From Liking to Following: The Role of Food Preferences, Taste Perception, and Lifestyle Factors in Adherence to the Mediterranean Diet Among Young Individuals
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Demographic, Clinical, Anthropometric, and Lifestyle Variables
2.3. Adherence to MedDiet, Food Preference, and Taste Preference Assessment
2.4. Taste Perception Tests
2.5. Statistical Analysis
3. Results
3.1. General Characteristics of Participants
3.2. Association of Socio-Demographic and Lifestyle Variables with MedDiet Adherence
3.3. Association Between Food Preferences and Adherence to the MedDiet
3.4. Association Between Food Preference for Individual Food Items and Compliance with the Related Food Items in the 14-Item MedDiet Score
3.5. Taste Preferences and Associations with Adherence to the MedDiet
3.6. Taste Perception and Association with Adherence to the MedDiet
3.7. Associations Between Food Liking, Taste Preferences, Taste Perception, and MedDiet Adherence
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Laddu, D.; Neeland, I.J.; Carnethon, M.; Stanford, F.C.; Mongraw-Chaffin, M.; Barone Gibbs, B.; Ndumele, C.E.; Longenecker, C.T.; Chung, M.L.; Rao, G.; et al. Implementation of Obesity Science Into Clinical Practice: A Scientific Statement From the American Heart Association. Circulation 2024, 150, e7–e19. [Google Scholar] [CrossRef] [PubMed]
- Ruze, R.; Liu, T.; Zou, X.; Song, J.; Chen, Y.; Xu, R.; Yin, X.; Xu, Q. Obesity and Type 2 Diabetes Mellitus: Connections in Epidemiology, Pathogenesis, and Treatments. Front. Endocrinol. 2023, 14, 1161521. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.; Liu, Y.; Tian, X.; Zhao, Y.; Liu, L.; Zhao, Z.; Luo, L.; Zhang, Y.; Jiang, X.; Liu, Y.; et al. Association of Obesity with Cardiovascular Disease in the Absence of Traditional Risk Factors. Int. J. Obes. 2024, 48, 263–270. [Google Scholar] [CrossRef]
- Zhang, S.; Fu, X.; Du, Z.; Guo, X.; Li, Z.; Sun, G.; Zhou, Y.; Yang, H.; Yu, S.; Zheng, L.; et al. Is Waist-to-Height Ratio the Best Predictive Indicator of Cardiovascular Disease Incidence in Hypertensive Adults? A Cohort Study. BMC Cardiovasc. Disord. 2022, 22, 214. [Google Scholar] [CrossRef]
- Chew, N.W.S.; Mehta, A.; Goh, R.S.J.; Zhang, A.; Chen, Y.; Chong, B.; Chew, H.S.J.; Shabbir, A.; Brown, A.; Dimitriadis, G.K.; et al. Cardiovascular-Liver-Metabolic Health: Recommendations in Screening, Diagnosis, and Management of Metabolic Dysfunction-Associated Steatotic Liver Disease in Cardiovascular Disease via Modified Delphi Approach. Circulation 2025, 151, 98–119. [Google Scholar] [CrossRef]
- Nguyen, L.; Shanmugan, S. A Review Article: The Relationship Between Obesity and Colorectal Cancer. Curr. Diab Rep. 2025, 25, 8. [Google Scholar] [CrossRef]
- Shi, X.; Jiang, A.; Qiu, Z.; Lin, A.; Liu, Z.; Zhu, L.; Mou, W.; Cheng, Q.; Zhang, J.; Miao, K.; et al. Novel Perspectives on the Link between Obesity and Cancer Risk: From Mechanisms to Clinical Implications. Front. Med. 2024, 18, 945–968. [Google Scholar] [CrossRef]
- Papavasileiou, G.; Tsilingiris, D.; Spyrou, N.; Vallianou, N.G.; Karampela, I.; Magkos, F.; Dalamaga, M. Obesity and Main Urologic Cancers: Current Systematic Evidence, Novel Biological Mechanisms, Perspectives and Challenges. Semin. Cancer Biol. 2023, 91, 70–98. [Google Scholar] [CrossRef]
- Kaesler, N.; Fleig, S. Ten Tips on How to Manage Obesity in the Presence of CKD. Clin. Kidney J. 2024, 17, sfae317. [Google Scholar] [CrossRef]
- Zoccali, C. A New Clinical Entity Bridging the Cardiovascular System and the Kidney: The Chronic Cardiovascular-Kidney Disorder. Cardiorenal Med. 2025, 15, 21–28. [Google Scholar] [CrossRef]
- Amini-Salehi, E.; Letafatkar, N.; Norouzi, N.; Joukar, F.; Habibi, A.; Javid, M.; Sattari, N.; Khorasani, M.; Farahmand, A.; Tavakoli, S.; et al. Global Prevalence of Nonalcoholic Fatty Liver Disease: An Updated Review Meta-Analysis Comprising a Population of 78 Million from 38 Countries. Arch. Med. Res. 2024, 55, 103043. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zhang, J.; Yuan, L.; Hu, H.; Li, T.; Zhao, Y.; Wu, Y.; Wang, M.; Huo, W.; Gao, Y.; et al. Obesity and Risk of Depressive Disorder in Children and Adolescents: A Meta-analysis of Observational Studies. Child 2024, 50, e13237. [Google Scholar] [CrossRef] [PubMed]
- Maksyutynska, K.; Stogios, N.; Prasad, F.; Gill, J.; Hamza, Z.; De, R.; Smith, E.; Horta, A.; Goldstein, B.I.; Korczak, D.; et al. Neurocognitive Correlates of Metabolic Dysregulation in Individuals with Mood Disorders: A Systematic Review and Meta-Analysis. Psychol. Med. 2024, 54, 1245–1271. [Google Scholar] [CrossRef] [PubMed]
- Chenchula, S.; Sharma, S.; Tripathi, M.; Chavan, M.; Misra, A.K.; Rangari, G. Prevalence of Overweight and Obesity and Their Effect on COVID-19 Severity and Hospitalization among Younger than 50 Years versus Older than 50 Years Population: A Systematic Review and Meta-analysis. Obes. Rev. 2023, 24, e13616. [Google Scholar] [CrossRef]
- Queiroz, M.; Sena, C.M. Perivascular Adipose Tissue: A Central Player in the Triad of Diabetes, Obesity, and Cardiovascular Health. Cardiovasc. Diabetol. 2024, 23, 455. [Google Scholar] [CrossRef]
- Wei, J.; Zhu, X.; Liu, J.; Gao, Y.; Liu, X.; Wang, K.; Zheng, X. Estimating global prevalence of mild cognitive impairment and dementia in elderly with overweight, obesity, and central obesity: A Systematic Review and Meta-analysis. Obes. Rev. 2024, e13882. [Google Scholar] [CrossRef]
