Cobalamin Deficiency in Children and Adolescents with Sickle Cell Disease
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
B12 | Cobalamin |
SCD | Sickle Cell Disease |
MMA | Methylmalonic acid |
MCV | Mean Corpuscular Volume |
N2O | Nitrous Oxide Gas |
Cr | Creatinine |
ED | Emergency Department |
eGFR | Estimated Glomerular Filtration Rate |
VOE | Vaso-occlusive Pain Episodes |
PPA | Percent Positive Agreement |
NPA | Negative Percent Agreement |
AST | Aspartate Aminotransferase |
ALT | Alanine Aminotransferase |
BUN | Blood Urea Nitrogen |
References
- Kamineni, P.; Chirla, S.; Dinh, K.; Hasan, S.; Nidhiry, E.; Kwagyan, J.; Naab, T.; Lombardo, F.; Castro, O.; Dawkins, F. Low cobalamin levels in African Americans with and without sickle cell disease. J. Natl. Med. Assoc. 2006, 98, 352–356. [Google Scholar]
- Borel, M.J.; Buchowski, M.S.; Turner, E.A.; Goldstein, R.E.; Flakoll, P.J. Protein turnover and energy expenditure increase during exogenous nutrient availability in sickle cell disease. Am. J. Clin. Nutr. 1998, 68, 607–614. [Google Scholar] [CrossRef]
- Lyon, P.; Strippoli, V.; Fang, B.; Cimmino, L. B Vitamins and One-Carbon Metabolism: Implications in Human Health and Disease. Nutrients 2020, 12, 2867. [Google Scholar] [CrossRef]
- Stabler, S. Megaloblastic anemias: Pernicious anemia and folate deficiency. In Clinical Hematology; Mosby: Philadelphia, PA, USA, 2006; pp. 242–251. [Google Scholar]
- Erdman, J.W., Jr.; Macdonald, I.A.; Zeisel, S.H. Present Knowledge in Nutrition; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Randaccio, L.; Geremia, S.; Demitri, N.; Wuerges, J. Vitamin B12: Unique metalorganic compounds and the most complex vitamins. Molecules 2010, 15, 3228–3259. [Google Scholar] [CrossRef]
- Institute of Medicine; Food Nutrition Board; Standing Committee on the Scientific Evaluation of Dietary Reference Intakes. Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic acid, Biotin, and Choline; National Academy Press: Washington, DC, USA, 2000. [Google Scholar]
- Tjong, E.; Dimri, M.; Mohiuddin, S.S. Biochemistry, tetrahydrofolate. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Hatabah, D. 2024. Available online: https://BioRender.com/e48a658 (accessed on 10 January 2025).
- Sahu, P.; Thippeswamy, H.; Chaturvedi, S.K. Chapter Seventeen—Neuropsychiatric manifestations in vitamin B12 deficiency. In Vitamins and Hormones; Litwack, G., Ed.; Academic Press: Cambridge, MA, USA, 2022; Volume 119, pp. 457–470. [Google Scholar]
- Green, R. 6 Metabolite assays in cobalamin and folate deficiency. Bailliere’s Clin. Haematol. 1995, 8, 533–566. [Google Scholar] [CrossRef] [PubMed]
- Lindenbaum, J.; Savage, D.G.; Stabler, S.P.; Allen, R.H. Diagnosis of cobalamin deficiency: II. Relative sensitivities of serum cobalamin, methylmalonic acid, and total homocysteine concentrations. Am. J. Hematol. 1990, 34, 99–107. [Google Scholar] [CrossRef]
- Savage, D.G.; Lindenbaum, J.; Stabler, S.P.; Allen, R.H. Sensitivity of serum methylmalonic acid and total homocysteine determinations for diagnosing cobalamin and folate deficiencies. Am. J. Med. 1994, 96, 239–246. [Google Scholar] [CrossRef] [PubMed]
