Fructose Intake and Unhealthy Eating Habits Are Associated with MASLD in Pediatric Obesity: A Cross-Sectional Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Measurements
2.2. Biochemical Assessment
2.3. Hepatic Steatosis, HRI, and Definition of MASLD
2.4. Basal Metabolism, Dietary Habits, and Fructose Intake
2.5. Statistical Analysis
3. Results
3.1. MASLD and Clinical and Biochemical Characteristics
3.2. MASLD and Fructose Intake
3.3. MASLD and Dietary Habits
3.4. Correlation Analysis Among Clinical Parameters, Fructose Intake, and Dietary Habits
4. Discussion
4.1. MASLD Prevalence Between Groups
4.2. MASLD and Metabolic and Biochemical Parameters
4.3. MASLD and Fructose Intake
4.4. MASLD, Metabolic Profile, and Other Unhealthy Dietary Habits
4.5. Limitations
4.6. Perspectives
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
HFCS | High-fructose corn syrup |
SSB | Sugar-sweetened beverages |
Mets | Metabolic syndrome |
CVD | Cardiovascular disease |
T2D | Type 2 diabetes |
MAFLD | Metabolic (dysfunction)-associated fatty liver disease |
CKD | Chronic kidney disease |
MASLD | Metabolic dysfunction-associated steatotic liver disease |
NAFLD | Non-alcoholic fatty liver disease |
BMI | Body mass index |
SDS | Standard deviation score |
SBP | Systolic blood pressure |
DBP | Diastolic blood pressure |
WhR | Waist-to-height ratio |
HbA1c | Glycated hemoglobin A1c |
TC | Total cholesterol |
HDL | High-density lipoprotein cholesterol |
LDL | Low-density lipoprotein cholesterol |
TG | Triglycerides |
AST | Aspartate aminotransferase |
ALT | Alanine aminotransferase |
GGT | Gamma-glutamyl transferase |
IL1-β | Interleukin 1-β |
IL6 | Interleukin 6 |
OGTT | Oral glucose tolerance test |
HOMA | Homeostasis model assessment |
US | Liver ultrasound |
HRI | Hepatorenal index |
ROIs | Regions of interest |
SFAs | Saturated fatty acids |
References
- Pereira, R.M.; Botezelli, J.D.; da Cruz Rodrigues, K.C.; Mekary, R.A.; Cintra, D.E.; Pauli, J.R.; da Silva, A.S.R.; Ropelle, E.R.; de Moura, L.P. Fructose Consumption in the Development of Obesity and the Effects of Different Protocols of Physical Exercise on the Hepatic Metabolism. Nutrients 2017, 9, 405. [Google Scholar] [CrossRef] [PubMed]
- Herman, M.A.; Birnbaum, M.J. Molecular aspects of fructose metabolism and metabolic disease. Cell Metab. 2021, 33, 2329–2354. [Google Scholar] [CrossRef]
- Hall, K.D.; Ayuketah, A.; Brychta, R.; Cai, H.; Cassimatis, T.; Chen, K.Y.; Chung, S.T.; Costa, E.; Courville, A.; Darcey, V.; et al. Ultra-Processed Diets Cause Excess Calorie Intake and Weight Gain: An Inpatient Randomized Controlled Trial of Ad Libitum Food Intake. Cell Metab. 2020, 32, 690. [Google Scholar] [CrossRef] [PubMed]
- Johnson, R.J.; Segal, M.S.; Sautin, Y.; Nakagawa, T.; Feig, D.I.; Kang, D.; Gersch, M.S.; Benner, S.; Saánchez-Lozada, L.G. Potential role of sugar (fructose) in the epidemic of hypertension, obesity and the metabolic syndrome, diabetes, kidney disease, and cardiovascular disease. Am. J. Clin. Nutr. 2007, 86, 899–906. [Google Scholar] [CrossRef] [PubMed]
- Stanhope, K.L. Sugar consumption, metabolic disease and obesity: The state of the controversy. Crit. Rev. Clin. Lab. Sci. 2016, 53, 52–67. [Google Scholar] [CrossRef]
- Santos, H.O.; Penha-Silva, N. Revisiting the concepts of de novo lipogenesis to understand the conversion of carbohydrates into fats: Stop overvaluing and extrapolating the renowned phrase “fat burns in the flame of carbohydrate”. Nutrition 2025, 130, 112617. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.M.; Jiao, R.Q.; Kong, L.D. High Dietary Fructose: Direct or Indirect Dangerous Factors Disturbing Tissue and Organ Functions. Nutrients 2017, 9, 335. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; El-Shabrawi, M.; Baur, L.A.; Byrne, C.D.; Targher, G.; Kehar, M.; Porta, G.; Lee, W.S.; Lefere, S.; Turan, S.; et al. An international multidisciplinary consensus on pediatric metabolic dysfunction-associated fatty liver disease. Med 2024, 5, 797–815. [Google Scholar] [CrossRef] [PubMed]