- Anand, S.; Patel, T.N. Integrating the Metabolic and Molecular Circuits in Diabetes, Obesity and Cancer: A Comprehensive Review. Discov. Oncol. 2024, 15, 779. [Google Scholar] [CrossRef]
- Boutari, C.; Mantzoros, C.S. A 2022 Update on the Epidemiology of Obesity and a Call to Action: As Its Twin COVID-19 Pandemic Appears to Be Receding, the Obesity and Dysmetabolism Pandemic Continues to Rage On. Metabolism 2022, 133, 155217. [Google Scholar] [CrossRef]
- Chooi, Y.C.; Ding, C.; Magkos, F. The Epidemiology of Obesity. Metabolism 2019, 92, 6–10. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, J.; Ni, Y.; Yi, C.; Fang, Y.; Ning, Q.; Shen, B.; Zhang, K.; Liu, Y.; Yang, L.; et al. Global Prevalence of Overweight and Obesity in Children and Adolescents: A Systematic Review and Meta-Analysis. JAMA Pediatr. 2024, 178, 800. [Google Scholar] [CrossRef]
- NCD Risk Factor Collaboration (NCD-RisC) Worldwide Trends in Underweight and Obesity from 1990 to 2022: A Pooled Analysis of 3663 Population-Representative Studies with 222 Million Children, Adolescents, and Adults. Lancet 2024, 403, 1027–1050. [CrossRef] [PubMed]
- Loos, R.J.F.; Yeo, G.S.H. The Genetics of Obesity: From Discovery to Biology. Nat. Rev. Genet. 2022, 23, 120–133. [Google Scholar] [CrossRef] [PubMed]
- Silventoinen, K.; Konttinen, H. Obesity and Eating Behavior from the Perspective of Twin and Genetic Research. Neurosci. Biobehav. Rev. 2020, 109, 150–165. [Google Scholar] [CrossRef] [PubMed]
- Aleksandrova, K.; Egea Rodrigues, C.; Floegel, A.; Ahrens, W. Omics Biomarkers in Obesity: Novel Etiological Insights and Targets for Precision Prevention. Curr. Obes. Rep. 2020, 9, 219–230. [Google Scholar] [CrossRef]
- Ordovas, J.M.; Ferguson, L.R.; Tai, E.S.; Mathers, J.C. Personalised Nutrition and Health. BMJ 2018, 361, bmj.k2173. [Google Scholar] [CrossRef]
- Lee, B.Y.; Ordovás, J.M.; Parks, E.J.; Anderson, C.A.; Barabási, A.-L.; Clinton, S.K.; De La Haye, K.; Duffy, V.B.; Franks, P.W.; Ginexi, E.M.; et al. Research Gaps and Opportunities in Precision Nutrition: An NIH Workshop Report. Am. J. Clin. Nutr. 2022, 116, 1877–1900. [Google Scholar] [CrossRef]
- Zeisel, S.H. Precision (Personalized) Nutrition: Understanding Metabolic Heterogeneity. Annu. Rev. Food Sci. Technol. 2020, 11, 71–92. [Google Scholar] [CrossRef]
- Agrawal, P.; Kaur, J.; Singh, J.; Rasane, P.; Sharma, K.; Bhadariya, V.; Kaur, S.; Kumar, V. Genetics, Nutrition, and Health: A New Frontier in Disease Prevention. J. Am. Nutr. Assoc. 2024, 43, 326–338. [Google Scholar] [CrossRef]
- Chowkwanyun, M.; Bayer, R.; Galea, S. “Precision” Public Health—Between Novelty and Hype. N. Engl. J. Med. 2018, 379, 1398–1400. [Google Scholar] [CrossRef]
- Bosward, R.; Braunack-Mayer, A.; Frost, E.; Carter, S. Mapping Precision Public Health Definitions, Terminology and Applications: A Scoping Review Protocol. BMJ Open 2022, 12, e058069. [Google Scholar] [CrossRef]
- Roberts, M.C.; Holt, K.E.; Del Fiol, G.; Baccarelli, A.A.; Allen, C.G. Precision Public Health in the Era of Genomics and Big Data. Nat. Med. 2024, 30, 1865–1873. [Google Scholar] [CrossRef] [PubMed]
- Ulusoy-Gezer, H.G.; Rakıcıoğlu, N. The Future of Obesity Management through Precision Nutrition: Putting the Individual at the Center. Curr. Nutr. Rep. 2024, 13, 455–477. [Google Scholar] [CrossRef] [PubMed]
- Guasch-Ferré, M.; Willett, W.C. The Mediterranean Diet and Health: A Comprehensive Overview. J. Intern. Med. 2021, 290, 549–566. [Google Scholar] [CrossRef]
- Zupo, R.; Castellana, F.; Piscitelli, P.; Crupi, P.; Desantis, A.; Greco, E.; Severino, F.P.; Pulimeno, M.; Guazzini, A.; Kyriakides, T.C.; et al. Scientific Evidence Supporting the Newly Developed One-Health Labeling Tool “Med-Index”: An Umbrella Systematic Review on Health Benefits of Mediterranean Diet Principles and Adherence in a Planeterranean Perspective. J. Transl. Med. 2023, 21, 755. [Google Scholar] [CrossRef]
- Pavlidou, E.; Papadopoulou, S.K.; Fasoulas, A.; Papaliagkas, V.; Alexatou, O.; Chatzidimitriou, M.; Mentzelou, M.; Giaginis, C. Diabesity and Dietary Interventions: Evaluating the Impact of Mediterranean Diet and Other Types of Diets on Obesity and Type 2 Diabetes Management. Nutrients 2023, 16, 34. [Google Scholar] [CrossRef]
- Dobroslavska, P.; Silva, M.L.; Vicente, F.; Pereira, P. Mediterranean Dietary Pattern for Healthy and Active Aging: A Narrative Review of an Integrative and Sustainable Approach. Nutrients 2024, 16, 1725. [Google Scholar] [CrossRef]
- Dominguez, L.J.; Veronese, N.; Di Bella, G.; Cusumano, C.; Parisi, A.; Tagliaferri, F.; Ciriminna, S.; Barbagallo, M. Mediterranean Diet in the Management and Prevention of Obesity. Exp. Gerontol. 2023, 174, 112121. [Google Scholar] [CrossRef]
- D’Innocenzo, S.; Biagi, C.; Lanari, M. Obesity and the Mediterranean Diet: A Review of Evidence of the Role and Sustainability of the Mediterranean Diet. Nutrients 2019, 11, 1306. [Google Scholar] [CrossRef]
- López-Gil, J.F.; García-Hermoso, A.; Sotos-Prieto, M.; Cavero-Redondo, I.; Martínez-Vizcaíno, V.; Kales, S.N. Mediterranean Diet-Based Interventions to Improve Anthropometric and Obesity Indicators in Children and Adolescents: A Systematic Review with Meta-Analysis of Randomized Controlled Trials. Adv. Nutr. 2023, 14, 858–869. [Google Scholar] [CrossRef]
- Hareer, L.W.; Lau, Y.Y.; Mole, F.; Reidlinger, D.P.; O’Neill, H.M.; Mayr, H.L.; Greenwood, H.; Albarqouni, L. The Effectiveness of the Mediterranean diet for Primary and Secondary Prevention of Cardiovascular Disease: An Umbrella Review. Nutr. Diet. 2025, 82, 8–41. [Google Scholar] [CrossRef]