- Pietrzik, K.; Brönstrup, A. Vitamins B12, B6 and folate as determinants of homocysteine concentration in the healthy population. Eur. J. Pediatr. 1998, 157 (Suppl. 2), S135–S138. [Google Scholar] [CrossRef]
- Chuang, C.Z.; Boyles, A.; Legardeur, B.; Su, J.; Japa, S.; Lopez, S.A. Effects of riboflavin and folic acid supplementation on plasma homocysteine levels in healthy subjects. Am. J. Med. Sci. 2006, 331, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Hvas, A.M.; Juul, S.; Gerdes, L.U.; Nexø, E. The marker of cobalamin deficiency, plasma methylmalonic acid, correlates to plasma creatinine. J. Intern. Med. 2000, 247, 507–512. [Google Scholar] [CrossRef] [PubMed]
- Supakul, S.; Chabrun, F.; Genebrier, S.; N’Guyen, M.; Valarche, G.; Derieppe, A.; Villoteau, A.; Lacombe, V.; Urbanski, G. Diagnostic Performances of Urinary Methylmalonic Acid/Creatinine Ratio in Vitamin B12 Deficiency. J. Clin. Med. 2020, 9, 2335. [Google Scholar] [CrossRef] [PubMed]
- Norman, E.J. Urinary methylmalonic acid to detect vitamin B12 deficiency. JAMA 1995, 273, 1420. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Johnson, N. Nitrous Oxide, From the Operating Room to the Emergency Department. Curr. Emerg. Hosp. Med. Rep. 2016, 4, 11–18. [Google Scholar] [CrossRef]
- Tobias, J.D. Applications of nitrous oxide for procedural sedation in the pediatric population. Pediatr. Emerg. Care 2013, 29, 245–265. [Google Scholar] [CrossRef]
- Ogundipe, O.; Pearson, M.W.; Slater, N.G.; Adepegba, T.; Westerdale, N. Sickle cell disease and nitrous oxide-induced neuropathy. Clin. Lab. Haematol. 1999, 21, 409–412. [Google Scholar] [CrossRef]
- Keddie, S.; Adams, A.; Kelso, A.R.C.; Turner, B.; Schmierer, K.; Gnanapavan, S.; Malaspina, A.; Giovannoni, G.; Basnett, I.; Noyce, A.J. No laughing matter: Subacute degeneration of the spinal cord due to nitrous oxide inhalation. J. Neurol. 2018, 265, 1089–1095. [Google Scholar] [CrossRef]
- Chaugny, C.; Simon, J.; Collin-Masson, H.; De Beauchene, M.; Cabral, D.; Fagniez, O.; Veyssier-Belot, C. Vitamin B12 deficiency due to nitrous oxide use: Unrecognized cause of combined spinal cord degeneration. Rev. Med. Interne 2014, 35, 328–332. [Google Scholar] [CrossRef]
- Galeotti, C.; Courtois, E.; Carbajal, R. How French paediatric emergency departments manage painful vaso-occlusive episodes in sickle cell disease patients. Acta Paediatr. 2014, 103, e548–e554. [Google Scholar] [CrossRef] [PubMed]
- Desprairies, C.; Imbard, A.; Koehl, B.; Lorrot, M.; Gaschignard, J.; Sommet, J.; Pichard, S.; Holvoet, L.; Faye, A.; Benkerrou, M.; et al. Nitrous oxide and vitamin B12 in sickle cell disease: Not a laughing situation. Mol. Genet. Metab. Rep. 2020, 23, 100579. [Google Scholar] [CrossRef] [PubMed]
- Neveu, J.; Perelman, S.; Suisse, G.; Monpoux, F. Severe hyperhomocysteinemia and peripheral neuropathy as side effects of nitrous oxide in two patients with sickle cell disease. Arch. Pédiatrie 2019, 26, 419–421. [Google Scholar] [CrossRef] [PubMed]
- Stankovic Stojanovic, K.; Santin, A.; Veyssier-Belot, C.; Arlet, J.-B.; Lionnet, F. Nitrous oxide toxicity in adult patients with sickle cell disease. Eur. J. Intern. Med. 2024, 127, 151–153. [Google Scholar] [CrossRef] [PubMed]
- CKiD Under 25 (U25) GFR Estimating Equations. Available online: https://ckid-gfrcalculator.shinyapps.io/eGFR/# (accessed on 11 February 2022).
