Assessment of Vitamin D Metabolism Disorders in Hemodialysis Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Measurements of CBC, CRP, Phosphate, and Total Calcium
2.2. Sample Collection and Measurements of Vitamin D Metabolites Levels
2.3. Statistical Analysis
3. Results
3.1. 25(OH)D3 Levels in Studied Groups
3.2. Vitamin D Metabolites and Vitamin D Metabolites Ratios (24,25(OH)2D3 to 25(OH)D3, epi-25(OH)D3/25(OH)D3) in Studied Groups
3.3. 25(OH)D2 Level in Studied Groups
3.4. 1,25(OH)2D3 in HD Patients Supplemented with Alphacalcidol
3.5. Correlations Between Studied Parameters
4. Discussion
4.1. 25(OH)D3
4.2. 24,25(OH)D3 and VMR
Metabolite | Reference Value | Study Group [% n with Reference Range] | Control Group [% n with Reference Range] |
---|---|---|---|
25(OH)D3 [ng/mL] | >30 [ng/mL] | 19.7% (n = 13/66) | 24.4% (n = 50/205) |
epi-25(OH)D3 | no data existed | - | - |
epi-25(OH)D3/25(OH)D3 | no data existed | - | - |
24,25(OH)2D3 [ng/mL] | >1.68 ng/mL (>4.2 nmol/L) | 0% (n = 0) | 62.0% (n = 127/205) |
24,25(OH)2D3/25(OH)D3 (VMR) | 4.4–14.3 [%] | 1.8% (n = 1/56) | 93.2% (n = 191/205) |
4.3. 25(OH)D2
4.4. 3-epi-25(OH)D3
4.5. 1,25(OH)D3
5. Conclusions
- The vitamin D3 reserves, assessed by 25(OH)D3 levels, were lower in the HD group than in the general population.
- Both functional deficiency and impaired vitamin D3 catabolism were present in the HD patients.
- The most sensitive parameter for assessing vitamin D3 deficiency was the VMR, which requires the measurement of 24,25(OH)D3.
- Alphacalcidol supplementation increases the concentration of 1,25(OH)2D3 without influencing 25(OH)D3.
- 25(OH)D2 is the only studied vitamin D metabolite that reached higher concentrations in the HD group than in the general population.
- This study demonstrated a statistically significant positive correlation between 25(OH)D3 and 24,25(OH)2D3 as well as 3-epi-25(OH)D3 in both the hemodialysis and control groups, indicating a strong relationship between these metabolites in vitamin D metabolism regardless of renal function status.
Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CKD | Chronic Kidney Disease |
HD | Hemodialysis |
VMR | Vitamin D Metabolite Ratio |
SHPT | Secondary Hyperthyroidism |
PTH | Parathormone |
M-W | Mann–Whitney U |
S-W | Shapiro–Wilk |
References
- Torres, P.A.U.; De Brauwere, D.P. Three feedback loops precisely regulating serum phosphate concentration. Kidney Int. 2011, 80, 443–445. [Google Scholar] [CrossRef] [PubMed]
- Holick, M.F.; Binkley, N.C.; Bischoff-Ferrari, H.A.; Gordon, C.M.; Hanley, D.A.; Heaney, R.P.; Murad, M.H.; Weaver, C.M. Evaluation, treatment, and prevention of vitamin D deficiency: An Endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab. 2011, 96, 1911–1930. [Google Scholar] [CrossRef] [PubMed]
- Armas, L.A.G.; Hollis, B.W.; Heaney, R.P. Vitamin D2 is much less effective than vitamin D3 in humans. J. Clin. Endocrinol. Metab. 2004, 89, 5387–5391. [Google Scholar] [CrossRef] [PubMed]
- Bikle, D.; Christakos, S. New aspects of vitamin D metabolism and action—Addressing the skin as source and target. Nat. Rev. Endocrinol. 2020, 16, 234–252. [Google Scholar] [CrossRef] [PubMed]
- Young, K.; Beggs, M.R.; Grimbly, C.; Alexander, R.T. Regulation of 1 and 24 hydroxylation of vitamin D metabolites in the proximal tubule. Exp. Biol. Med. 2022, 247, 1103–1111. [Google Scholar] [CrossRef]