- Galbete, C.; Schwingshackl, L.; Schwedhelm, C.; Boeing, H.; Schulze, M.B. Evaluating Mediterranean Diet and Risk of Chronic Disease in Cohort Studies: An Umbrella Review of Meta-Analyses. Eur. J. Epidemiol. 2018, 33, 909–931. [Google Scholar] [CrossRef] [PubMed]
- Veronese, N.; Ragusa, F.S.; Maggi, S.; Witard, O.C.; Smith, L.; Dominguez, L.J.; Barbagallo, M.; Isanejad, M.; Prokopidis, K. Effect of the Mediterranean Diet on Incidence of Heart Failure in European Countries: A Systematic Review and Meta-Analysis of Cohort Studies. Eur. J. Clin. Nutr. 2024. [Google Scholar] [CrossRef] [PubMed]
- Karam, G.; Agarwal, A.; Sadeghirad, B.; Jalink, M.; Hitchcock, C.L.; Ge, L.; Kiflen, R.; Ahmed, W.; Zea, A.M.; Milenkovic, J.; et al. Comparison of Seven Popular Structured Dietary Programmes and Risk of Mortality and Major Cardiovascular Events in Patients at Increased Cardiovascular Risk: Systematic Review and Network Meta-Analysis. BMJ 2023, 380, e072003. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Zhang, X.; Yi, D.; Qiu, F.; Wu, L.; Tang, Y.; Wang, N. Mediterranean Diet Affects the Metabolic Outcome of Metabolic Dysfunction-Associated Fatty Liver Disease. Front. Nutr. 2023, 10, 1225946. [Google Scholar] [CrossRef] [PubMed]
- Kotzakioulafi, E.; Bakaloudi, D.R.; Chrysoula, L.; Theodoridis, X.; Antza, C.; Tirodimos, I.; Chourdakis, M. High Versus Low Adherence to the Mediterranean Diet for Prevention of Diabetes Mellitus Type 2: A Systematic Review and Meta-Analysis. Metabolites 2023, 13, 779. [Google Scholar] [CrossRef]
- Vaziri, Y. The Mediterranean Diet: A Powerful Defense against Alzheimer Disease–A Comprehensive Review. Clin. Nutr. ESPEN 2024, 64, 160–167. [Google Scholar] [CrossRef]
- Al Shamsi, H.S.S.; Rainey-Smith, S.R.; Gardener, S.L.; Sohrabi, H.R.; Canovas, R.; Martins, R.N.; Fernando, W.M. The Relationship between Diet, Depression, and Alzheimer’s Disease: A Narrative Review. Mol. Nutr. Food Res. 2024, 68, 2300419. [Google Scholar] [CrossRef]
- Maggi, S.; Ticinesi, A.; Limongi, F.; Noale, M.; Ecarnot, F. The Role of Nutrition and the Mediterranean Diet on the Trajectories of Cognitive Decline. Exp. Gerontol. 2023, 173, 112110. [Google Scholar] [CrossRef]
- Dinu, M.; Pagliai, G.; Casini, A.; Sofi, F. Mediterranean Diet and Multiple Health Outcomes: An Umbrella Review of Meta-Analyses of Observational Studies and Randomised Trials. Eur. J. Clin. Nutr. 2018, 72, 30–43. [Google Scholar] [CrossRef]
- León-Muñoz, L.M.; Guallar-Castillón, P.; Graciani, A.; López-García, E.; Mesas, A.E.; Aguilera, M.T.; Banegas, J.R.; Rodríguez-Artalejo, F. Adherence to the Mediterranean Diet Pattern Has Declined in Spanish Adults. J. Nutr. 2012, 142, 1843–1850. [Google Scholar] [CrossRef]
- Alfaro-González, S.; Garrido-Miguel, M.; Fernández-Rodríguez, R.; Mesas, A.E.; Bravo-Esteban, E.; López-Muñoz, P.; Rodríguez-Gutiérrez, E.; Martínez-Vizcaíno, V. Higher Adherence to the Mediterranean Diet Is Associated with Better Academic Achievement in Spanish University Students: A Multicenter Cross-Sectional Study. Nutr. Res. 2024, 126, 193–203. [Google Scholar] [CrossRef]
- Cobo-Cuenca, A.I.; Garrido-Miguel, M.; Soriano-Cano, A.; Ferri-Morales, A.; Martínez-Vizcaíno, V.; Martín-Espinosa, N.M. Adherence to the Mediterranean Diet and Its Association with Body Composition and Physical Fitness in Spanish University Students. Nutrients 2019, 11, 2830. [Google Scholar] [CrossRef] [PubMed]
- Antonopoulou, M.; Mantzorou, M.; Serdari, A.; Bonotis, K.; Vasios, G.; Pavlidou, E.; Trifonos, C.; Vadikolias, K.; Petridis, D.; Giaginis, C. Evaluating Mediterranean Diet Adherence in University Student Populations: Does This Dietary Pattern Affect Students’ Academic Performance and Mental Health? Int. J. Health Plan. Manag. 2020, 35, 5–21. [Google Scholar] [CrossRef] [PubMed]
- Saulle, R.; Del Prete, G.; Stelmach-Mardas, M.; De Giusti, M.; La Torre, G. A Breaking down of the Mediterranean Diet in the Land Where It Was Discovered. A Cross Sectional Survey among the Young Generation of Adolescents in the Heart of Cilento, Southern Italy. Ann. Ig. 2016, 28, 349–359. [Google Scholar] [CrossRef] [PubMed]
- Zani, C.; Ceretti, E.; Grioni, S.; Viola, G.C.V.; Donato, F.; Feretti, D.; Festa, A.; Bonizzoni, S.; Bonetti, A.; Monarca, S.; et al. Are 6-8 Year Old Italian Children Moving Away from the Mediterranean Diet? Ann. Ig. 2016, 28, 339–348. [Google Scholar] [CrossRef]
- Arcila-Agudelo, A.M.; Ferrer-Svoboda, C.; Torres-Fernàndez, T.; Farran-Codina, A. Determinants of Adherence to Healthy Eating Patterns in a Population of Children and Adolescents: Evidence on the Mediterranean Diet in the City of Mataró (Catalonia, Spain). Nutrients 2019, 11, 854. [Google Scholar] [CrossRef] [PubMed]
- Archero, F.; Ricotti, R.; Solito, A.; Carrera, D.; Civello, F.; Di Bella, R.; Bellone, S.; Prodam, F. Adherence to the Mediterranean Diet among School Children and Adolescents Living in Northern Italy and Unhealthy Food Behaviors Associated to Overweight. Nutrients 2018, 10, 1322. [Google Scholar] [CrossRef] [PubMed]
- Cuschieri, S.; Libra, M. Adherence to the Mediterranean Diet in Maltese Adults. Int. J. Environ. Res. Public Health 2020, 18, 10. [Google Scholar] [CrossRef]
- Obeid, C.A.; Gubbels, J.S.; Jaalouk, D.; Kremers, S.P.J.; Oenema, A. Adherence to the Mediterranean Diet among Adults in Mediterranean Countries: A Systematic Literature Review. Eur. J. Nutr. 2022, 61, 3327–3344. [Google Scholar] [CrossRef]