- Pierce, C.B.; Muñoz, A.; Ng, D.K.; Warady, B.A.; Furth, S.L.; Schwartz, G.J. Age- and sex-dependent clinical equations to estimate glomerular filtration rates in children and young adults with chronic kidney disease. Kidney Int. 2021, 99, 948–956. [Google Scholar] [CrossRef] [PubMed]
- Hoste, L.; Dubourg, L.; Selistre, L.; De Souza, V.C.; Ranchin, B.; Hadj-Aïssa, A.; Cochat, P.; Martens, F.; Pottel, H. A new equation to estimate the glomerular filtration rate in children, adolescents and young adults. Nephrol. Dial. Transplant. 2014, 29, 1082–1091. [Google Scholar] [CrossRef]
- Diagnostics, Q. Methylmalonic Acid. Available online: https://testdirectory.questdiagnostics.com/test/test-detail/34879/methylmalonic-acid?cc=SKB (accessed on 11 February 2022).
- Diagnostics, Q. Methylmalonic Acid, GC/MS/MS, Urine. Available online: https://testdirectory.questdiagnostics.com/test/test-detail/91032/methylmalonic-acid-gcmsms-urine?cc=SKB (accessed on 11 February 2022).
- Kennedy, T.S.; Fung, E.B.; Kawchak, D.A.; Zemel, B.S.; Ohene-Frempong, K.; Stallings, V.A. Red blood cell folate and serum vitamin B12 status in children with sickle cell disease. J. Pediatr. Hematol. Oncol. 2001, 23, 165–169. [Google Scholar] [CrossRef]
- Segal, J.B.; Miller, E.R., 3rd; Brereton, N.H.; Resar, L.M. Concentrations of B vitamins and homocysteine in children with sickle cell anemia. South. Med. J. 2004, 97, 149–155. [Google Scholar] [CrossRef]
- Lowenthal, E.A.; Mayo, M.S.; Cornwell, P.E.; Thornley-Brown, D. Homocysteine elevation in sickle cell disease. J. Am. Coll. Nutr. 2000, 19, 608–612. [Google Scholar] [CrossRef]
- van der Dijs, F.P.; Schnog, J.J.; Brouwer, D.A.; Velvis, H.J.; van den Berg, G.A.; Bakker, A.J.; Duits, A.J.; Muskiet, F.D.; Muskiet, F.A. Elevated homocysteine levels indicate suboptimal folate status in pediatric sickle cell patients. Am. J. Hematol. 1998, 59, 192–198. [Google Scholar] [CrossRef]
- Martyres, D.J.; Vijenthira, A.; Barrowman, N.; Harris-Janz, S.; Chretien, C.; Klaassen, R.J. Nutrient Insufficiencies/Deficiencies in Children with Sickle Cell Disease and Its Association with Increased Disease Severity. Pediatr. Blood Cancer 2016, 63, 1060–1064. [Google Scholar] [CrossRef]
- Ajayi, O.I.; Bwayo-Weaver, S.; Chirla, S.; Serlemitsos-Day, M.; Daniel, M.; Nouraie, M.; Edwards, K.; Castro, O.; Lombardo, F.; Gordeuk, V.R. Cobalamin status in sickle cell disease. Int. J. Lab. Hematol. 2013, 35, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Al-Momen, A.K. Diminished vitamin B12 levels in patients with severe sickle cell disease. J. Intern. Med. 1995, 237, 551–555. [Google Scholar] [CrossRef]
- Kisali, E.P.; Iversen, P.O.; Makani, J. Low vitamin B12 blood levels in sickle cell disease: Data from a large cohort study in Tanzania. Br. J. Haematol. 2023, 204, 1047–1053. [Google Scholar] [CrossRef]