- Levin, A.; Bakris, G.L.; Molitch, M.; Smulders, M.; Tian, J.; Williams, L.A.; Andress, D.L. Prevalence of abnormal serum vitamin D, PTH, calcium, and phosphorus in patients with chronic kidney disease: Results of the study to evaluate early kidney disease. Kidney Int. 2007, 71, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Hewison, M.; Zehnder, D.; Bland, R.; Stewart, P.M. 1alpha-Hydroxylase and the action of vitamin D. J. Mol. Endocrinol. 2000, 25, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Kovesdy, C.P. Epidemiology of chronic kidney disease: An update 2022. Kidney Int. Suppl. 2022, 12, 7–11. [Google Scholar] [CrossRef] [PubMed]
- Jager, K.J.; Kovesdy, C.; Langham, R.; Rosenberg, M.; Jha, V.; Zoccali, C. A single number for advocacy and communication-worldwide more than 850 million individuals have kidney diseases. Kidney Int. 2019, 96, 1048–1050. [Google Scholar] [CrossRef] [PubMed]
- Bello, A.K.; Okpechi, I.G.; Osman, M.A.; Cho, Y.; Htay, H.; Jha, V.; Wainstein, M.; Johnson, D.W. Epidemiology of haemodialysis outcomes. Nat. Rev. Nephrol. 2022, 18, 378–395. [Google Scholar] [CrossRef] [PubMed]
- Hryciuk, M.; Heleniak, Z.; Ślizień, A.D. Management of chronic kidney disease–mineral and bone disorder. Ren. Dis. Transplant. Forum. 2023, 16, 65–80. Available online: https://journals.viamedica.pl/renal_disease_and_transplant/article/view/96819 (accessed on 23 December 2024).
- Demay, M.B.; Pittas, A.G.; Bikle, D.D.; Diab, D.L.; E Kiely, M.; Lazaretti-Castro, M.; Lips, P.; Mitchell, D.M.; Murad, M.H.; Powers, S.; et al. Vitamin D for the Prevention of Disease: An Endocrine Society Clinical Practice Guideline. J. Clin. Endocrinol. Metab. 2024, 109, 1907–1947. [Google Scholar] [CrossRef] [PubMed]
- Kidney Disease: Improving Global Outcomes (KDIGO) CKD-MBD Update Work Group. KDIGO 2017 Clinical Practice Guideline Update for the Diagnosis, Evaluation, Prevention, and Treatment of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD). Kidney Int. Suppl. 2017, 7, 1–59. [Google Scholar] [CrossRef] [PubMed]
- Dugar, A.; Hoofnagle, A.N.; Sanchez, A.P.; Ward, D.M.; Corey-Bloom, J.; Cheng, J.H.; Ix, J.H.; Ginsberg, C. The Vitamin D Metabolite Ratio (VMR) is a Biomarker of Vitamin D Status That is Not Affected by Acute Changes in Vitamin D Binding Protein. Clin. Chem. 2023, 69, 718–723. [Google Scholar] [CrossRef] [PubMed]
- Shimada, T.; Hasegawa, H.; Yamazaki, Y.; Muto, T.; Hino, R.; Takeuchi, Y.; Fujita, T.; Nakahara, K.; Fukumoto, S.; Yamashita, T. FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis. J. Bone Miner. Res. 2004, 19, 429–435. [Google Scholar] [CrossRef] [PubMed]
- Jones, G.; Prosser, D.E.; Kaufmann, M. 25-Hydroxyvitamin D-24-hydroxylase (CYP24A1): Its important role in the degradation of vitamin D. Arch. Biochem. Biophys. 2012, 523, 9–18. [Google Scholar] [CrossRef] [PubMed]
- de Boer, I.H.; Sachs, M.C.; Chonchol, M.; Himmelfarb, J.; Hoofnagle, A.N.; Ix, J.H.; Kremsdorf, R.A.; Lin, Y.S.; Mehrotra, R.; Robinson-Cohen, C.; et al. Estimated GFR and circulating 24,25-dihydroxyvitamin D3 concentration: A participant-level analysis of 5 cohort studies and clinical trials. Am. J. Kidney Dis. 2014, 64, 187–197. [Google Scholar] [CrossRef] [PubMed]
- Vitamin D Status Including 3-epi-25(OH)D3 Among Adult Patients with Thyroid Disorders During Summer Months|Kmieć|Endokrynologia Polska [Internet]. Available online: https://journals.viamedica.pl/endokrynologia_polska/article/view/57111 (accessed on 23 December 2024).