- Rosi, A.; Paolella, G.; Biasini, B.; Scazzina, F.; Alicante, P.; De Blasio, F.; Dello Russo, M.; Paolella, G.; Rendina, D.; Rosi, A.; et al. Dietary Habits of Adolescents Living in North America, Europe or Oceania: A Review on Fruit, Vegetable and Legume Consumption, Sodium Intake, and Adherence to the Mediterranean Diet. Nutr. Metab. Cardiovasc. Dis. 2019, 29, 544–560. [Google Scholar] [CrossRef]
- Sam-Yellowe, T.Y. Nutritional Barriers to the Adherence to the Mediterranean Diet in Non-Mediterranean Populations. Foods 2024, 13, 1750. [Google Scholar] [CrossRef] [PubMed]
- Del Mar Bibiloni, M.; Pons, A.; Tur, J.A. Compliance with the Mediterranean Diet Quality Index (KIDMED) among Balearic Islands’ Adolescents and Its Association with Socioeconomic, Anthropometric and Lifestyle Factors. Ann. Nutr. Metab. 2016, 68, 42–50. [Google Scholar] [CrossRef]
- Bibiloni, M.; González, M.; Julibert, A.; Llompart, I.; Pons, A.; Tur, J. Ten-Year Trends (1999–2010) of Adherence to the Mediterranean Diet among the Balearic Islands’ Adult Population. Nutrients 2017, 9, 749. [Google Scholar] [CrossRef] [PubMed]
- Iaccarino Idelson, P.; Scalfi, L.; Valerio, G. Adherence to the Mediterranean Diet in Children and Adolescents: A Systematic Review. Nutr. Metab. Cardiovasc. Dis. 2017, 27, 283–299. [Google Scholar] [CrossRef] [PubMed]
- Navarro-Martínez, R.; Mafla-España, M.A.; Cauli, O. Mediterranean Diet Adherence in Community-Dwelling Older Adults in Spain: Social Determinants Related to the Family. Nutrients 2022, 14, 5141. [Google Scholar] [CrossRef]
- Laiou, E.; Rapti, I.; Markozannes, G.; Cianferotti, L.; Fleig, L.; Warner, L.M.; Ribas, L.; Ngo, J.; Salvatore, S.; Trichopoulou, A.; et al. Social Support, Adherence to Mediterranean Diet and Physical Activity in Adults: Results from a Community-Based Cross-Sectional Study. J. Nutr. Sci. 2020, 9, e53. [Google Scholar] [CrossRef]
- Conrad, Z.; Korol, M.; DiStaso, C.; Wu, S. Greater Adherence to the Mediterranean Diet Pattern in the United States Is Associated with Sustainability Trade-Offs. Nutr. J. 2024, 23, 159. [Google Scholar] [CrossRef]
- Fernandez-Lazaro, C.I.; Toledo, E.; Buil-Cosiales, P.; Salas-Salvadó, J.; Corella, D.; Fitó, M.; Martínez, J.A.; Alonso-Gómez, Á.M.; Wärnberg, J.; Vioque, J.; et al. Factors Associated with Successful Dietary Changes in an Energy-Reduced Mediterranean Diet Intervention: A Longitudinal Analysis in the PREDIMED-Plus Trial. Eur. J. Nutr. 2022, 61, 1457–1475. [Google Scholar] [CrossRef]
- Öztürk Özkan, G.; Çeteoğlu, B.; Temiz, B.; Dursun, H.; Karaçam, M.; Sarğın, M. The Effect of Eating Motivation on Adherence to the Mediterranean Diet, Glycemia and Lipid Profile in Individuals with Type 2 Diabetes. Int. J. Environ. Health Res. 2025, 35, 257–268. [Google Scholar] [CrossRef]
- Oliveira, L.; Saraiva, A.; Lima, M.J.; Teixeira-Lemos, E.; Alhaji, J.H.; Carrascosa, C.; Raposo, A. Mediterranean Food Pattern Adherence in a Female-Dominated Sample of Health and Social Sciences University Students: Analysis from a Perspective of Sustainability. Nutrients 2024, 16, 3886. [Google Scholar] [CrossRef]
- Louro, T.; Castelo, P.M.; Simões, C.; Capela E Silva, F.; Luís, H.; Moreira, P.; Lamy, E. Adherence to Mediterranean Diet and Aromatic Plants Intake Are Related with Gustatory Function: A Case-Study from a Portuguese Region. Appetite 2024, 201, 107581. [Google Scholar] [CrossRef] [PubMed]
- Veček, N.N.; Mucalo, L.; Dragun, R.; Miličević, T.; Pribisalić, A.; Patarčić, I.; Hayward, C.; Polašek, O.; Kolčić, I. The Association between Salt Taste Perception, Mediterranean Diet and Metabolic Syndrome: A Cross-Sectional Study. Nutrients 2020, 12, 1164. [Google Scholar] [CrossRef] [PubMed]
- Wilson, N.A.; Mantzioris, E.; Villani, A. Sensory Preferences Are Important Motivators for Using Herbs and Spices: A Cross-sectional Analysis of Australian Adults. J. Hum. Nutr. Diet. 2025, 38, e13406. [Google Scholar] [CrossRef]
- Fernández-Carrión, R.; Sorlí, J.V.; Coltell, O.; Pascual, E.C.; Ortega-Azorín, C.; Barragán, R.; Giménez-Alba, I.M.; Alvarez-Sala, A.; Fitó, M.; Ordovas, J.M.; et al. Sweet Taste Preference: Relationships with Other Tastes, Liking for Sugary Foods and Exploratory Genome-Wide Association Analysis in Subjects with Metabolic Syndrome. Biomedicines 2021, 10, 79. [Google Scholar] [CrossRef]
- Chkoniya, V.; Gregório, M.J.; Filipe, S.; Graça, P. From Olive Oil Lovers to Mediterranean Diet Lifestyle Followers: Consumption Pattern Segmentation in the Portuguese Context. Nutrients 2024, 16, 4235. [Google Scholar] [CrossRef]
- Fluitman, K.S.; Hesp, A.C.; Kaihatu, R.F.; Nieuwdorp, M.; Keijser, B.J.F.; IJzerman, R.G.; Visser, M. Poor Taste and Smell Are Associated with Poor Appetite, Macronutrient Intake, and Dietary Quality but Not with Undernutrition in Older Adults. J. Nutr. 2021, 151, 605–614. [Google Scholar] [CrossRef]
- Navarrete-Muñoz, E.-M.; Fernández-Pires, P.; Navarro-Amat, S.; Hurtado-Pomares, M.; Peral-Gómez, P.; Juárez-Leal, I.; Espinosa-Sempere, C.; Sánchez-Pérez, A.; Valera-Gran, D. Association between Adherence to the Antioxidant-Rich Mediterranean Diet and Sensory Processing Profile in School-Aged Children: The Spanish Cross-Sectional InProS Project. Nutrients 2019, 11, 1007. [Google Scholar] [CrossRef]
- Corella, D.; Coltell, O.; Macian, F.; Ordovás, J.M. Advances in Understanding the Molecular Basis of the Mediterranean Diet Effect. Annu. Rev. Food Sci. Technol. 2018, 9, 227–249. [Google Scholar] [CrossRef]
- Serra-Majem, L.; Román-Viñas, B.; Sanchez-Villegas, A.; Guasch-Ferré, M.; Corella, D.; La Vecchia, C. Benefits of the Mediterranean Diet: Epidemiological and Molecular Aspects. Mol. Asp. Med. 2019, 67, 1–55. [Google Scholar] [CrossRef]
