.; Shimano, H.; Ohashi, Y.; et al. Cardiorespiratory fitness as a quantitative predictor of all-cause mortality and cardiovascular events in healthy men and women: A meta-analysis. JAMA 2009, 301, 2024–2035. [Google Scholar] [CrossRef] [PubMed]
- Erikssen, G. Physical fitness and changes in mortality: The survival of the fittest. Sports Med. 2001, 31, 571–576. [Google Scholar] [CrossRef] [PubMed]
- Bull, F.C.; Al-Ansari, S.S.; Biddle, S.; Borodulin, K.; Buman, M.P.; Cardon, G.; Carty, C.; Chaput, J.-P.; Chastin, S.; Chou, R.; et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br. J. Sports Med. 2020, 54, 1451–1462. [Google Scholar] [CrossRef]
- Martinez-Gomez, D.; Luo, M.; Huang, Y.; Rodríguez-Artalejo, F.; Ekelund, U.; Sotos-Prieto, M.; Ding, D.; Lao, X.-Q.; Cabanas-Sánchez, V. Physical Activity and All-Cause Mortality by Age in 4 Multinational Megacohorts. JAMA Netw. Open 2024, 7, e2446802. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Veeranki, S.P.; Magnussen, C.G.; Xi, B. Recommended physical activity and all cause and cause specific mortality in US adults: Prospective cohort study. BMJ 2020, 370, m2031. [Google Scholar] [CrossRef] [PubMed]
- Izquierdo, M.; de Souto Barreto, P.; Arai, H.; Bischoff-Ferrari, H.A.; Cadore, E.L.; Cesari, M.; Chen, L.-K.; Coen, P.M.; Courneya, K.S.; Duque, G.; et al. Global consensus on optimal exercise recommendations for enhancing healthy longevity in older adults (ICFSR). J. Nutr. Health Aging 2025, 29, 100401. [Google Scholar] [CrossRef] [PubMed]
- Izquierdo, M.; Merchant, R.A.; Morley, J.E.; Anker, S.D.; Aprahamian, I.; Arai, H.; Aubertin-Leheudre, M.; Bernabei, R.; Cadore, E.L.; Cesari, M.; et al. International Exercise Recommendations in Older Adults (ICFSR): Expert Consensus Guidelines. J. Nutr. Health Aging 2021, 25, 824–853. [Google Scholar] [CrossRef]
- Casas-Herrero, Á.; Sáez de Asteasu, M.L.; Antón-Rodrigo, I.; Sánchez-Sánchez, J.L.; Montero-Odasso, M.; Marín-Epelde, I.; Ramón-Espinoza, F.; Zambom-Ferraresi, F.; Petidier-Torregrosa, R.; Elexpuru-Estomba, J.; et al. Effects of Vivifrail multicomponent intervention on functional capacity: A multicentre, randomized controlled trial. J. Cachexia Sarcopenia Muscle 2022, 13, 884–893. [Google Scholar] [CrossRef]
- Fernández-García, Á.I.; Gómez-Cabello, A.; Moradell, A.; Navarrete-Villanueva, D.; Pérez-Gómez, J.; Ara, I.; Pedrero-Chamizo, R.; Subías-Perié, J.; Muniz-Pardos, B.; Casajús, J.A.; et al. How to Improve the Functional Capacity of Frail and Pre-Frail Elderly People? Health, Nutritional Status and Exercise Intervention. The EXERNET-Elder 3.0 Project. Sustainability 2020, 12, 6246. [Google Scholar] [CrossRef]
- Verhaeghen, P.; Steitz, D.; Sliwinski, M.; Cerella, J. Aging and Dual-Task Performance: A Meta-Analysis. Psychol. Aging 2003, 18, 443–460. [Google Scholar] [CrossRef]
- Pickering, C.; Kiely, J. Do Non-Responders to Exercise Exist-and If So, What Should We Do About Them? Sports Med. 2019, 49, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Volkert, D.; Beck, A.M.; Cederholm, T.; Cruz-Jentoft, A.; Goisser, S.; Hooper, L.; Kiesswetter, E.; Maggio, M.; Raynaud-Simon, A.; Sieber, C.C. ESPEN guideline on clinical nutrition and hydration in geriatrics. Clin. Nutr. 2019, 38, 10–47. [Google Scholar] [CrossRef]