- Lensmeyer, G.; Poquette, M.; Wiebe, D.; Binkley, N. The C-3 epimer of 25-hydroxyvitamin D(3) is present in adult serum. J. Clin. Endocrinol. Metab. 2012, 97, 163–168. [Google Scholar] [CrossRef] [PubMed]
- National Kidney Foundation. KDOQI Clinical Practice Guideline for Hemodialysis Adequacy: 2015 update. Am. J. Kidney Dis. 2015, 66, 884–930. [Google Scholar] [CrossRef]
- Rola, R.; Kowalski, K.; Bieńkowski, T.; Studzińska, S. Improved sample preparation method for fast LC-MS/MS analysis of vitamin D metabolites in serum. J. Pharm. Biomed. Anal. 2020, 190, 113529. [Google Scholar] [CrossRef]
- Mieszkowski, J.; Stankiewicz, B.; Kochanowicz, A.; Niespodziński, B.; Kowalik, T.; Żmijewski, M.A.; Kowalski, K.; Rola, R.; Bieńkowski, T.; Antosiewicz, J. Ultra-Marathon-Induced Increase in Serum Levels of Vitamin D Metabolites: A Double-Blind Randomized Controlled Trial. Nutrients 2020, 12, 3629. [Google Scholar] [CrossRef] [PubMed]
- Berg, A.H.; E Powe, C.; Evans, M.K.; Wenger, J.; Ortiz, G.; Zonderman, A.B.; Suntharalingam, P.; Lucchesi, K.; Powe, N.R.; Karumanchi, S.A.; et al. 24,25-dihydroxyvitamin D3 and Vitamin D Status of Community Dwelling Black and White Americans. Clin. Chem. 2015, 61, 877–884. [Google Scholar] [CrossRef] [PubMed]
- Kendrick, J.; Chonchol, M. The Role of Phosphorus in the Development and Progression of Vascular Calcification. Am. J. Kidney Dis. 2011, 58, 826–834. [Google Scholar] [CrossRef] [PubMed]
- Pimentel, A.; Ureña-Torres, P.; Bover, J.; Luis Fernandez-Martín, J.; Cohen-Solal, M. Bone Fragility Fractures in CKD Patients. Calcif. Tissue Int. 2021, 108, 539–550. [Google Scholar] [CrossRef]
- Hollis, B.W. Editorial: The determination of circulating 25-hydroxyvitamin D: No easy task. J. Clin. Endocrinol. Metab. 2004, 89, 3149–3151. [Google Scholar] [CrossRef]
- Holick, M.F.; Biancuzzo, R.M.; Chen, T.C.; Klein, E.K.; Young, A.; Bibuld, D.; Reitz, R.; Salameh, W.; Ameri, A.; Tannenbaum, A.D. Vitamin D2 is as effective as vitamin D3 in maintaining circulating concentrations of 25-hydroxyvitamin D. J. Clin. Endocrinol. Metab. 2008, 93, 677–681. [Google Scholar] [CrossRef] [PubMed]
- Bikle, D.D. Vitamin D metabolism, mechanism of action, and clinical applications. Chem. Biol. 2014, 21, 319–329. [Google Scholar] [CrossRef]
- Chauhan, K.; Shahrokhi, M.; Huecker, M.R. Vitamin D. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: http://www.ncbi.nlm.nih.gov/books/NBK441912/ (accessed on 23 December 2024).