- Azevedo-Martins, A.K.; Santos, M.P.; Abayomi, J.; Ferreira, N.J.R.; Evangelista, F.S. The Impact of Excessive Fructose Intake on Adipose Tissue and the Development of Childhood Obesity. Nutrients 2024, 16, 939. [Google Scholar] [CrossRef] [PubMed]
- Ward, E.; Yang, N.; Muhlhausler, B.S.; Leghi, G.E.; Netting, M.J.; Elmes, M.J.; Langley-Evans, S.C. Acute changes to breast milk composition following consumption of high-fat and high-sugar meals. Matern. Child. Nutr. 2021, 17, 13168. [Google Scholar] [CrossRef]
- Faienza, M.F.; Farella, I.; Khalil, M.; Portincasa, P. Converging Pathways between Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) and Diabetes in Children. Int. J. Mol. Sci. 2024, 25, 9924. [Google Scholar] [CrossRef] [PubMed]
- Faienza, M.F.; Cognetti, E.; Farella, I.; Antonioli, A.; Tini, S.; Antoniotti, V.; Prodam, F. Dietary fructose: From uric acid to a metabolic switch in pediatric metabolic dysfunction-associated steatotic liver disease. Crit. Rev. Food Sci. Nutr. 2024, 19, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Vargas-Vargas, M.A.; González-Montoya, M.; Torres-Isidro, O.; García-Berumen, C.I.; Ortiz-Avila, O.; Calderón-Cortés, E.; Cortés-Rojo, C. Assessing the impact of concurrent high-fructose and high-saturated fat diets on pediatric metabolic syndrome: A review. World J. Clin. Pediatr. 2024, 13, 91478. [Google Scholar] [CrossRef] [PubMed]
- de Onis, M.; Onyango, A.W.; Borghi, E.; Siyam, A.; Nishida, C.; Siekmann, J. Development of a WHO growth reference for school-aged children and adolescents. Bull. World Health Organ. 2007, 85, 660–667. [Google Scholar] [CrossRef]
- Cacciari, E.; Milani, S.; Balsamo, A.; Dammacco, F.; De Luca, F.; Chiarelli, F.; Pasquino, A.M.; Tonini, G.; Vanelli, M. Italian cross-sectional growth charts for height, weight and BMI (6–20 y). Eur. J. Clin. Nutr. 2002, 56, 171–180. [Google Scholar] [CrossRef]
- Tanner, J.M.; Whitehouse, R.H. Clinical longitudinal standards for height, weight, height velocity, weight velocity, and stages of puberty. Arch. Dis. Child. 1976, 51, 170–179. [Google Scholar] [CrossRef] [PubMed]
- National High Blood Pressure Education Program Working Group on Hypertension Control in Children and Adolescents. Update on the 1987 Task Force Report on High Blood Pressure in Children and Adolescents: A working group report from the National High Blood Pressure Education Program. Pediatrics 1996, 98, 649–658. [Google Scholar] [CrossRef]
- Cutfield, W.S.; Jefferies, C.A.; Jackson, W.E.; Robinson, E.M.; Hofman, P.L. Evaluation of HOMA and QUICKI as measures of insulin sensitivity in prepubertal children. Pediatr. Diabetes 2003, 4, 119–125. [Google Scholar] [CrossRef] [PubMed]
- Palmentieri, B.; de Sio, I.; La Mura, V.; Masarone, M.; Vecchione, R.; Bruno, S.; Torella, R.; Persico, M. The role of bright liver echo pattern on ultrasound B-mode examination in the diagnosis of liver steatosis. Dig. Liver Dis. 2006, 38, 485–489. [Google Scholar] [CrossRef]
- Osawa, H.; Mori, Y. Sonographic diagnosis of fatty liver using a histogram technique that compares liver and renal cortical echo amplitudes. J. Clin. Ultrasound. 1996, 24, 25–29. [Google Scholar] [CrossRef]
- Saadeh, S.; Younossi, Z.M.; Remer, E.M.; Gramlich, T.; Ong, J.P.; Hurley, M.; Mullen, K.D.; Cooper, J.N.; Sheridan, M.J. The utility of radiological imaging in nonalcoholic fatty liver disease. Gastroenterology 2002, 123, 745–750. [Google Scholar] [CrossRef] [PubMed]
- Johnson, S.I.; Fort, D.; Shortt, K.J.; Therapondos, G.; Galliano, G.E.; Nguyen, T.; Bluth, E.I. Ultrasound Stratification of Hepatic Steatosis Using Hepatorenal Index. Diagnostics 2021, 11, 1443. [Google Scholar] [CrossRef] [PubMed]
- Marshall, R.H.; Eissa, M.; Bluth, E.I.; Gulotta, P.M.; Davis, N.K. Hepatorenal index as an accurate, simple, and effective tool in screening for steatosis. AJR Am. J. Roentgenol. 2012, 199, 997–1002. [Google Scholar] [CrossRef] [PubMed]
- Rinella, M.E.; Lazarus, J.V.; Ratziu, V.; Francque, S.M.; Sanyal, A.J.; Kanwal, F.; Romero, D.; Abdelmalek, M.F.; Anstee, Q.M.; Arab, J.P.; et al. A multi-society Delphi consensus statement on new fatty liver disease nomenclature. Ann. Hepatol. 2024, 29, 101133. [Google Scholar] [CrossRef]