- Katsas, K.; Mamalaki, E.; Kontogianni, M.D.; Anastasiou, C.A.; Kosmidis, M.H.; Varlamis, I.; Hadjigeorgiou, G.M.; Dardiotis, E.; Sakka, P.; Scarmeas, N.; et al. Malnutrition in older adults: Correlations with social, diet-related, and neuropsychological factors. Nutrition 2020, 71, 110640. [Google Scholar] [CrossRef]
- Volkert, D.; Beck, A.M.; Cederholm, T.; Cruz-Jentoft, A.; Hooper, L.; Kiesswetter, E.; Maggio, M.; Raynaud-Simon, A.; Sieber, C.; Sobotka, L.; et al. ESPEN practical guideline: Clinical nutrition and hydration in geriatrics. Clin. Nutr. 2022, 41, 958–989. [Google Scholar] [CrossRef] [PubMed]
- Paddon-Jones, D.; Campbell, W.W.; Jacques, P.F.; Kritchevsky, S.B.; Moore, L.L.; Rodriguez, N.R.; van Loon, L.J.C. Protein and healthy aging. Am. J. Clin. Nutr. 2015, 101, 1339S–1345S. [Google Scholar] [CrossRef]
- Gaytán-González, A.; de Jesús Ocampo-Alfaro, M.; Torres-Naranjo, F.; Arroniz-Rivera, M.; González-Mendoza, R.G.; Gil-Barreiro, M.; López-Taylor, J. The Consumption of Two or Three Meals per Day with Adequate Protein Content Is Associated with Lower Risk of Physical Disability in Mexican Adults Aged 60 Years and Older. Geriatrics 2020, 5, 1. [Google Scholar] [CrossRef] [PubMed]
- Krok-Schoen, J.L.; Price, A.; Luo, M.; Kelly, O.; Taylor, C.A. Low Dietary Protein Intakes and Associated Dietary Patterns and Functional Limitations in an Aging Population: A NHANES Analysis. J. Nutr. Health Aging 2019, 23, 338–347. [Google Scholar] [CrossRef] [PubMed]
- Hengeveld, L.M.; Boer, J.M.A.; Gaudreau, P.; Heymans, M.W.; Jagger, C.; Mendonça, N.; Ocké, M.C.; Presse, N.; Sette, S.; Simonsick, E.M.; et al. Prevalence of Protein Intake Below Recommended in Community-dwelling Older Adults: A Meta-analysis Across Cohorts From the PROMISS Consortium. J. Cachexia Sarcopenia Muscle 2020, 11, 1212–1222. [Google Scholar] [CrossRef] [PubMed]
- Mendonça, N.; Hengeveld, L.M.; Visser, M.; Presse, N.; Canhão, H.; Simonsick, E.M.; Kritchevsky, S.B.; Newman, A.B.; Gaudreau, P.; Jagger, C. Low Protein Intake, Physical Activity, and Physical Function in European and North American Community-Dwelling Older Adults: A Pooled Analysis of Four Longitudinal Aging Cohorts. Am. J. Clin. Nutr. 2021, 114, 29–41. [Google Scholar] [CrossRef] [PubMed]
- Mendonça, N.; Granic, A.; Hill, T.R.; Siervo, M.; Mathers, J.C.; Kingston, A.; Jagger, C. Protein Intake and Disability Trajectories in Very Old Adults: The Newcastle 85+ Study. J. Am. Geriatr. Soc. 2018, 67, 50–56. [Google Scholar] [CrossRef]
- Kehoe, L.; Walton, J.; Flynn, A. Nutritional challenges for older adults in Europe: Current status and future directions. Proc. Nutr. Soc. 2019, 78, 221–233. [Google Scholar] [CrossRef]
- Dominguez, L.J.; Veronese, N.; Barbagallo, M. Magnesium and the Hallmarks of Aging. Nutrients 2024, 16, 496. [Google Scholar] [CrossRef]