- González-Gross, M.; Valtueña, J.; Breidenassel, C.; Moreno, L.A.; Ferrari, M.; Kersting, M.; De Henauw, S.; Gottrand, F.; Azzini, E.; Widhalm, K.; et al. Vitamin D status among adolescents in Europe: The Healthy Lifestyle in Europe by Nutrition in Adolescence study. Br. J. Nutr. 2012, 107, 755–764. [Google Scholar] [CrossRef] [PubMed]
- Schleicher, R.L.; Sternberg, M.R.; Looker, A.C.; Yetley, E.A.; Lacher, D.A.; Sempos, C.T.; Taylor, C.L.; Durazo-Arvizu, R.A.; Maw, K.L.; Chaudhary-Webb, M.; et al. National Estimates of Serum Total 25-Hydroxyvitamin D and Metabolite Concentrations Measured by Liquid Chromatography-Tandem Mass Spectrometry in the US Population during 2007–2010. J. Nutr. 2016, 146, 1051–1061. [Google Scholar] [CrossRef] [PubMed]
- Amrein, K.; Scherkl, M.; Hoffmann, M.; Neuwersch-Sommeregger, S.; Köstenberger, M.; Tmava Berisha, A.; Martucci, G.; Pilz, S.; Malle, O. Vitamin D deficiency 2.0: An update on the current status worldwide. Eur. J. Clin. Nutr. 2020, 74, 1498–1513. [Google Scholar] [CrossRef] [PubMed]
- Cashman, K.D.; Dowling, K.G.; Škrabáková, Z.; Gonzalez-Gross, M.; Valtueña, J.; De Henauw, S.; Moreno, L.; Damsgaard, C.T.; Michaelsen, K.F.; Mølgaard, C.; et al. Vitamin D deficiency in Europe: Pandemic? Am. J. Clin. Nutr. 2016, 103, 1033–1044. [Google Scholar] [CrossRef] [PubMed]
- Cui, A.; Zhang, T.; Xiao, P.; Fan, Z.; Wang, H.; Zhuang, Y. Global and regional prevalence of vitamin D deficiency in population-based studies from 2000 to 2022: A pooled analysis of 7.9 million participants. Front. Nutr. 2023, 10, 1070808. [Google Scholar] [CrossRef]
- Guessous, I.; McClellan, W.; Kleinbaum, D.; Vaccarino, V.; Zoller, O.; Theler, J.-M.; Paccaud, F.; Burnier, M.; Bochud, M.; Swiss Survey on Salt Group. Comparisons of serum vitamin D levels, status, and determinants in populations with and without chronic kidney disease not requiring renal dialysis: A 24-hour urine collection population-based study. J. Ren. Nutr. 2014, 24, 303–312. [Google Scholar] [CrossRef] [PubMed]
- Bosworth, C.R.; Levin, G.; Robinson-Cohen, C.; Hoofnagle, A.N.; Ruzinski, J.; Young, B.; Schwartz, S.M.; Himmelfarb, J.; Kestenbaum, B.; de Boer, I.H. The serum 24,25-dihydroxyvitamin D concentration, a marker of vitamin D catabolism, is reduced in chronic kidney disease. Kidney Int. 2012, 82, 693–700. [Google Scholar] [CrossRef]
- Jean, G.; Charra, B.; Chazot, C. Vitamin D deficiency and associated factors in hemodialysis patients. J. Ren. Nutr. 2008, 18, 395–399. [Google Scholar] [CrossRef] [PubMed]
- Nazzal, Z.A.; Hamdan, Z.; Natour, N.; Barbar, M.; Rimawi, R.; Salaymeh, E. Prevalence of Vitamin D Deficiency among Hemodialysis Patients in Palestine: A Cross-Sectional Study. Int. J. Nephrol. 2021, 2021, 6684276. [Google Scholar] [CrossRef] [PubMed]