- Schofield, W.N. Predicting basal metabolic rate; new standards and review of previous work. Hum. Nutr. Clin. Nutr. 1985, 39, 5–41. [Google Scholar]
- Lanfer, A.; Hebestreit, A.; Ahrens, W.; Krogh, V.; Sieri, S.; Lissner, L.; Eiben, G.; Siani, A.; Huybrechts, I.; Loit, H.M.; et al. IDEFICS Consortium. Reproducibility of food consumption frequencies derived from the Children’s Eating Habits Questionnaire used in the IDEFICS study. Int. J. Obes. 2011, 35 (Suppl. S1), S61–S68. [Google Scholar] [CrossRef] [PubMed]
- Eslam, M.; Alkhouri, N.; Vajro, P.; Baumann, U.; Weiss, R.; Socha, P.; Marcus, C.; Lee, W.S.; Kelly, D.; Porta, G.; et al. Defining paediatric metabolic (dysfunction)-associated fatty liver disease: An international expert consensus statement. Lancet Gastroenterol. Hepatol. 2021, 6, 864–873. [Google Scholar] [CrossRef]
- DiStefano, J.K.; Shaibi, G.Q. The relationship between excessive dietary fructose consumption and paediatric fatty liver disease. Pediatr. Obes. 2021, 16, 12759. [Google Scholar] [CrossRef]
- Anderson, E.L.; Howe, L.D.; Jones, H.E.; Higgins, J.P.; Lawlor, D.A.; Fraser, A. The Prevalence of Non-Alcoholic Fatty Liver Disease in Children and Adolescents: A Systematic Review and Meta-Analysis. PLoS ONE 2015, 10, 0140908. [Google Scholar] [CrossRef]
- Hamza, R.T.; Ahmed, A.Y.; Rezk, D.G.; Hamed, A.I. Dietary fructose intake in obese children and adolescents: Relation to procollagen type III N-terminal peptide (P3NP) and non-alcoholic fatty liver disease. J. Pediatr. Endocrinol. Metab. 2016, 29, 1345–1352. [Google Scholar] [CrossRef]
- Mosca, A.; Nobili, V.; De Vito, R.; Crudele, A.; Scorletti, E.; Villani, A.; Alisi, A.; Byrne, C.D. Serum uric acid concentrations and fructose consumption are independently associated with NASH in children and adolescents. J. Hepatol. 2017, 66, 1031–1036. [Google Scholar] [CrossRef] [PubMed]
- Bonsembiante, L.; Targher, G.; Maffeis, C. Non-alcoholic fatty liver disease in obese children and adolescents: A role for nutrition? Eur. J. Clin. Nutr. 2022, 76, 28–39. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.J.; Choi, M.; Ahn, S.B.; Yoo, J.J.; Kang, S.H.; Cho, Y.; Song, D.S.; Koh, H.; Jun, D.W.; Lee, H.W. Prevalence of nonalcoholic fatty liver disease in pediatrics and adolescents: A systematic review and meta-analysis. World J. Pediatr. 2024, 20, 569–580. [Google Scholar] [CrossRef] [PubMed]
- Alberti, G.; Gana, J.C.; Santos, J.L. Fructose; Omega 3 Fatty Acids; and Vitamin E: Involvement in Pediatric Non-Alcoholic Fatty Liver Disease. Nutrients 2020, 12, 3531. [Google Scholar] [CrossRef] [PubMed]
- Jin, B.; Wu, Z.; Wang, S.; Yu, Z.; Ullah, R.; Liang, X.; Wu, W.; Huang, K.; Ni, Y.; Wang, J.; et al. Gender differences in non-alcoholic fatty liver disease in obese children and adolescents: A large cross-sectional study. Hepatol. Int. 2024, 18, 179–187. [Google Scholar] [CrossRef] [PubMed]
- Riekki, H.; Aitokari, L.; Kivelä, L.; Lahti, S.; Hiltunen, P.; Vuorela, N.; Huhtala, H.; Lakka, T.A.; Kurppa, K. Prevalence and associated factors of metabolic-associated fatty liver disease in overweight Finnish children and adolescents. Front. Endocrinol. 2023, 14, 1090344. [Google Scholar] [CrossRef]
- Miniello, V.L.; Faienza, M.F.; Scicchitano, P.; Cortese, F.; Gesualdo, M.; Zito, A.; Basile, M.; Recchia, P.; Leogrande, D.; Viola, D.; et al. Insulin resistance and endothelial function in children and adolescents. Int. J. Cardiol. 2014, 174, 343–347. [Google Scholar] [CrossRef] [PubMed]
- Hartman, C.; Rennert, H.S.; Rennert, G.; Elenberg, Y.; Zuckerman, E. Prevalence of elevated liver enzymes and comorbidities in children and adolescents with overweight and obesity. Acta Paediatr. 2021, 110, 985–992. [Google Scholar] [CrossRef] [PubMed]
- Valle-Martos, R.; Valle, M.; Martos, R.; Cañete, R.; Jiménez-Reina, L.; Cañete, M.D. Liver Enzymes Correlate With Metabolic Syndrome, Inflammation, and Endothelial Dysfunction in Prepubertal Children With Obesity. Front. Pediatr. 2021, 9, 629346. [Google Scholar] [CrossRef]