- Zhao, J.; Stockwell, T.; Naimi, T.; Churchill, S.; Clay, J.; Sherk, A. Association Between Daily Alcohol Intake and Risk of All-Cause Mortality: A Systematic Review and Meta-Analyses. JAMA Netw. Open 2023, 6, e236185. [Google Scholar] [CrossRef]
- Stockwell, T.; Zhao, J.; Clay, J.; Levesque, C.; Sanger, N.; Sherk, A.; Naimi, T. Why Do Only Some Cohort Studies Find Health Benefits from Low Volume Alcohol Use? A Systematic Review and Meta-Analysis of Study Characteristics That May Bias Mortality Risk Estimates. J. Stud. Alcohol. Drugs 2024, 85, 441–452. [Google Scholar] [CrossRef] [PubMed]
- Drewnowski, A.; Hann, C. Food Preferences and Reported Frequencies of Food Consumption as Predictors of Current Diet in Young Women. Am. J. Clin. Nutr. 1999, 70, 28–36. [Google Scholar] [CrossRef] [PubMed]
- Drewnowski, a. Taste preferences and food intake. Annu. Rev. Nutr. 1997, 17, 237–253. [Google Scholar] [CrossRef] [PubMed]
- Glanz, K.; Basil, M.; Maibach, E.; Goldberg, J.; Snyder, D. Why Americans eat what they do: Taste, nutrition, cost, convenience, and weight control concerns as influences on food consumption. J. Am. Diet. Assoc. 1998, 98, 1118–1126. [Google Scholar] [CrossRef]
- Aggarwal, A.; Rehm, C.D.; Monsivais, P.; Drewnowski, A. Importance of Taste, Nutrition, Cost and Convenience in Relation to Diet Quality: Evidence of Nutrition Resilience among US Adults Using National Health and Nutrition Examination Survey (NHANES) 2007–2010. Prev. Med. 2016, 90, 184–192. [Google Scholar] [CrossRef]
- De Mendonça, S.N.; Brandão, H.C.; Brandão, W.A.; Quintino, C.A.; De Francisco, A.; Teixeira, E. Food Preferences of Middle Aged and Elderly Subjects in a Brazilian City. J. Nutr. Health Aging 2013, 17, 130–135. [Google Scholar] [CrossRef]
- Concas, M.P.; Morgan, A.; Tesolin, P.; Santin, A.; Girotto, G.; Gasparini, P. Sensory Capacities and Eating Behavior: Intriguing Results from a Large Cohort of Italian Individuals. Foods 2022, 11, 735. [Google Scholar] [CrossRef]
- Bielser, M.-L.; Crézé, C.; Murray, M.M.; Toepel, U. Does My Brain Want What My Eyes like?—How Food Liking and Choice Influence Spatio-Temporal Brain Dynamics of Food Viewing. Brain Cogn. 2016, 110, 64–73. [Google Scholar] [CrossRef]
- Liem, D.G.; Russell, C.G. The Influence of Taste Liking on the Consumption of Nutrient Rich and Nutrient Poor Foods. Front. Nutr. 2019, 6, 174. [Google Scholar] [CrossRef]
- Cornelis, M.C.; Tordoff, M.G.; El-Sohemy, A.; Van Dam, R.M. Recalled Taste Intensity, Liking and Habitual Intake of Commonly Consumed Foods. Appetite 2017, 109, 182–189. [Google Scholar] [CrossRef]
- Egan, J.M. Physiological Integration of Taste and Metabolism. N. Engl. J. Med. 2024, 390, 1699–1710. [Google Scholar] [CrossRef] [PubMed]
- Trivedi, B.P. Gustatory System: The Finer Points of Taste. Nature 2012, 486, S2–S3. [Google Scholar] [CrossRef] [PubMed]
- Jilani, H.; Intemann, T.; Eiben, G.; Lauria, F.; Lissner, L.; Michels, N.; Molnár, D.; Moreno, L.A.; Pala, V.; Tornaritis, M.; et al. Association of Ability to Rank Sweet and Fat Taste Intensities with Sweet and Fat Food Propensity Ratios of Children, Adolescents and Adults: The I. Family Study. Eur. J. Nutr. 2025, 64, 42. [Google Scholar] [CrossRef] [PubMed]
- Guido, D.; Perna, S.; Carrai, M.; Barale, R.; Grassi, M.; Rondanelli, M. Multidimensional Evaluation of Endogenous and Health Factors Affecting Food Preferences, Taste and Smell Perception. J. Nutr. Health Aging 2016, 20, 971–981. [Google Scholar] [CrossRef]
- Qiao, K.; Zhao, M.; Huang, Y.; Liang, L.; Zhang, Y. Bitter Perception and Effects of Foods Rich in Bitter Compounds on Human Health: A Comprehensive Review. Foods 2024, 13, 3747. [Google Scholar] [CrossRef]
- Sjöstrand, A.E.; Sjödin, P.; Hegay, T.; Nikolaeva, A.; Shayimkulov, F.; Blum, M.G.B.; Heyer, E.; Jakobsson, M. Taste Perception and Lifestyle: Insights from Phenotype and Genome Data among Africans and Asians. Eur. J. Hum. Genet. 2021, 29, 325–337. [Google Scholar] [CrossRef]
- Coltell, O.; Sorlí, J.V.; Asensio, E.M.; Fernández-Carrión, R.; Barragán, R.; Ortega-Azorín, C.; Estruch, R.; González, J.I.; Salas-Salvadó, J.; Lamon-Fava, S.; et al. Association between Taste Perception and Adiposity in Overweight or Obese Older Subjects with Metabolic Syndrome and Identification of Novel Taste-Related Genes. Am. J. Clin. Nutr. 2019, 109, 1709–1723. [Google Scholar] [CrossRef]
- Barragán, R.; Coltell, O.; Portolés, O.; Asensio, E.M.; Sorlí, J.V.; Ortega-Azorín, C.; González, J.I.; Sáiz, C.; Fernández-Carrión, R.; Ordovas, J.M.; et al. Bitter, Sweet, Salty, Sour and Umami Taste Perception Decreases with Age: Sex-Specific Analysis, Modulation by Genetic Variants and Taste-Preference Associations in 18 to 80 Year-Old Subjects. Nutrients 2018, 10, 1539. [Google Scholar] [CrossRef]
- Diószegi, J.; Llanaj, E.; Ádány, R. Genetic Background of Taste Perception, Taste Preferences, and Its Nutritional Implications: A Systematic Review. Front. Genet. 2019, 10, 1272. [Google Scholar] [CrossRef]
- Nolden, A.A.; Feeney, E.L. Genetic Differences in Taste Receptors: Implications for the Food Industry. Annu. Rev. Food Sci. Technol. 2020, 11, 183–204. [Google Scholar] [CrossRef]
- Jayasinghe, S.; Kruger, R.; Walsh, D.; Cao, G.; Rivers, S.; Richter, M.; Breier, B. Is Sweet Taste Perception Associated with Sweet Food Liking and Intake? Nutrients 2017, 9, 750. [Google Scholar] [CrossRef] [PubMed]
- Mennella, J.A.; Bobowski, N.K. The Sweetness and Bitterness of Childhood: Insights from Basic Research on Taste Preferences. Physiol. Behav. 2015, 152, 502–507. [Google Scholar] [CrossRef] [PubMed]