- Esposito, K.; Marfella, R.; Ciotola, M.; Di Palo, C.; Giugliano, F.; Giugliano, G.; D’Armiento, M.; D’Andrea, F.; Giugliano, D. Effect of a mediterranean-style diet on endothelial dysfunction and markers of vascular inflammation in the metabolic syndrome: A randomized trial. JAMA 2004, 292, 1440–1446. [Google Scholar] [CrossRef] [PubMed]
- Benetou, V.; Orfanos, P.; Pettersson-Kymmer, U.; Bergström, U.; Svensson, O.; Johansson, I.; Berrino, F.; Tumino, R.; Borch, K.B.; Lund, E.; et al. Mediterranean diet and incidence of hip fractures in a European cohort. Osteoporos. Int. 2013, 24, 1587–1598. [Google Scholar] [CrossRef]
- Ruiz-Canela, M.; Zazpe, I.; Shivappa, N.; Hébert, J.R.; Sánchez-Tainta, A.; Corella, D.; Salas-Salvadó, J.; Fitó, M.; Lamuela-Raventós, R.M.; Rekondo, J.; et al. Dietary inflammatory index and anthropometric measures of obesity in a population sample at high cardiovascular risk from the PREDIMED (PREvención con DIeta MEDiterránea) trial. Br. J. Nutr. 2015, 113, 984–995. [Google Scholar] [CrossRef]
- Haywood, C.; Sumithran, P. Treatment of obesity in older persons—A systematic review. Obes. Rev. 2019, 20, 588–598. [Google Scholar] [CrossRef] [PubMed]
- Cacciatore, S.; Calvani, R.; Marzetti, E.; Picca, A.; Coelho-Júnior, H.J.; Martone, A.M.; Massaro, C.; Tosato, M.; Landi, F. Low Adherence to Mediterranean Diet Is Associated with Probable Sarcopenia in Community-Dwelling Older Adults: Results from the Longevity Check-Up (Lookup) 7+ Project. Nutrients 2023, 15, 1026. [Google Scholar] [CrossRef]
- Maderuelo-Fernandez, J.A.; Recio-Rodriguez, J.I.; Patino-Alonso, M.C.; Perez-Arechaederra, D.; Rodriguez-Sanchez, E.; Gomez-Marcos, M.A.; Garcia-Ortiz, L. Effectiveness of interventions applicable to primary health care settings to promote Mediterranean diet or healthy eating adherence in adults: A systematic review. Prev. Med. 2015, 76, S39–S55. [Google Scholar] [CrossRef] [PubMed]
- Ji, W.; Lee, D.; Kim, M.; Lim, N.; Lim, J.-Y.; Baek, J.U.; Kim, S.; Lee, C.H.; Kim, M.; Won, C.W. Efficacy of a combined exercise and nutrition intervention study for outpatients with possible sarcopenia in community-based primary care clinics (ENdSarC): Study protocol for a multicenter single-blinded randomized controlled trial. BMC Geriatr. 2024, 24, 861. [Google Scholar] [CrossRef]
- Campbell, W.W.; Deutz, N.E.P.; Volpi, E.; Apovian, C.M. Nutritional Interventions: Dietary Protein Needs and Influences on Skeletal Muscle of Older Adults. J. Gerontol. Ser. A 2023, 78 (Suppl. S1), 67–72. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Lepe, M.A.; Miranda-Gil, M.I.; Valbuena-Gregorio, E.; Olivas-Aguirre, F.J. Exercise Programs Combined with Diet Supplementation Improve Body Composition and Physical Function in Older Adults with Sarcopenia: A Systematic Review. Nutrients 2023, 15, 1998. [Google Scholar] [CrossRef]
- Sirikul, W.; Buawangpong, N.; Pinyopornpanish, K.; Siviroj, P. Impact of multicomponent exercise and nutritional supplement interventions for improving physical frailty in community-dwelling older adults: A systematic review and meta-analysis. BMC Geriatr. 2024, 24, 958. [Google Scholar] [CrossRef]