- Gracia-Iguacel, C.; Gallar, P.; Qureshi, A.R.; Ortega, O.; Mon, C.; Ortiz, M.; Villarreal, I.; Garcia-Lacalle, C.; Olieta, A.; Sánchez, M.; et al. Vitamin D deficiency in dialysis patients: Effect of dialysis modality and implications on outcome. J. Ren. Nutr. 2010, 20, 359–367. [Google Scholar] [CrossRef]
- Kim, S.M.; Choi, H.J.; Lee, J.P.; Kim, D.K.; Oh, Y.K.; Kim, Y.S.; Lim, C.S. Prevalence of vitamin D deficiency and effects of supplementation with cholecalciferol in patients with chronic kidney disease. J. Ren. Nutr. 2014, 24, 20–25. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, H.K.; Jain, D.; Mittal, A.; Pawar, S.; Ver, R. The prevalence of vitamin D deficiency in pre-dialysis patients with chronic kidney disease. Med. Stud. 2015, 31, 75–81. [Google Scholar] [CrossRef]
- Krause, R. Vitamin D and UV exposure in chronic kidney disease. Dermato-Endocrinology 2013, 5, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Zittermann, A.; Ernst, J.B.; Becker, T.; Dreier, J.; Knabbe, C.; Gummert, J.F.; Kuhn, J. Measurement of Circulating 1,25-Dihydroxyvitamin D: Comparison of an Automated Method with a Liquid Chromatography Tandem Mass Spectrometry Method. Int. J. Anal. Chem. 2016, 2016, 8501435. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.K.; Chung, H.J.; Lê, H.G.; Na, B.K.; Cho, M.C. Serum 24,25-dihydroxyvitamin D level in general Korean population and its relationship with other vitamin D biomarkers. PLoS ONE 2021, 16, e0246541. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.C.Y.; Nicholls, H.; Piec, I.; Washbourne, C.J.; Dutton, J.J.; Jackson, S.; Greeves, J.; Fraser, W.D. Reference intervals for serum 24,25-dihydroxyvitamin D and the ratio with 25-hydroxyvitamin D established using a newly developed LC-MS/MS method. J. Nutr. Biochem. 2017, 46, 21–29. [Google Scholar] [CrossRef]
- Dirks, N.F.; Ackermans, M.T.; de Jonge, R.; Heijboer, A.C. Reference values for 24,25-dihydroxyvitamin D and the 25-hydroxyvitamin D/24,25-dihydroxyvitamin D ratio. Clin. Chem. Lab. Med. 2019, 57, e259–e261. [Google Scholar] [CrossRef]
- Tang, J.C.Y.; Jackson, S.; Walsh, N.P.; Greeves, J.; Fraser, W.D. The dynamic relationships between the active and catabolic vitamin D metabolites, their ratios, and associations with PTH. Sci. Rep. 2019, 9, 6974. [Google Scholar] [CrossRef] [PubMed]
- Graeff-Armas, L.A.; Kaufmann, M.; Lyden, E.; Jones, G. Serum 24,25-dihydroxyvitamin D3 response to native vitamin D2 and D3 Supplementation in patients with chronic kidney disease on hemodialysis. Clin. Nutr. Edinb. Scotl. 2018, 37, 1041–1045. [Google Scholar] [CrossRef]
- Weisman, Y.; Eisenberg, Z.; Leib, L.; Harell, A.; Shasha, S.M.; Edelstein, S. Serum concentrations of 24,25-dihydroxy vitamin D in different degrees of chronic renal failure. Br. Med. J. 1980, 281, 712–713. [Google Scholar] [CrossRef] [PubMed]
- Bosworth, C.; de Boer, I.H. Impaired Vitamin D Metabolism in CKD. Semin. Nephrol. 2013, 33, 158–168. [Google Scholar] [CrossRef]