- Eulalia, C.; Luciano, N.; Paolo, G.; Antonietta, R. Are Taste Variations Associated with the Liking of Sweetened and Unsweetened Coffee? Physiol. Behav. 2022, 244, 113655. [Google Scholar] [CrossRef] [PubMed]
- Chamoun, E.; Liu, A.S.; Duizer, L.M.; Feng, Z.; Darlington, G.; Duncan, A.M.; Haines, J.; Ma, D.W.L. Single Nucleotide Polymorphisms in Sweet, Fat, Umami, Salt, Bitter and Sour Taste Receptor Genes Are Associated with Gustatory Function and Taste Preferences in Young Adults. Nutr. Res. 2021, 85, 40–46. [Google Scholar] [CrossRef]
- Bawajeeh, A.O.; Albar, S.A.; Zhang, H.; Zulyniak, M.A.; Evans, C.E.L.; Cade, J.E. Impact of Taste on Food Choices in Adolescence—Systematic Review and Meta-Analysis. Nutrients 2020, 12, 1985. [Google Scholar] [CrossRef]
- Louro, T.; Simões, C.; Castelo, P.M.; Capela E Silva, F.; Luis, H.; Moreira, P.; Lamy, E. How Individual Variations in the Perception of Basic Tastes and Astringency Relate with Dietary Intake and Preferences for Fruits and Vegetables. Foods 2021, 10, 1961. [Google Scholar] [CrossRef]
- Aldaz, K.J.; Flores, S.O.; Ortiz, R.M.; Diaz Rios, L.K.; Dhillon, J. A Cross-Sectional Analysis of Food Perceptions, Food Preferences, Diet Quality, and Health in a Food Desert Campus. Nutrients 2022, 14, 5215. [Google Scholar] [CrossRef]
- Douglas, J.E.; Mansfield, C.J.; Arayata, C.J.; Cowart, B.J.; Colquitt, L.R.; Maina, I.W.; Blasetti, M.T.; Cohen, N.A.; Reed, D.R. Taste Exam: A Brief and Validated Test. J. Vis. Exp. 2018, 138, 56705. [Google Scholar] [CrossRef]
- Mastinu, M.; Pieniak, M.; Wolf, A.; Green, T.; Hähner, A.; Niv, M.Y.; Hummel, T. A Simple Taste Test for Clinical Assessment of Taste and Oral Somatosensory Function—The “Seven-iTT”. Life 2022, 13, 59. [Google Scholar] [CrossRef]
- Corella, D.; Guillén, M.; Sáiz, C.; Portolés, O.; Sabater, A.; Folch, J.; Ordovas, J.M. Associations of LPL and APOC3 Gene Polymorphisms on Plasma Lipids in a Mediterranean Population: Interaction with Tobacco Smoking and the APOE Locus. J. Lipid Res. 2002, 43, 416–427. [Google Scholar] [CrossRef]
- Corella, D.; Sáiz, C.; Guillén, M.; Portolés, O.; Mulet, F.; González, J.I.; Ordovás, J.M. Association of TaqIB Polymorphism in the Cholesteryl Ester Transfer Protein Gene with Plasma Lipid Levels in a Healthy Spanish Population. Atherosclerosis 2000, 152, 367–376. [Google Scholar] [CrossRef] [PubMed]
- Schröder, H.; Fitó, M.; Estruch, R.; Martínez-González, M.A.; Corella, D.; Salas-Salvadó, J.; Lamuela-Raventós, R.; Ros, E.; Salaverría, I.; Fiol, M.; et al. A Short Screener Is Valid for Assessing Mediterranean Diet Adherence among Older Spanish Men and Women. J. Nutr. 2011, 141, 1140–1145. [Google Scholar] [CrossRef] [PubMed]
- Cardello, A.V.; Maller, O. Relationships Between Food Preferences and Food Acceptance Ratings. J. Food Sci. 1982, 47, 1553–1557. [Google Scholar] [CrossRef]
- Duffy, V.B.; Hayes, J.E.; Sullivan, B.S.; Faghri, P. Surveying Food and Beverage Liking: A Tool for Epidemiological Studies to Connect Chemosensation with Health Outcomes. Ann. N. Y. Acad. Sci. 2009, 1170, 558–568. [Google Scholar] [CrossRef]
- Garland, R. Research Note 3 The Mid-Point on a Rating Scale: Is It Desirable? Mark. Bull. 1991, 2, 66–70. [Google Scholar]
- Bufe, B.; Breslin, P.A.S.; Kuhn, C.; Reed, D.R.; Tharp, C.D.; Slack, J.P.; Kim, U.-K.; Drayna, D.; Meyerhof, W. The Molecular Basis of Individual Differences in Phenylthiocarbamide and Propylthiouracil Bitterness Perception. Curr. Biol. 2005, 15, 322–327. [Google Scholar] [CrossRef]
- Chen, Q.-Y.; Alarcon, S.; Tharp, A.; Ahmed, O.M.; Estrella, N.L.; Greene, T.A.; Rucker, J.; Breslin, P.A. Perceptual Variation in Umami Taste and Polymorphisms in TAS1R Taste Receptor Genes. Am. J. Clin. Nutr. 2009, 90, 770S–779S. [Google Scholar] [CrossRef]
- Duffy, V.B.; Lanier, S.A.; Hutchins, H.L.; Pescatello, L.S.; Johnson, M.K.; Bartoshuk, L.M. Food Preference Questionnaire as a Screening Tool for Assessing Dietary Risk of Cardiovascular Disease within Health Risk Appraisals. J. Am. Diet. Assoc. 2007, 107, 237–245. [Google Scholar] [CrossRef]
- Wanich, U.; Riddell, L.; Cicerale, S.; Mohebbi, M.; Sayompark, D.; Liem, D.G.; Keast, R.S. Association between Food Liking and the Dietary Quality in Australian Young Adults. Asia Pac. J. Clin. Nutr. 2020, 29, 166–174. [Google Scholar] [CrossRef]
- Armitage, R.M.; Iatridi, V.; Yeomans, M.R. Understanding Sweet-Liking Phenotypes and Their Implications for Obesity: Narrative Review and Future Directions. Physiol. Behav. 2021, 235, 113398. [Google Scholar] [CrossRef]
- Deglaire, A.; Méjean, C.; Castetbon, K.; Kesse-Guyot, E.; Hercberg, S.; Schlich, P. Associations between Weight Status and Liking Scores for Sweet, Salt and Fat According to the Gender in Adults (The Nutrinet-Santé Study). Eur. J. Clin. Nutr. 2015, 69, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Lampuré, A.; Schlich, P.; Deglaire, A.; Castetbon, K.; Péneau, S.; Hercberg, S.; Méjean, C. Sociodemographic, Psychological, and Lifestyle Characteristics Are Associated with a Liking for Salty and Sweet Tastes in French Adults. J. Nutr. 2015, 145, 587–594. [Google Scholar] [CrossRef] [PubMed]
- Cavallo, C.; Cicia, G.; Del Giudice, T.; Sacchi, R.; Vecchio, R. Consumers’ Perceptions and Preferences for Bitterness in Vegetable Foods: The Case of Extra-Virgin Olive Oil and Brassicaceae—A Narrative Review. Nutrients 2019, 11, 1164. [Google Scholar] [CrossRef] [PubMed]
- Bae, J.H.; Kang, H. Identification of Sweetness Preference-Related Single-Nucleotide Polymorphisms for Polygenic Risk Scores Associated with Obesity. Nutrients 2024, 16, 2972. [Google Scholar] [CrossRef]