- Abizanda, P.; López, M.D.; García, V.P.; de Dios Estrella, J.; da Silva González, Á.; Vilardell, N.B.; Torres, K.A. Effects of an Oral Nutritional Supplementation Plus Physical Exercise Intervention on the Physical Function, Nutritional Status, and Quality of Life in Frail Institutionalized Older Adults: The ACTIVNES Study. J. Am. Med. Dir. Assoc. 2015, 16, e9–e439. [Google Scholar] [CrossRef]
- Wu, P.-Y.; Huang, K.-S.; Chen, K.-M.; Chou, C.-P.; Tu, Y.-K. Exercise, Nutrition, and Combined Exercise and Nutrition in Older Adults with Sarcopenia: A Systematic Review and Network Meta-analysis. Maturitas 2021, 145, 38–48. [Google Scholar] [CrossRef]
- Contillo, A.T.; Rodriguez, N.R.; Pescatello, L.S. Exercise and Protein Supplementation Recommendations for Older Adults With Sarcopenic Obesity: A Meta-Review. J. Aging Phys. Act. 2023, 31, 878–886. [Google Scholar] [CrossRef]
- Shlisky, J.; Bloom, D.E.; Beaudreault, A.R.; Tucker, K.L.; Keller, H.H.; Freund-Levi, Y.; Fielding, R.A.; Cheng, F.W.; Jensen, G.L.; Wu, D.; et al. Nutritional Considerations for Healthy Aging and Reduction in Age-Related Chronic Disease. Adv. Nutr. 2017, 8, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Jayawardena, R.; Weerasinghe, K.; Gamage, M.; Hills, A.P. Enhancing physical function and activity level in malnourished older adults through oral nutrition supplements: A randomized controlled trial. BMC Geriatr. 2024, 24, 566. [Google Scholar] [CrossRef]
- Chen, B.; Zhao, H.; Li, M.; Zhao, T.; Liao, R.; Lu, J.; Zou, Y.; Tu, J.; Teng, X.; Huang, Y.; et al. Effect of multicomponent intervention on malnutrition in older adults: A multicenter randomized clinical trial. Clin. Nutr. ESPEN 2024, 60, 31–40. [Google Scholar] [CrossRef] [PubMed]
- Moradell, A.; Fernández-García, Á.I.; Navarrete-Villanueva, D.; Pérez-Gómez, J.; Gesteiro, E.; Ara Royo, I.; Casajús, J.A.; Gómez-Cabello, A.; Vicente-Rodríguez, G. Does nutritional status influence the effects of a multicomponent exercise programme on body composition and physical fitness in older adults with limited physical function? Eur. J. Sport Sci. 2023, 23, 1375–1384. [Google Scholar] [CrossRef] [PubMed]
- Camargo, L.d.R.; Doneda, D.; Oliveira, V.R. Whey protein ingestion in elderly diet and the association with physical, performance and clinical outcomes. Exp. Gerontol. 2020, 137, 110936. [Google Scholar] [CrossRef] [PubMed]
- Courel-Ibáñez, J.; Vetrovsky, T.; Dadova, K.; Pallarés, J.G.; Steffl, M. Health Benefits of β-Hydroxy-β-Methylbutyrate (HMB) Supplementation in Addition to Physical Exercise in Older Adults: A Systematic Review with Meta-Analysis. Nutrients 2019, 11, 2082. [Google Scholar] [CrossRef]
- Gutiérrez-Reguero, H.; Buendía-Romero, Á.; Franco-López, F.; Martínez-Cava, A.; Hernández-Belmonte, A.; Courel-Ibáñez, J.; Ara, I.; Alcazar, J.; Pallarés, J.G. Effects of multicomponent training and HMB supplementation on disability, cognitive and physical function in institutionalized older adults aged over 70 years: A cluster-randomized controlled trial. J. Nutr. Health Aging 2024, 28, 100208. [Google Scholar] [CrossRef]