- Wang, J.; Qu, H.Q.; Huang, K.; Wu, W.; Wang, C.; Liang, L.; Gong, C.; Xiong, F.; Luo, F.; Liu, G.; et al. High prevalence of elevated serum liver enzymes in Chinese children suggests metabolic syndrome as a common risk factor. J. Paediatr. Child. Health. 2020, 56, 1590–1596. [Google Scholar] [CrossRef] [PubMed]
- Ullah, A.; Singla, R.K.; Batool, Z.; Cao, D.; Shen, B. Pro- and anti-inflammatory cytokines are the game-changers in childhood obesity-associated metabolic disorders (diabetes and non-alcoholic fatty liver diseases). Rev. Endocr. Metab. Disord. 2024, 25, 783–803. [Google Scholar] [CrossRef] [PubMed]
- Rafaqat, S.; Gluscevic, S.; Mercantepe, F.; Rafaqat, S.; Klisic, A. Interleukins: Pathogenesis in Non-Alcoholic Fatty Liver Disease. Metabolites 2024, 14, 153. [Google Scholar] [CrossRef] [PubMed]
- Hadinia, A.; Doustimotlagh, A.H.; Goodarzi, H.R.; Arya, A.; Jafarinia, M. Circulating Levels of Pro-inflammatory Cytokines in Patients with Nonalcoholic Fatty Liver Disease and Non-Alcoholic Steatohepatitis. Iran. J. Immunol. 2019, 16, 327–333. [Google Scholar]
- Ilyas, T. The role of dietary patterns in the prevention and management of obesity. Turk. J. Med. Sci. 2003, 33, 611–617. [Google Scholar]
- Hampl, S.E.; Hassink, S.G.; Skinner, A.C.; Armstrong, S.C.; Barlow, S.E.; Bolling, C.F.; Avila Edwards, K.C.; Eneli, I.; Hamre, R.; Joseph, M.M.; et al. Clinical Practice Guideline for the Evaluation and Treatment of Children and Adolescents With Obesity. Pediatrics 2023, 151, 2022060640. [Google Scholar] [CrossRef] [PubMed]
- Valerio, G.; Maffeis, C.; Saggese, G.; Ambruzzi, M.A.; Balsamo, A.; Bellone, S.; Bergamini, M.; Bernasconi, S.; Bona, G.; Calcaterra, V.; et al. Diagnosis; treatment and prevention of pediatric obesity: Consensus position statement of the Italian Society for Pediatric Endocrinology and Diabetology and the Italian Society of Pediatrics. Ital. J. Pediatr. 2018, 44, 88. [Google Scholar] [CrossRef] [PubMed]
- Rosqvist, F.; Kullberg, J.; Ståhlman, M.; Cedernaes, J.; Heurling, K.; Johansson, H.E.; Iggman, D.; Wilking, H.; Larsson, A.; Eriksson, O.; et al. Overeating Saturated Fat Promotes Fatty Liver and Ceramides Compared With Polyunsaturated Fat: A Randomized Trial. J. Clin. Endocrinol. Metab. 2019, 104, 6207–6219. [Google Scholar] [CrossRef]
- Zeng, X.F.; Varady, K.A.; Wang, X.D.; Targher, G.; Byrne, C.D.; Tayyem, R.; Latella, G.; Bergheim, I.; Valenzuela, R.; George, J.; et al. The role of dietary modification in the prevention and management of metabolic dysfunction-associated fatty liver disease: An international multidisciplinary expert consensus. Metabolism 2024, 161, 156028. [Google Scholar] [CrossRef]
- Bray, G.A.; Nielsen, S.J.; Popkin, B.M. Consumption of high-fructose corn syrup in beverages may play a role in the epidemic of obesity. Am. J. Clin. Nutr. 2004, 79, 537–543. [Google Scholar] [CrossRef] [PubMed]
- Stricker, S.; Rudloff, S.; Geier, A.; Steveling, A.; Roeb, E.; Zimmer, K.P. Fructose Consumption-Free Sugars and Their Health Effects. Dtsch. Arztebl. Int. 2021, 118, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Schreuder, A.; Börnhorst, C.; Wolters, M.; Veidebaum, T.; Tornaritis, M.; Sina, E.; Russo, P.; Moreno, L.A.; Molnar, D.; Lissner, L.; et al. Population trajectories and age-dependent associations of obesity risk factors with body mass index from childhood to adolescence across European regions: A two-cohort study. Pediatr. Obes. 2024, 19, 13088. [Google Scholar] [CrossRef] [PubMed]
- Alami, F.; Alizadeh, M.; Shateri, K. The effect of a fruit-rich diet on liver biomarkers; insulin resistance; and lipid profile in patients with non-alcoholic fatty liver disease: A randomized clinical trial. Scand. J. Gastroenterol. 2022, 57, 1238–1249. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Carbohydrate Intake for Adults and Children: WHO Guideline [Internet]. 2023. Available online: https://www.who.int/publications/i/item/9789240073593 (accessed on 16 October 2024).