- Schneede, J.; Ueland, P.M. Novel and established markers of cobalamin deficiency: Complementary or exclusive diagnostic strategies. Semin. Vasc. Med. 2005, 5, 140–155. [Google Scholar] [CrossRef]
- Scarpa, E.; Candiotto, L.; Sartori, R.; Radossi, P.; Maschio, N.; Tagariello, G. Undetected vitamin B12 deficiency due to false normal assay results. Blood Transfus. 2013, 11, 627–629. [Google Scholar] [CrossRef]
- Olson, S.R.; Deloughery, T.G.; Taylor, J.A. Time to Abandon the Serum Cobalamin Level for Diagnosing Vitamin B12 Deficiency. Blood 2016, 128, 2447. [Google Scholar] [CrossRef]
- Zahr, R.S.; Ding, J.; Kang, G.; Wang, W.C.; Hankins, J.S.; Ataga, K.I.; Lebensburger, J.D.; Porter, J.S. Enuresis and Hyperfiltration in Children with Sickle Cell Disease. J. Pediatr. Hematol. Oncol. 2022, 44, 358–362. [Google Scholar] [CrossRef] [PubMed]
- Kwok, T.; Cheng, G.; Lai, W.K.; Poon, P.; Woo, J.; Pang, C.P. Use of fasting urinary methylmalonic acid to screen for metabolic vitamin B12 deficiency in older persons. Nutrition 2004, 20, 764–768. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, K. Studies on methylmalonic acid in humans. I. Concentrations in serum and urinary excretion in normal subjects after feeding and during fasting, and after loading with protein, fat, sugar, isoleucine, and valine. Clin. Chem. 1989, 35, 2271–2276. [Google Scholar] [CrossRef]
- Scheinman, J.I. Sickle cell disease and the kidney. Nat. Clin. Pract. Nephrol. 2009, 5, 78–88. [Google Scholar] [CrossRef]
- Ataga, K.I.; Zhou, Q.; Saraf, S.L.; Hankins, J.S.; Ciccone, E.J.; Loehr, L.R.; Garrett, M.E.; Ashley-Koch, A.E.; Cai, J.; Telen, M.J.; et al. Sex differences in progression of kidney disease in sickle cell disease. Haematologica 2023, 108, 1436–1441. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, R.K.; Patel, R.K.; Shah, V.; Nainiwal, L.; Trivedi, B. Hydroxyurea in sickle cell disease: Drug review. Indian. J. Hematol. Blood Transfus. 2014, 30, 91–96. [Google Scholar] [CrossRef] [PubMed]
- Kaye, A.D.; Jeha, G.M.; Pham, A.D.; Fuller, M.C.; Lerner, Z.I.; Sibley, G.T.; Cornett, E.M.; Urits, I.; Viswanath, O.; Kevil, C.G. Folic Acid Supplementation in Patients with Elevated Homocysteine Levels. Adv. Ther. 2020, 37, 4149–4164. [Google Scholar] [CrossRef]
- Collaboration, H.L.T. Lowering blood homocysteine with folic acid based supplements: Meta-analysis of randomised trials. Homocysteine Lowering Trialists’ Collaboration. BMJ 1998, 316, 894–898. [Google Scholar] [CrossRef]
- Dixit, R.; Nettem, S.; Madan, S.S.; Soe, H.H.K.; Abas, A.B.; Vance, L.D.; Stover, P.J. Folate supplementation in people with sickle cell disease. Cochrane Database Syst. Rev. 2018, 3, Cd011130. [Google Scholar] [CrossRef]