- Cheng, H.; Kong, J.; Underwood, C.; Petocz, P.; Hirani, V.; Dawson, B.; O’Leary, F. Systematic review and meta-analysis of the effect of protein and amino acid supplements in older adults with acute or chronic conditions. Br. J. Nutr. 2018, 119, 527–542. [Google Scholar] [CrossRef]
- Komar, B.; Schwingshackl, L.; Hoffmann, G. Effects of leucine-rich protein supplements on anthropometric parameter and muscle strength in the elderly: A systematic review and meta-analysis. J. Nutr. Health Aging 2015, 19, 437–446. [Google Scholar] [CrossRef] [PubMed]
- Moran, C.; Scotto di Palumbo, A.; Bramham, J.; Moran, A.; Rooney, B.; De Vito, G.; Egan, B. Effects of a Six-Month Multi-Ingredient Nutrition Supplement Intervention of Omega-3 Polyunsaturated Fatty Acids, vitamin D, Resveratrol, and Whey Protein on Cognitive Function in Older Adults: A Randomised, Double-Blind, Controlled Trial. J. Prev. Alzheimers Dis. 2018, 5, 175–183. [Google Scholar] [CrossRef]
- Ferrando, A.A.; Wolfe, R.R.; Hirsch, K.R.; Church, D.D.; Kviatkovsky, S.A.; Roberts, M.D.; Stout, J.R.; Gonzalez, D.E.; Sowinski, R.J.; Kreider, R.B.; et al. International society of sports nutrition position stand: Essential amino acid supplementation on skeletal muscle and Performance. J. Int. Soc. Sports Nutr. 2023, 20, 2263409. [Google Scholar] [CrossRef] [PubMed]
- Pastor, R.; Tur, J.A. Response to exercise in older adults who take supplements of antioxidants and/or omega-3 polyunsaturated fatty acids: A systematic review. Biochem. Pharmacol. 2020, 173, 113649. [Google Scholar] [CrossRef] [PubMed]
- Stocks, J.; Valdes, A.M. Effect of dietary omega-3 fatty acid supplementation on frailty-related phenotypes in older adults: A systematic review and meta-analysis protocol. BMJ Open 2018, 8, e021344. [Google Scholar] [CrossRef]
- Hidayat, K.; Chen, G.-C.; Wang, Y.; Zhang, Z.; Dai, X.; Szeto, I.M.Y.; Qin, L.-Q. Effects of milk proteins supplementation in older adults undergoing resistance training: A meta-analysis of randomized control trials. J. Nutr. Health Aging 2018, 22, 237–245. [Google Scholar] [CrossRef]
- Custodero, C.; Mankowski, R.T.; Lee, S.A.; Chen, Z.; Wu, S.; Manini, T.M.; Hincapie Echeverri, J.; Sabbà, C.; Beavers, D.P.; Cauley, J.A.; et al. Evidence-based nutritional and pharmacological interventions targeting chronic low-grade inflammation in middle-age and older adults: A systematic review and meta-analysis. Ageing Res. Rev. 2018, 46, 42–59. [Google Scholar] [CrossRef] [PubMed]
- Candow, D.G.; Forbes, S.C.; Kirk, B.; Duque, G. Current Evidence and Possible Future Applications of Creatine Supplementation for Older Adults. Nutrients 2021, 13, 745. [Google Scholar] [CrossRef]
- D’Souza, A.W.; Takeda, R.; Manabe, K.; Hissen, S.L.; Washio, T.; Coombs, G.B.; Sanchez, B.; Fu, Q.; Shoemaker, J.K. The Interactive Effects of Age and Sex on the Neuro-cardiovascular Responses During Fatiguing Rhythmic Handgrip Exercise. J. Physiol. 2023, 601, 2877–2898. [Google Scholar] [CrossRef] [PubMed]
- Noh, K. Effects of Resistance Exercise on Older Individuals with Sarcopenia: Sex Differences in Humans. Exerc. Sci. 2023, 32, 255–265. [Google Scholar] [CrossRef]