- Archero, F.; Ricotti, R.; Solito, A.; Carrera, D.; Civello, F.; Di Bella, R.; Bellone, S.; Prodam, F. Adherence to the Mediterranean Diet among School Children and Adolescents Living in Northern Italy and Unhealthy Food Behaviors Associated to Overweight. Nutrients 2018, 10, 1322. [Google Scholar] [CrossRef] [PubMed]
- Bonaccorsi, G.; Furlan, F.; Scocuzza, M.; Lorini, C. Adherence to Mediterranean Diet among Students from Primary and Middle School in the Province of Taranto; 2016–2018. Int. J. Environ. Res. Public Health 2020, 17, 5437. [Google Scholar] [CrossRef]
- De Santi, M.; Callari, F.; Brandi, G.; Toscano, R.V.; Scarlata, L.; Amagliani, G.; Schiavano, G.F. Mediterranean diet adherence and weight status among Sicilian Middle school adolescents. Int. J. Food Sci. Nutr. 2020, 71, 1010–1018. [Google Scholar] [CrossRef]
- Grassi, T.; Bagordo, F.; Panico, A.; De Giorgi, M.; Idolo, A.; Serio, F.; Tumolo, M.R.; De Donno, A. Adherence to Mediterranean diet of children living in small Southern Italian villages. Int. J. Food Sci. Nutr. 2020, 71, 490–499. [Google Scholar] [CrossRef] [PubMed]
- Ruggiero, E.; Esposito, S.; Costanzo, S.; Di Castelnuovo, A.; Cerletti, C.; Donati, M.B.; de Gaetano, G.; Iacoviello, L.; Bonaccio, M.; INHES Study Investigators. Ultra-processed food consumption and its correlates among Italian children; adolescents and adults from the Italian Nutrition & Health Survey (INHES) cohort study. Public Health Nutr. 2021, 24, 6258–6271. [Google Scholar]
- Daly, A.N.; O’Sullivan, E.J.; Kearney, J.M. Considerations for health and food choice in adolescents. Proc. Nutr. Soc. 2022, 81, 75–86. [Google Scholar] [CrossRef] [PubMed]
- American Academy of Pediatrics. Pediatric Clinical Practice Guidelines & Policies, 21st ed.; American Academy of Pediatrics: Itasca, IL, USA, 2021. [Google Scholar]
- World Health Organization. Saturated Fatty Acid and Trans-Fatty Acid Intake for Adults and Children: WHO Guideline. 2018. Available online: https://www.who.int/publications/i/item/9789240073630 (accessed on 18 October 2024).
- World Health Organization. Total Fat Intake for the Prevention of Unhealthy Weight Gain in Adults and Children: WHO Guideline. 2023. Available online: https://www.who.int/publications/i/item/9789240073654 (accessed on 21 October 2024).