- Menezo, Y.; Elder, K.; Clement, A.; Clement, P. Folic Acid, Folinic Acid, 5 Methyl TetraHydroFolate Supplementation for Mutations That Affect Epigenesis through the Folate and One-Carbon Cycles. Biomolecules 2022, 12, 197. [Google Scholar] [CrossRef]
- Williams, B.A.; Mayer, C.; McCartney, H.; Devlin, A.M.; Lamers, Y.; Vercauteren, S.M.; Wu, J.K.; Karakochuk, C.D. Detectable Unmetabolized Folic Acid and Elevated Folate Concentrations in Folic Acid-Supplemented Canadian Children with Sickle Cell Disease. Front. Nutr. 2021, 8, 642306. [Google Scholar] [CrossRef] [PubMed]
- Selhub, J.; Miller, J.W.; Troen, A.M.; Mason, J.B.; Jacques, P.F. Perspective: The High-Folate-Low-Vitamin B-12 Interaction Is a Novel Cause of Vitamin B-12 Depletion with a Specific Etiology—A Hypothesis. Adv. Nutr. 2022, 13, 16–33. [Google Scholar] [CrossRef] [PubMed]
- Babl, F.E.; Oakley, E.; Seaman, C.; Barnett, P.; Sharwood, L.N. High-concentration nitrous oxide for procedural sedation in children: Adverse events and depth of sedation. Pediatrics 2008, 121, e528–e532. [Google Scholar] [CrossRef]
- Greenwald, M.H.; Morris, C.R. Nitrous Oxide Gas May be a Promising Therapy for Acute Priapism in Patients with Sickle Cell Disease: A Case Series. Blood 2017, 130, 4802. [Google Scholar]
- Hathout, L.; El-Saden, S. Nitrous oxide-induced B12 deficiency myelopathy: Perspectives on the clinical biochemistry of vitamin B12. J. Neurol. Sci. 2011, 301, 1–8. [Google Scholar] [CrossRef]
- Ballas, S.K.; Lieff, S.; Benjamin, L.J.; Dampier, C.D.; Heeney, M.M.; Hoppe, C.; Johnson, C.S.; Rogers, Z.R.; Smith-Whitley, K.; Wang, W.C.; et al. Definitions of the phenotypic manifestations of sickle cell disease. Am. J. Hematol. 2010, 85, 6–13. [Google Scholar] [CrossRef] [PubMed]
- Lebensburger, J.D.; Gossett, J.; Zahr, R.; Wang, W.C.; Ataga, K.I.; Estepp, J.H.; Kang, G.; Hankins, J.S. High bias and low precision for estimated versus measured glomerular filtration rate in pediatric sickle cell anemia. Haematologica 2021, 106, 295–298. [Google Scholar] [CrossRef] [PubMed]
Variable | Overall n = 94 | Diagnosis by Urine MMA/Cr | Diagnosis by Plasma MMA | Diagnosis by Urine and Plasma | |
---|---|---|---|---|---|
B12 Deficient n = 25 | B12 Sufficient n = 69 | B12 Deficient n = 37 | B12 Deficient n = 12 | ||
Mean age, years (SD) | 13 ± 4 | 13 ± 4 | 13 ± 5 | 13 ± 3 | 13 ± 3 |
Sex n (%) | |||||
Female | 51 (54%) | 12 (48%) | 39 (57%) | 24 (65%) | 9 (75%) |
Male | 43 (46%) | 13 (52%) | 30 (43%) | 13 (35%) | 3 (25%) |
Genotype | |||||
Hb SS | 64 (68%) | 18 (72%) | 47 (67%) | 22 (59%) | 8 (67%) |
Hb SC | 14 (15%) | 3 (12%) | 11 (15%) | 4 (11%) | 2 (17%) |
HbS-β+Thal | 7 (7%) | 1 (4%) | 6 (9%) | 6 (17%) | 1 (8%) |
HbS-β0Thal | 9 (10%) | 3 (12%) | 6 (9%) | 5 (13%) | 1 (8%) |