- Hejazi, J.; Amiri, R.; Nozarian, S.; Tavasolian, R.; Rahimlou, M. Genetic Determinants of Food Preferences: A Systematic Review of Observational Studies. BMC Nutr. 2024, 10, 24. [Google Scholar] [CrossRef]
- May-Wilson, S.; Matoba, N.; Wade, K.H.; Hottenga, J.-J.; Concas, M.P.; Mangino, M.; Grzeszkowiak, E.J.; Menni, C.; Gasparini, P.; Timpson, N.J.; et al. Large-Scale GWAS of Food Liking Reveals Genetic Determinants and Genetic Correlations with Distinct Neurophysiological Traits. Nat. Commun. 2022, 13, 2743. [Google Scholar] [CrossRef]
- Cheung, M.M.; Hubert, P.A.; Reed, D.R.; Pouget, E.R.; Jiang, X.; Hwang, L.-D. Understanding the Determinants of Sweet Taste Liking in the African and East Asian Ancestry Groups in the U.S.–A Study Protocol. PLoS ONE 2024, 19, e0300071. [Google Scholar] [CrossRef]
- Behrens, M. The Growing Complexity of Human Bitter Taste Perception. J. Agric. Food Chem. 2024, 72, 14530–14534. [Google Scholar] [CrossRef]
- Behrens, M.; Lang, T. Extra-Oral Taste Receptors—Function, Disease, and Perspectives. Front. Nutr. 2022, 9, 881177. [Google Scholar] [CrossRef]
- Hayes, J.E.; Feeney, E.L.; Allen, A.L. Do Polymorphisms in Chemosensory Genes Matter for Human Ingestive Behavior? Food Qual. Prefer. 2013, 30, 202–216. [Google Scholar] [CrossRef]
- Duffy, V.B.; Bartoshuk, L.M. Food Acceptance and Genetic Variation in Taste. J. Am. Diet. Assoc. 2000, 100, 647–655. [Google Scholar] [CrossRef] [PubMed]
- Jehi, T.; Dos Santos, H.; Kwok-Hinsley, G. Bitter Taste Sensitivity, Food Cravings, and Risk of Chronic Disease: A Cross-Sectional Study. Cureus 2024, 16, e74509. [Google Scholar] [CrossRef] [PubMed]
- Shaji, C.S.; Saraswathy, R. Taste Receptors Influencing Effective Modalities in Human Health—A Cutting Edge Update on TAS1R and TAS2R Receptor Polymorphisms in Taste Perception and Disease Risk. Nutr. Health 2023, 02601060231186865. [Google Scholar] [CrossRef] [PubMed]
- Shanmugamprema, D.; Muthuswamy, K.; Subramaniam, S. Emerging Perspectives: The Interplay of Taste Perception and Oral Microbiota Composition in Dietary Preferences and Obesity. Nutr. Res. Rev. 2024, 1–10. [Google Scholar] [CrossRef]
- Dong, H.; Liu, J.; Zhu, J.; Zhou, Z.; Tizzano, M.; Peng, X.; Zhou, X.; Xu, X.; Zheng, X. Oral Microbiota-Host Interaction Mediated by Taste Receptors. Front. Cell. Infect. Microbiol. 2022, 12, 802504. [Google Scholar] [CrossRef]
Total | Men | Women | p 1 | |
---|---|---|---|---|
(n = 879) | (n = 264) | (n = 615) | ||
Age (years) | 20.46 ± 0.16 | 21.31 ± 0.36 | 20.10 ± 0.16 | <0.001 |
Weight (kg) | 62.06 ± 0.38 | 73.37 ± 0.56 | 57.21 ± 0.34 | <0.001 |
Height (m) | 1.69 ± 0.00 | 1.78 ± 0.00 | 1.65 ± 0.00 | <0.001 |
Body mass index (kg/m2) | 21.67 ± 0.10 | 23.05 ± 0.16 | 21.07 ± 0.11 | <0.001 |
Systolic blood pressure (mm Hg) | 110.62 ± 0.39 | 119.92 ± 0.67 | 106.64 ± 0.39 | <0.001 |
Diastolic blood pressure (mm Hg) | 65.67 ± 0.27 | 67.01 ± 0.52 | 65.09 ± 0.31 | 0.002 |
Heart rate (beats/min) | 74.40 ± 0.38 | 71.11 ± 0.71 | 75.79 ± 0.44 | <0.001 |
Sleep duration (hours) | 6.53 ± 0.03 | 6.53 ± 0.05 | 6.53 ± 0.03 | 0.948 |
MedDiet adherence 2 | 8.54 ± 0.07 | 8.51 ± 0.12 | 8.55 ± 0.08 | 0.746 |
Age groups | <0.001 | |||
18 to 19 years | 76.0% | 67.4% | 79.7% | |
20 to 29 years | 19.7% | 25.4% | 17.2% | |
≥30 years | 4.3% | 7.2% | 3.1% | |
Body mass index (BMI) (kg/m2) | <0.001 | |||
BMI < 25 | 89.4% | 78.8% | 94.0% | |
BMI 25–29.9 | 9.4% | 20.1% | 4.9% | |
BMI ≥ 30 | 1.1% | 1.1% | 1.1% | |
Current smoker | 6.3% | 9.1% | 5.1% | 0.023 |
Former smoker | 3.7% | 3.8% | 3.6% | 0.887 |
Alcohol consumption (non-drinker) | 14.4% | 11.4% | 15.8% | 0.088 |
Walk more than 20 min/day | 88.5% | 92.0% | 87.1% | 0.037 |
Practice physical exercise | 70.5% | 78.8% | 67.0% | <0.001 |
Geographical origin | 0.940 | |||
Spain (Valencia) | 79.7% | 79.5% | 79.8% | |
Spain (other regions) | 15.7% | 15.5% | 15.8% | |
International | 4.6% | 4.9% | 4.4% |
Food Items | 1 Point 1 | Total | Men | Women | p 2 |
---|---|---|---|---|---|
1. Do you use olive oil as your main culinary fat? | Yes | 95.1% | 93.2% | 95.9% | 0.081 |
2. How much olive oil (tablespoons) do you consume in a given day? | ≥4 | 68.9% | 76.8% | 65.5% | <0.001 |
3. How many vegetable servings do you consume per day? | ≥2 | 65.9% | 58.6% | 69.1% | 0.003 |
4. How many fruit units (including natural fruit juices) do you consume per day? | ≥3 | 51.5% | 54.0% | 50.5% | 0.341 |
5. How many servings of red meat, hamburger, or meat products do you consume per week? | <1 | 68.3% | 54.8% | 74.1% | <0.001 |
6. How many servings of butter, margarine, or cream do you consume per week? | <1 | 82.1% | 83.3% | 81.6% | 0.554 |
7. How many sweet/carbonated beverages do you drink per week? | <1 | 75.1% | 71.5% | 76.7% | 0.101 |
8. How much wine (glasses) do you drink per week? | ≥7 | 1.9% | 2.3% | 1.8% | 0.630 |
9. How many servings of legumes do you consume per week? | ≥3 | 38.4% | 43.3% | 36.3% | 0.050 |
10. How many servings of fish or shellfish do you consume per week? | ≥3 | 45.5% | 43.0% | 46.6% | 0.325 |
11. How many times per week do you consume commercial sweets or pastries, such as cakes, cookies, biscuits, or custard? | <3 | 56.4% | 58.6% | 55.5% | 0.409 |
12. How many servings of nuts do you consume per week? | ≥3 | 46.8% | 54.0% | 43.6% | 0.005 |
13. Do you preferentially consume chicken, turkey, or rabbit meat instead of veal, pork, hamburger, or sausage? | Yes | 76.9% | 73.0% | 78.5% | 0.077 |