- Mihas, C.; Mariolis, A.; Manios, Y.; Naska, A.; Arapaki, A.; Mariolis-Sapsakos, T.; Tountas, Y. Evaluation of a nutrition intervention in adolescents of an urban area in Greece: Short- and long-term effects of the VYRONAS study. Public Health Nutr. 2010, 13, 712–719. [Google Scholar] [CrossRef]
- Van Horn, L.; Obarzanek, E.; Barton, B.A.; Stevens, V.J.; Kwiterovich, P.O., Jr.; Lasser, N.L.; Robson, A.M.; Franklin, F.A., Jr.; Lauer, R.M.; Kimm, S.Y.; et al. A summary of results of the Dietary Intervention Study in Children (DISC): Lessons learned. Prog. Cardiovasc. Nurs. 2003, 18, 28–41. [Google Scholar] [PubMed]
- Jakobsen, D.D.; Brader, L.; Bruun, J.M. Association between Food; Beverages and Overweight/Obesity in Children and Adolescents-A Systematic Review and Meta-Analysis of Observational Studies. Nutrients 2023, 15, 764. [Google Scholar] [CrossRef]
- Grosso, G.; Micek, A.; Godos, J.; Pajak, A.; Sciacca, S.; Galvano, F.; Boffetta, P. Health risk factors associated with meat; fruit and vegetable consumption in cohort studies: A comprehensive meta-analysis. PLoS ONE 2017, 12, 0183787. [Google Scholar] [CrossRef] [PubMed]
- Semnani-Azad, Z.; Khan, T.A.; Blanco Mejia, S.; de Souza, R.J.; Leiter, L.A.; Kendall, C.W.C.; Hanley, A.J.; Sievenpiper, J.L. Association of Major Food Sources of Fructose-Containing Sugars With Incident Metabolic Syndrome: A Systematic Review and Meta-analysis. JAMA Netw. Open 2020, 3, 209993. [Google Scholar] [CrossRef] [PubMed]
- Rupérez, A.I.; Mesana, M.I.; Moreno, L.A. Dietary sugars; metabolic effects and child health. Curr. Opin. Clin. Nutr. Metab. Care 2019, 22, 206–216. [Google Scholar] [CrossRef] [PubMed]
- Keles, U.; Ow, J.R.; Kuentzel, K.B.; Zhao, L.N.; Kaldis, P. Liver-derived metabolites as signaling molecules in fatty liver disease. Cell Mol. Life Sci. 2022, 80, 4. [Google Scholar] [CrossRef]
Variables | Pre-School 3–6 yrs | Adolescents 12–16 yrs | Total Population |
---|---|---|---|
Gender (M/F) | M: 2 F: 19 | M: 10 F: 10 | M: 12 F: 29 |
Age (yrs) | 5.6 ± 1.4 | 13.4 ± 1.6 *** | 9.0 ± 4.0 |
Weight (Kg) | 38.8 ± 10.5 | 85.7 ± 16.2 *** | 61.7 ± 27.3 |
Height SDS | 0.7 ± 1.0 | 0.7 ± 1.0 | 0.7 ± 1.0 |
BMI (kg/m2) | 25.9 ± 4.1 | 32.2 ± 5.4 ** | 28.9 ± 5.7 |
BMI-SDS | 2.4 ± 0.6 | 2.9 ± 0.4 ** | 2.7 ± 0.6 |
WC (cm) | 80.2 ± 10.5 | 102.8 ± 11.5 *** | 91.5 ± 15.7 |
WhR | 0.63 ± 0.16 | 0.63 ± 0.07 | 0.63 ± 0.12 |
SBP (mmHg) | 101.5 ±13.6 | 118.2 ± 12.6 ** | 109.9 ± 15.5 |
DBP (mmHg) | 64.7 ± 9.8 | 71.7 ± 10.7 * | 68.2 ± 10.7 |
Glucose T0’ (mg/dL) | 82.3 ± 9.2 | 85.3 ± 6.8 | 83.8 ± 8.1 |
Glucose T120’ (mg/dL) | 106.5 ± 26.7 | 101.6 ± 24.4 | 104.1 ± 25.4 |
Insulin T0’ (μU/mL) | 16.2 ± 16.7 | 26.1 ± 19.9 ** | 21.1 ± 18.8 |
Insulin T120’ (μU/mL) | 83.5 ± 80.6 | 142.8 ± 161.8 * | 114.7 ± 73.0 |