Clinical Labs | |||||
Hemoglobin (g/dL) | 9 ± 2 | 9 ± 1 | 9 ± 2 | 9 ± 2 | 9 ± 1 |
Hematocrit (%) | 27 ± 5 | 26 ± 4 | 27 ± 5 | 26 ± 5 | 26 ± 4 |
MCV (fL) | 86 ± 13 | 87 ± 13 | 87 ± 13 | 84 ± 12 | 83 ± 11 |
Reticulocytes (%) | 10 ± 5 | 12 ± 5 | 10 ± 5 | 10 ± 5 | 12 ± 6 |
ALT (IU/L) | 27 ± 12 | 28 ± 12 | 28 ± 12 | 27 ± 12 | 30 ± 13 |
AST (IU/L) | 48 ± 24 | 56 ± 32 | 46 ± 21 | 49 ± 28 | 64 ± 37 |
Total bilirubin (mg/dL) | 3 ± 2 | 3 ± 3 | 3 ± 2 | 3 ± 2 | 3 ± 3 |
BUN (mg/dL) | 7 ± 3 | 8 ± 3 | 7 ± 2 | 7 ± 2 | 6 ± 3 |
Creatinine (mg/dL) | 0.5 ± 0.1 | 0.5 ± 0.2 | 0.5 ± 0.2 | 0.5 ± 0.1 | 0.5 ± 0.1 |
eGFR | 134 ± 39 | 126 ± 28 | 137 ± 42 | 133 ± 35 | 120 ± 25 |
SCD Medications | |||||
Hydroxyurea, Yes n (%) | 68 (72.3%) | 20 (80%) | 47 (68%) | 28 (76%) | 9 (75%) |
Folic acid, Yes n (%) | 87 (92.5%) | 23 (92%) | 64 (93%) | 32 (86%) | 11 (91%) |
Markers of B12 deficiency | |||||
Urine creatinine (mg/dL) | 48 ± 26 | 25 ± 9 * | 57 ± 25 * | 43 ± 22 ** | 26 ± 6 |
Urine MMA (ng/mL) | 626 ± 314 | 950 ± 380 * | 508 ± 177 * | 647 ± 286 ** | 912 ± 263 |
Urine MMA/Cr (mg/g) | 1.8 ± 1.6 | 4.0 ± 1.7 * | 1.0 ± 0.5 * | 1.9 ± 1.5 ** | 3.7 ± 1.3 |
Statistic | Estimator | Lower 95% CI | Upper 95% CI |
---|---|---|---|
PPA | 0.480 | 0.300 | 0.665 |
NPA | 0.638 | 0.520 | 0.741 |
PPV | 0.324 | 0.196 | 0.485 |
NPV | 0.772 | 0.648 | 0.862 |
Overall Diagnostic Accuracy | 0.596 | 0.495 | 0.689 |
Diagnosis | Urine Deficient | Urine Sufficient | Total |
---|---|---|---|
Plasma Deficient | 12 | 25 | 37 |
Plasma Sufficient | 13 | 44 | 57 |
Total | 25 | 69 | 94 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hatabah, D.; Krieger, R.; Brown, L.A.; Harris, F.; Korman, R.; Reyes, L.; Umana, J.; Benedit, L.; Wynn, B.A.; Rees, C.A.; et al. Cobalamin Deficiency in Children and Adolescents with Sickle Cell Disease. Nutrients 2025, 17, 597. https://doi.org/10.3390/nu17030597
Hatabah D, Krieger R, Brown LA, Harris F, Korman R, Reyes L, Umana J, Benedit L, Wynn BA, Rees CA, et al. Cobalamin Deficiency in Children and Adolescents with Sickle Cell Disease. Nutrients. 2025; 17(3):597. https://doi.org/10.3390/nu17030597
Chicago/Turabian StyleHatabah, Dunia, Rachel Krieger, Lou Ann Brown, Frank Harris, Rawan Korman, Loretta Reyes, Jasmine Umana, Laura Benedit, Bridget A. Wynn, Chris A. Rees, and et al. 2025. "Cobalamin Deficiency in Children and Adolescents with Sickle Cell Disease" Nutrients 17, no. 3: 597. https://doi.org/10.3390/nu17030597
APA StyleHatabah, D., Krieger, R., Brown, L. A., Harris, F., Korman, R., Reyes, L., Umana, J., Benedit, L., Wynn, B. A., Rees, C. A., Dampier, C., & Morris, C. R. (2025). Cobalamin Deficiency in Children and Adolescents with Sickle Cell Disease. Nutrients, 17(3), 597. https://doi.org/10.3390/nu17030597