- Moreau, K.L.; Ozemek, C. Vascular Adaptations to Habitual Exercise in Older Adults: Time for the Sex Talk. Exerc. Sport Sci. Rev. 2017, 45, 116–123. [Google Scholar] [CrossRef] [PubMed]
- Boit, M.D.; Sibson, R.; Meakin, J.R.; Aspden, R.M.; Thiès, F.; Mangoni, A.A.; Gray, S.R. Sex Differences in the Response to Resistance Exercise Training in Older People. Physiol. Rep. 2016, 4, e12834. [Google Scholar] [CrossRef]
- Jung, Y.-H.; Park, J.-B.; Kang, A.; Cho, K.-C. The Elderly’s Satisfaction with Physical Activity Programs in Senior Welfare Centers. Front Public Health 2023, 11, 1170612. [Google Scholar] [CrossRef] [PubMed]
- Mehra, S.; Dadema, T.; Kröse, B.J.A.; Visser, B.; Engelbert, R.; van den Helder, J.; Weijs, P.J.M. Attitudes of Older Adults in a Group-Based Exercise Program Toward a Blended Intervention; A Focus-Group Study. Front. Psychol. 2016, 7, 1827. [Google Scholar] [CrossRef] [PubMed]
- Kenkmann, A.; Price, G.M.; Bolton, J.; Hooper, L. Health, Wellbeing and Nutritional Status of Older People Living in UK Care Homes: An Exploratory Evaluation of Changes in Food and Drink Provision. BMC Geriatr. 2010, 10, 28. [Google Scholar] [CrossRef]
- Söderström, L.; Rosenblad, A.; Bergkvist, L.; Frid, H.; Adolfsson, E.T. Dietary Advice and Oral Nutritional Supplements Do Not Increase Survival in Older Malnourished Adults: A Multicentre Randomised Controlled Trial. Ups. J. Med. Sci. 2020, 125, 240–249. [Google Scholar] [CrossRef]
- Boit, M.D.; Sibson, R.; Selvaraj, S.; Meakin, J.R.; Greig, C.; Aspden, R.M.; Thiès, F.; Jeromson, S.; Hamilton, D.L.; Speakman, J.R.; et al. Sex Differences in the Effect of Fish-Oil Supplementation on the Adaptive Response to Resistance Exercise Training in Older People: A Randomized Controlled Trial. Am. J. Clin. Nutr. 2017, 105, 151–158. [Google Scholar] [CrossRef]
- Cryan, J.F.; O’Riordan, K.J.; Cowan, C.S.; Sandhu, K.V.; Bastiaanssen, T.F.; Boehme, M.; Codagnone, M.G.; Cussotto, S.; Fulling, C.; Golubeva, A.V.; et al. The Microbiota-Gut-Brain Axis. Physiol. Rev. 2019, 99, 1877–2013. [Google Scholar] [CrossRef]
- Gibiino, G.; Siena, M.D.; Sbrancia, M.; Binda, C.; Sambri, V.; Gasbarrini, A.; Fabbri, C. Dietary Habits and Gut Microbiota in Healthy Adults: Focusing on the Right Diet. A Systematic Review. Int. J. Mol. Sci. 2021, 22, 6728. [Google Scholar] [CrossRef]
- Gentile, C.L.; Weir, T.L. The Gut Microbiota at the Intersection of Diet and Human Health. Science 2018, 362, 776–780. [Google Scholar] [CrossRef]
- Sánchez-Rodriguez, E.; Egea-Zorrilla, A.; Plaza-Díaz, J.; Aragón-Vela, J.; Muñoz-Quezada, S.; Tercedor-Sánchez, L.; Abadía-Molina, F. The Gut Microbiota and Its Implication in the Development of Atherosclerosis and Related Cardiovascular Diseases. Nutrients 2020, 12, 605. [Google Scholar] [CrossRef] [PubMed]
- Zyoud, S.H.; Shakhshir, M.; Abushanab, A.S.; Al-Jabi, S.W.; Koni, A.; Shahwan, M.; Jairoun, A.A.; Taha, A.A. Mapping the Global Research Landscape on Nutrition and the Gut Microbiota: Visualization and Bibliometric Analysis. World J. Gastroenterol. 2022, 28, 2981–2993. [Google Scholar] [CrossRef]
- Kolodziejczyk, A.A.; Zheng, D.; Elinav, E. Diet–microbiota Interactions and Personalized Nutrition. Nat. Rev. Microbiol. 2019, 17, 742–753. [Google Scholar] [CrossRef]