- Lee, S.; Chung, H.J.; Jung, S.; Jang, H.N.; Chang, S.-H.; Kim, H.-J.; Cho, M.-C. 24,25-Dihydroxy Vitamin D and Vitamin D Metabolite Ratio as Biomarkers of Vitamin D in Chronic Kidney Disease. Nutrients 2023, 15, 578. [Google Scholar] [CrossRef] [PubMed]
- Parviainen, M.T.; Savolainen, K.E.; Alhava, E.M.; Mäenpää, P.H. 25-hydroxyvitamin D2, 25-hydroxyvitamin D3 and total 24,25-dihydroxyvitamin D in human serum. Ann. Clin. Res. 1981, 13, 26–33. [Google Scholar]
- Bailey, D.; Veljkovic, K.; Yazdanpanah, M.; Adeli, K. Analytical measurement and clinical relevance of vitamin D(3) C3-epimer. Clin. Biochem. 2013, 46, 190–196. [Google Scholar] [CrossRef] [PubMed]
- Swanson, C.M.; Nielson, C.M.; Shrestha, S.; Lee, C.G.; Barrett-Connor, E.; Jans, I.; Cauley, J.A.; Boonen, S.; Bouillon, R.; Vanderschueren, D.; et al. Higher 25(OH)D2 is associated with lower 25(OH)D3 and 1,25(OH)2D3. J. Clin. Endocrinol. Metab. 2014, 99, 2736–2744. [Google Scholar] [CrossRef] [PubMed]
- Pang, X.; Yang, Z.; Wang, J.; Duan, Y.; Zhao, L.; Yu, D.; Lai, J. Relationship between Serum 25OH-Vitamin D2 Level and Vitamin D Status of Children Aged 3-5 Years in China. Nutrients 2021, 13, 4135. [Google Scholar] [CrossRef]
- Nimitphong, H.; Saetung, S.; Chanprasertyotin, S.; Chailurkit, L.O.; Ongphiphadhanakul, B. Changes in circulating 25-hydroxyvitamin D according to vitamin D binding protein genotypes after vitamin D₃ or D₂supplementation. Nutr. J. 2013, 12, 39. [Google Scholar] [CrossRef]
- Tang, J.; Ying, B.; Yang, Y.; Xu, B.; Yu, L.; Jiang, W.; Pu, S. C3-Epimer of 25-Hydroxyvitamin D3 as a Superior Marker for Predicting the Severity of Chronic Kidney Disease in Rheumatoid Arthritis Patients. Oxid. Med. Cell Longev. 2022, 2022, 5268706. [Google Scholar] [CrossRef]
- Vitamin D Metabolism and Treatment in Chronic Kidney Disease [Internet]. Available online: https://www.medscape.org/viewarticle/571558_3 (accessed on 23 December 2024).
- Granado-Lorencio, F.; Blanco-Navarro, I.; Pérez-Sacristán, B.; Donoso-Navarro, E.; Silvestre-Mardomingo, R. Serum levels of 3-epi-25-OH-D3 during hypervitaminosis D in clinical practice. J. Clin. Endocrinol. Metab. 2012, 97, E2266–E2270. [Google Scholar] [CrossRef]
- Arroyo, E.; A Leber, C.; Burney, H.N.; Li, Y.; Li, X.; Lu, T.-S.; Jones, G.; Kaufmann, M.; Ting, S.M.S.; Hiemstra, T.F.; et al. Epimeric vitamin D and cardiovascular structure and function in advanced CKD and after kidney transplantation. Nephrol. Dial. Transplant. 2024, 39, 264–276. [Google Scholar] [CrossRef]
- Souberbielle, J.-C.; Cavalier, E.; Delanaye, P.; Massart, C.; Brailly-Tabard, S.; Cormier, C.; Borderie, D.; Benachi, A.; Chanson, P. Serum calcitriol concentrations measured with a new direct automated assay in a large population of adult healthy subjects and in various clinical situations. Clin. Chim. Acta Int. J. Clin. Chem. 2015, 451 Pt B, 149–153. [Google Scholar] [CrossRef] [PubMed]