HbA1c (mmol/mol) | 34.9 ± 2.9 | 33.4 ± 5.4 | 34.2 ± 4.4 |
HOMA-Index | 3.3 ± 3.4 | 5.7 ± 4.8 *** | 4.5 ± 4.3 |
Total-c (mg/dL) | 141.6 ± 24.2 | 138.8 ± 43.0 | 140.3 ± 34.2 |
HDL-c (mg/dL) | 46.5 ± 8.5 | 40.3 ± 8.8 * | 43.5 ± 9.1 |
LDL-c (mg/dL) | 78.7 ± 21.7 | 89.1 ± 28.4 | 83.7 ± 25.4 |
TG (mg/dL) | 84.9 ± 52.1 | 89.9 ± 52.9 | 87.3 ± 51.9 |
AST (U/L) | 31.6 ± 19.3 | 25.1 ± 9.6 | 28.4 ± 15.5 |
ALT (U/L) | 49.2 ± 77.5 | 32.8 ± 19.0 * | 41.2 ± 57.0 |
GGT (U/L) | 33.7 ± 45.7 | 24.0 ± 14.8 * | 28.7 ± 33.5 |
Leptin (ng/mL) | 14.4 ± 7.4 | 20.8 ± 10.2 | 17.9 ± 9.5 |
IL-6 (pg/mL) | 4.8 ± 3.8 | 14.8 ± 26.9 | 9.8 ± 19.6 |
IL-1β (pg/mL) | 12.5 ± 8.6 | 12.6 ± 9.9 | 12.6 ± 9.2 |
HRI | 1.49 ± 0.44 | 1.41 ± 0.25 | 1.46 ± 0.37 |
vAT (cm) | 0.8 ± 0.4 | 1.5 ± 0.7 ** | 1.1 ± 0.6 |
scAT (cm) | 2.0 ± 0.7 | 3.2 ± 0.9 ** | 2.5 ± 0.9 |
Variables | Males | Females |
---|---|---|
Gender (M/F) | N: 12 | N: 29 |
Age (yrs) | 12.4 ± 3.1 | 8.5 ± 3.8 ** |
Weight (Kg) | 83.6 ± 22.3 | 52.6 ± 23.9 ** |
Height SDS | 0.8 ± 1.1 | 0.7 ± 1.0 |
BMI (kg/m2) | 32.7 ± 6.0 | 27.5 ± 4.8 ** |
BMI-SDS | 2.9 ± 0.5 | 2.5 ± 0.5 * |
WC (cm) | 107.5 ± 10.5 | 84.6 ± 12.2 *** |
WhR | 0.68 ± 0.08 | 0.61 ± 0.13 * |
SBP (mmHg) | 121.2 ± 11.3 | 105.0 ± 14.5 ** |
DBP (mmHg) | 72.5 ± 12.1 | 66.4 ± 9.7 |
Glucose T0’ (mg/dL) | 87.9 ± 5.3 | 82.1 ± 8.5 * |
Glucose T120’ (mg/dL) | 106.7 ± 24.8 | 102.9 ± 25.9 |
Insulin T0’ (μU/mL) | 28.6 ± 23.6 | 17.9 ± 15.8 * |
Insulin T120’ (μU/mL) | 179.5± 198.6 | 84.8 ± 73.1 * |
HOMA-Index | 6.4 ± 5.8 | 3.7 ± 3.2 * |
Total-c (mg/dL) | 135.8 ± 23.1 | 142.1 ± 38.1 |
HDL-c (mg/dL) | 40.0 ± 10.5 | 44.9 ± 8.2 * |
LDL-c (mg/dL) | 82.1 ± 20.6 | 84.4 ± 27.5 |
TG (mg/dL) | 88.2 ± 55.1 | 86.9 ± 51.5 |
AST (U/L) | 30.8 ± 14.0 | 27.5 ± 16.3 |
ALT (U/L) | 43.8 ± 28.7 | 40.1 ± 65.6 |
GGT (U/L) | 30.3 ± 17.4 | 28.0 ± 38.9 |
Leptin (ng/mL) | 21.5 ± 13.2 | 16.4 ± 7.3 |
IL-6 (pg/mL) | 11.5 ± 10.6 | 9.1 ± 22.5 * |
IL-1β (pg/mL) | 8.6 ± 7.5 | 14.3 ± 9.4 * |
HRI | 1.53 ± 0.34 | 1.44 ± 0.38 |
vAT (cm) | 1.6 ± 0.5 | 0.9 ± 0.5 ** |
scAT (cm) | 3.4 ± 0.8 | 2.2 ± 0.8 ** |
Variables | NO MASLD | MASLD1 | MASLD2 | MASLD |
---|---|---|---|---|
Gender (M/F) | N: 29 | N: 8 | N: 4 | N: 12 |
Age (yrs) | 10.2 ± 4.1 | 7.6 ± 3.6 | 10.6 ± 4.2 | 8.6 ± 3.9 |
Weight (kg) | 61.4 ± 26.5 | 52.8 ± 21.9 | 81.6 ± 38.9 | 62.4 ± 30.3 |
Height (cm) | 143.4 ± 22.7 | 132.2 ± 24.0 | 150.0 ± 21.4 | 138.1 ± 23.9 |
BMI (kg/m2) | 28.2 ± 5.1 | 28.9 ± 4.2 | 34.7 ± 10.0 | 30.8 ± 6.8 |
BMI-SDS | 2.6 ± 0.6 | 2.8 ± 0.6 | 3.0 ± 0.7 | 2.9 ± 0.6 |
WC (cm) | 89.2 ± 14.9 | 92.2 ± 14.4 | 106.3 ± 20.1 | 96.9 ± 17.0 |
WhR | 0.60 ± 0.13 | 0.70 ± 0.07 | 0.71 ± 0.08 | 0.70 ± 0.07 |
PAS (mmHg) | 110.4 ± 16.3 | 108.1 ± 12.2 | 110.0 ± 18.7 | 108.8 ± 13.8 |