- Sidhu, S.R.K.; Kok, C.W.; Kunasegaran, T.; Ramadas, A. Effect of Plant-Based Diets on Gut Microbiota: A Systematic Review of Interventional Studies. Nutrients 2023, 15, 1510. [Google Scholar] [CrossRef] [PubMed]
- Ortiz-Alvarez, L.; Xu, H.; Martinez-Tellez, B. Influence of Exercise on the Human Gut Microbiota of Healthy Adults: A Systematic Review. Clin. Transl. Gastroenterol. 2020, 11, e00126. [Google Scholar] [CrossRef] [PubMed]
Condition | Exercise Recommendation | Nutritional/Supplementary Recommendation |
---|---|---|
Sarcopenia | Modality: Progressive resistance training. Frequency: 2–3 days/week. Volume: 1–3 sets of 8–12 repetitions. Intensity: 60–80% of 1RM. |
|
Malnutrition | Modality: Low-intensity resistance training. Frequency: 2–3 days/week. Volume: 1–2 sets, 8–12 repetitions. Intensity: Light-to-moderate. |
|
Obesity | Modality: Aerobic exercise (walking, swimming) and resistance training. Frequency: Aerobic: 5–7 days/week; Resistance: 2–3 days/week. Volume: Aerobic: 30–60 min/session; Resistance: 1–2 sets of 8–12 repetitions. Intensity: Moderate. |
|
Falls | Modality: Balance and functional strength exercises (e.g., Tai Chi, yoga). Frequency: 3–7 days/week. Volume: 1–2 sets of 4–10 exercises. Intensity: Progressive difficulty, including dual-task challenges. |
|
Osteoporosis | Modality: Weight-bearing resistance training and moderate-impact activities (e.g., stair climbing, brisk walking). Frequency: 2–3 days/week. Volume: 1–2 sets of 8–12 repetitions. Intensity: Moderate-to-high. |
|
Cognitive Function | Modality: Aerobic and multicomponent exercises with cognitive tasks. Frequency: 5 days/week. Volume: 20–60 min/session. Intensity: Moderate. |
|
Frailty | Modality: Multicomponent exercise (resistance, balance, aerobic). Frequency: 3–5 days/week. Volume: Resistance: 1–2 sets of 8–12 repetitions; Aerobic: 20–30 min/session. Intensity: Start low and progress gradually. |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moradell, A.; Casajús, J.A.; Moreno, L.A.; Vicente-Rodríguez, G. Perspectives on Diet and Exercise Interaction for Healthy Aging: Opportunities to Reduce Malnutrition Risk and Optimize Fitness. Nutrients 2025, 17, 596. https://doi.org/10.3390/nu17030596
Moradell A, Casajús JA, Moreno LA, Vicente-Rodríguez G. Perspectives on Diet and Exercise Interaction for Healthy Aging: Opportunities to Reduce Malnutrition Risk and Optimize Fitness. Nutrients. 2025; 17(3):596. https://doi.org/10.3390/nu17030596
Chicago/Turabian StyleMoradell, Ana, Jose Antonio Casajús, Luis A. Moreno, and Germán Vicente-Rodríguez. 2025. "Perspectives on Diet and Exercise Interaction for Healthy Aging: Opportunities to Reduce Malnutrition Risk and Optimize Fitness" Nutrients 17, no. 3: 596. https://doi.org/10.3390/nu17030596
APA StyleMoradell, A., Casajús, J. A., Moreno, L. A., & Vicente-Rodríguez, G. (2025). Perspectives on Diet and Exercise Interaction for Healthy Aging: Opportunities to Reduce Malnutrition Risk and Optimize Fitness. Nutrients, 17(3), 596. https://doi.org/10.3390/nu17030596