14. How many times per week do you consume vegetables, pasta, rice, or other dishes seasoned with sofrito? | ≥2 | 81.0% | 84.4% | 79.5% | 0.088 |
Total score (high adherence) in points | ≥9 | 51.1% | 51.8% | 49.4% | 0.521 |
Adh MedDiet | |||
---|---|---|---|
Food Preferences | rho 1 | 95% Confidence Interval | p 2 |
Whole milk | −0.073 | (−0.141, −0.005) | 0.030 |
Skimmed milk | 0.025 | (−0.043, 0.093) | 0.462 |
Whole yogurt | −0.023 | (−0.091, 0.045) | 0.495 |
Skimmed yogurt | 0.042 | (−0.027, 0.110) | 0.220 |
Eggs | 0.028 | (−0.041, 0.096) | 0.417 |
Red meats | −0.164 | (−0.229, −0.097) | <0.0001 |
Poultry | 0.003 | (−0.066, 0.071) | 0.940 |
Ham, sausages | −0.105 | (−0.172, −0.037) | 0.002 |
White fish | 0.203 | (0.137, 0.267) | <0.0001 |
Blue fish | 0.211 | (0.145, 0.275) | <0.0001 |
Seafood | 0.027 | (−0.041, 0.095) | 0.424 |
Cured cheese | 0.068 | (0.001, 0.135) | 0.046 |
Fresh cheese | 0.087 | (0.019, 0.154) | 0.010 |
Bread | 0.021 | (−0.047, 0.089) | 0.529 |
Pasta | −0.102 | (−0.169, −0.034) | 0.003 |
Legumes | 0.211 | (0.144, 0.275) | <0.0001 |
French beans | 0.244 | (0.179, 0.307) | <0.0001 |
Broccoli, cauliflower | 0.244 | (0.179, 0.307) | <0.0001 |
Artichokes, spinach | 0.220 | (0.154, 0.284) | <0.0001 |
Oranges, mandarins | 0.218 | (0.152, 0.282) | <0.0001 |
Lemon | 0.109 | (0.041, 0.176) | 0.001 |
Other fruits | 0.170 | (0.102, 0.235) | <0.0001 |
Nuts | 0.122 | (0.054, 0.189) | <0.001 |
Pastries | −0.133 | (−0.199, −0.065) | <0.0001 |
Chocolate | −0.071 | (−0.139, −0.003) | 0.035 |
Sugar | −0.144 | (−0.210, −0.076) | <0.0001 |
Breakfast cereals | 0.003 | (−0.065, 0.071) | 0.933 |
Olive oil | 0.134 | (0.066, 0.200) | <0.0001 |
Sunflower oil | −0.142 | (−0.209, −0.075) | <0.0001 |
Other oils | −0.056 | (−0.124, 0.012) | 0.098 |
Butter | −0.112 | (−0.179, −0.045) | 0.001 |
Margarine | −0.112 | (−0.179, −0.044) | 0.001 |
Food Scores | Adherence to Mediterranean Diet | p 1 | p 2 | p 3 | ||
---|---|---|---|---|---|---|
Low (1–7) | Medium (8–9) | High (10–14) | ||||
Positive score | 11.22 ± 0.17 | 12.48 ± 0.14 | 13.52 ± 0.15 | 1.223 × 10−23 | 4.965 × 10−24 | 1.373 × 10−23 |
Negative score | 6.21 ± 0.12 | 5.77 ± 0.09 | 5.27 ± 0.11 | 2.954 × 10−09 | 1.871 × 10−08 | 1.986 × 10−08 |
Total score | 14.01 ± 0.22 | 15.71 ± 0.16 | 17.26 ± 0.19 | 1.545 × 10−29 | 1.781 × 10−29 | 4.556 × 10−29 |
Item on MedDiet Scale | Food Preference | OR | 95% (CI) | p 1 |
---|---|---|---|---|
2. Olive oil servings | Olive oil | 1.58 | (1.25–1.49) | 1.0 × 10−4 |
3. Vegetable intake | Broccoli | 1.79 | (1.54–2.07) | 9.0 × 10−15 |
4. Fruit units | Oranges | 2.93 | (2.33–3.68) | 4.0 × 10−20 |
5. Read meat servings | Read meat | 0.71 | (0.60–0.85) | 1.0 × 10−4 |
6. Butter | Butter | 1.15 | (0.96–1.39) | 0.122 |
9. Legumes | Legumes | 2.51 | (2.08–3.01) | 5.0 × 10−22 |
10. Fish | White fish | 2.03 | (1.72–0.69) | 1.0 × 10−16 |
11. Pastries | Pastries | 0.58 | (0.47–0.69) | 2.0 × 10−8 |
12. Nuts | Nuts | 2.57 | (2.09–3.15) | 2.0 × 10−19 |
Taste Preference Level | |||||||
---|---|---|---|---|---|---|---|
Taste Modalities | 0 | 1 | 2 | 3 | p 1 | p 2 | p 3 |
Bitter | 8.35 ± 0.10 | 8.48 ± 0.11 | 8.93 ± 0.15 | 8.91 ± 0.36 | 0.027 | <0.001 | 0.004 |
Sweet | 9.50 ± 0.96 | 9.05 ± 0.27 | 8.76 ± 0.13 | 8.37 ± 0.08 | 0.078 | <0.001 | <0.001 |
Salty | 8.57 ± 0.62 | 8.68 ± 0.25 | 8.45 ± 0.11 | 8.56 ± 0.09 | 0.877 | 0.942 | 0.949 |
Sour | 8.45 ± 0.09 | 8.47 ± 0.11 | 8.81 ± 0.18 | 8.90 ± 0.35 | 0.089 | 0.031 | 0.027 |
Taste Modalities (Concentration V) | Adherence to the MedDiet | p1 | p2 | p3 |
---|---|---|---|---|
β ± SE | ||||
Bitter (PROP) | −0.076 ± 0.038 | 0.044 | 0.046 | 0.049 |
Sweet (sucrose) | 0.044 ± 0.049 | 0.366 | 0.264 | 0.303 |
Salty (NaCl) | −0.076 ± 0.052 | 0.143 | 0.196 | 0.132 |
Sour (citric acid) | 0.001 ± 0.049 | 0.986 | 0.867 | 0.859 |
Umami (glutamate) | 0.002 ± 0.044 | 0.962 | 0.986 | 0.970 |
Total taste score | −0.014 ± 0.015 | 0.338 | 0.432 | 0.347 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sorlí, J.V.; de la Cámara, E.; González, J.I.; Portolés, O.; Giménez-Alba, I.M.; Fernández-Carrión, R.; Coltell, O.; González-Monje, I.; Saiz, C.; Pascual, E.C.; et al. From Liking to Following: The Role of Food Preferences, Taste Perception, and Lifestyle Factors in Adherence to the Mediterranean Diet Among Young Individuals. Nutrients 2025, 17, 600. https://doi.org/10.3390/nu17030600
Sorlí JV, de la Cámara E, González JI, Portolés O, Giménez-Alba IM, Fernández-Carrión R, Coltell O, González-Monje I, Saiz C, Pascual EC, et al. From Liking to Following: The Role of Food Preferences, Taste Perception, and Lifestyle Factors in Adherence to the Mediterranean Diet Among Young Individuals. Nutrients. 2025; 17(3):600. https://doi.org/10.3390/nu17030600
Chicago/Turabian StyleSorlí, José V., Edurne de la Cámara, José I. González, Olga Portolés, Ignacio M. Giménez-Alba, Rebeca Fernández-Carrión, Oscar Coltell, Inmaculada González-Monje, Carmen Saiz, Eva C. Pascual, and et al. 2025. "From Liking to Following: The Role of Food Preferences, Taste Perception, and Lifestyle Factors in Adherence to the Mediterranean Diet Among Young Individuals" Nutrients 17, no. 3: 600. https://doi.org/10.3390/nu17030600
APA StyleSorlí, J. V., de la Cámara, E., González, J. I., Portolés, O., Giménez-Alba, I. M., Fernández-Carrión, R., Coltell, O., González-Monje, I., Saiz, C., Pascual, E. C., Villamil, L. V., Corella, D., Asensio, E. M., & Ortega-Azorín, C. (2025). From Liking to Following: The Role of Food Preferences, Taste Perception, and Lifestyle Factors in Adherence to the Mediterranean Diet Among Young Individuals. Nutrients, 17(3), 600. https://doi.org/10.3390/nu17030600