PAD (mmHg) | 68.6 ± 10.4 | 63.1 ± 8.8 | 76.3 ±13.8 | 67.5 ± 12.0 |
Glucose T0’ (mg/dL) | 84.2 ± 9.1 | 81.9 ± 6.4 | 84.8 ± 2.2 | 82.8 ± 5.4 |
Glucose T120’ (mg/dL) | 105.5 ± 25.5 | 101.9 ± 30.8 | 99.0 ± 15.1 | 100.9 ± 25.8 |
Insulin T0’ (μU/mL) | 20.7 ± 20.5 | 16.8 ± 11.8 | 32.2 ± 16.7 | 21.9 ± 14.9 |
Insulin T120’ (μU/mL) | 127.2 ± 154.0 | 90.8 ± 68.8 | 81.6 ± 28.3 | 87.7 ± 57.0 |
HOMA-Index | 4.4 ± 4.7 | 3.5 ± 2.6 | 6.7 ± 3.5 | 4.5 ± 3.2 |
Total-c (mg/dL) | 135.5 ± 36.5 | 158.0 ± 22.4 | 139.5 ± 30.6 | 151.8 ± 25.7 |
HDL-C (mg/dL) | 43.8 ± 8.4 | 48.1 ± 9.0 | 31.5 ± 1.3 | 42.6 ± 10.9 |
LDL-C (mg/dL) | 82.0 ± 25.5 | 93.4 ± 25.5 | 76.8 ± 26.1 | 87.8 ± 25.9 |
TG (mg/dL) | 79.3 ± 41.1 | 82.4 ± 39.0 | 155.3 ± 98.6 | 106.7 ± 70.1 |
AST (U/L) | 27.2 ± 16.4 | 22.9 ± 1.6 | 48.3 ± 8.8 | 31.3 ± 13.4 |
ALT (U/L) | 39.0 ± 65.6 | 28.6 ± 8.3 | 82.5 ± 13.8 | 46.6 ± 28.3 |
GGT (U/L) | 28.1 ± 38.2 | 22.9 ± 10.2 | 43.3 ± 22.3 | 30.3 ± 17.8 |
Leptin (ng/mL) | 16.2 ± 7.3 | 21.4 ± 9.4 | 24.2 ± 19.0 | 22.5 ± 13.1 |
IL-6 (pg/mL) | 11.0 ± 23.3 | 6.5 ± 4.1 | 8.1 ± 5.7 | 7.1 ± 4.5 |
IL-1β (pg/mL) | 14.6 ± 8.9 | 9.3 ± 9.8 | 5.7 ± 5.6 | 8.1 ± 8.5 |
HRI | 1.4 ± 0.4 | 1.6 ± 0.4 | 1.6 ± 0.3 | 1.6 ± 0.4 |
vAT (cm) | 1.1 ± 0.7 | 1.2 ± 0.7 | 1.2 ± 0.6 | 1.1 ± 0.6 |
scAT (cm) | 2.4 ± 0.9 | 3.0 ± 1.2 | 3.1 ± 1.1 | 3.0 ± 1.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Faienza, M.F.; Baima, J.; Cecere, V.; Monteduro, M.; Farella, I.; Vitale, R.; Antoniotti, V.; Urbano, F.; Tini, S.; Lenzi, F.R.; et al. Fructose Intake and Unhealthy Eating Habits Are Associated with MASLD in Pediatric Obesity: A Cross-Sectional Pilot Study. Nutrients 2025, 17, 631. https://doi.org/10.3390/nu17040631
Faienza MF, Baima J, Cecere V, Monteduro M, Farella I, Vitale R, Antoniotti V, Urbano F, Tini S, Lenzi FR, et al. Fructose Intake and Unhealthy Eating Habits Are Associated with MASLD in Pediatric Obesity: A Cross-Sectional Pilot Study. Nutrients. 2025; 17(4):631. https://doi.org/10.3390/nu17040631
Chicago/Turabian StyleFaienza, Maria Felicia, Jessica Baima, Valentina Cecere, Mariantonietta Monteduro, Ilaria Farella, Rossella Vitale, Valentina Antoniotti, Flavia Urbano, Sabrina Tini, Francesca Romana Lenzi, and et al. 2025. "Fructose Intake and Unhealthy Eating Habits Are Associated with MASLD in Pediatric Obesity: A Cross-Sectional Pilot Study" Nutrients 17, no. 4: 631. https://doi.org/10.3390/nu17040631
APA StyleFaienza, M. F., Baima, J., Cecere, V., Monteduro, M., Farella, I., Vitale, R., Antoniotti, V., Urbano, F., Tini, S., Lenzi, F. R., & Prodam, F. (2025). Fructose Intake and Unhealthy Eating Habits Are Associated with MASLD in Pediatric Obesity: A Cross-Sectional Pilot Study. Nutrients, 17(4), 631. https://doi.org/10.3390/nu17040631