- Huish, S.A.; Jenkinson, C.; Dunn, J.A.; Meredith, D.J.; Bland, R.; Hewison, M. Low serum 1,25(OH)2D3 in end-stage renal disease: Is reduced 1α-hydroxylase the only problem? Endocr. Connect. 2021, 10, 1291–1298. [Google Scholar] [CrossRef] [PubMed]
- Lotfollahi Haghi, L.; Ossareh, S.; Neyestani, T.R. SP392Evaluation of Serum Levels of 25-hydroxy vitamin D and 1,25-dihydroxy vitamin D in Maintenance Hemodialysis Patients. Nephrol. Dial. Transplant. 2019, 34 (Suppl. 1), gfz103.SP392. [Google Scholar] [CrossRef]
- Moe, S.; Wazny, L.D.; Martin, J.E. Oral calcitriol versus oral alfacalcidol for the treatment of secondary hyperparathyroidism in patients receiving hemodialysis: A randomized, crossover trial. Can. J. Clin. Pharmacol. 2008, 15, e36–e43. [Google Scholar]
- Matuszkiewicz-Rowińska, J.; Kulicki, P.; Zebrowski, P.; Klatko, W.; Sokalski, A.; Niemczyk, S.; Wypych-Birecka, M.; Małyszko, J. Cholecalciferol vs. Small Doses of Alfacalcidol vs. Placebo in Chronic Kidney Disease Patients on Hemodialysis: A Randomized Parallel Group Study. Front. Med. 2021, 8, 81191. [Google Scholar] [CrossRef] [PubMed]
- Delanaye, P.; Weekers, L.; Warling, X.; Moonen, M.; Smelten, N.; Médart, L.; Krzesinski, J.-M.; Cavalier, E. Cholecalciferol in haemodialysis patients: A randomized, double-blind, proof-of-concept and safety study. Nephrol. Dial. Transplant. 2013, 28, 1779–1786. [Google Scholar] [CrossRef] [PubMed]
HD Group n = 66 | Reference Range | |
---|---|---|
males n(%) | 38 (57.6%) | |
age [years] (average ± SD) (median) | 61.3 ± 16.4 67 | not applicable |
Hgb [g/dL] (median) (Q1;Q3) | 10.65 9.9; 11.6 | 12–15 |
therapy with erythropoetin n(%) | 50 (75.8%) | not applicable |
WBC [G/L] (median) (Q1;Q3) PLT [G/L] (median) (Q1;Q3) | 6.45 5.5; 7.98 206 172; 262 | 4–10 150–410 |
residual diuresis (>500 mL/day) n(%) | 24 (36.3%) | not applicable |
Kt/V (median) (Q1;Q3) | 1.63 1.46; 1.8 | >1.2 |
CRP [mg/L] (median) (Q1;Q3) | 4 2; 9.8 | <5 |
Pi [mg/dL] (median) (Q1;Q3) | 5.2 4.4; 6.3 | 2.5–4.5 |
Ca [mg/dL] (median) (Q1;Q3) | 8.9 8.6; 9.5 | 8.5–10.2 |
All Participants n = 272 | HD Group n = 66 | Control Group n = 206 | p-Value (Test M-W) | |
---|---|---|---|---|
males (n%) | 101 (37.1%) | 38 (57.6%) | 63 (30.6%) | 0.001 |
age [years] (average ± SD median) | 60.9 ± 14.4 65 | 61.3 ± 16.4 67 | 60.8 ± 13.7 65 | 0.807 |
25(OH)D3 [ng/mL] (median) (Q1;Q3) | 20.80 13.55; 29.55 | 14.57 9.31; 25.27 | 22.89 16.17; 29.64 | 0.0001 |
25(OH)D2 [ng/mL] (median) (Q1;Q3) | 0.39 0.24; 0.66 | 0.61 0.46; 0.93 | 0.31 0.21; 0.53 | 0.0000 |
epi-25(OH)D3 [ng/mL] (median) (Q1;Q3) | 0.75 0.39; 1.42 | 0.40 0.29; 0.67 | 0.96 0.52; 1.6 | 0.0000 |
epi-25(OH)D3/25(OH)D3 | 3.72 [%] | 2.77 [%] | 4.59 [%] | 0.0000 |
24,25(OH)2D3 [ng/mL] (median) (Q1;Q3) | 1.50 0.73; 2.60 | 0.10 * 0.06; 0.31 | 2.09 1.30; 3.04 | 0.0000 |
24,25(OH)2D3/25(OH)D3 (VMR) (median) (Q1;Q3) | 8.24% 1.28%; 9.82% | 0.91% * 0.37%; 1.40% | 9.21% 5.23%; 10.22% | 0.0000 |
25(OH)D3 | Control Group [n]/% n = 206 | Study Group (HD) [n]/% n = 66 |
---|---|---|
deficiency < 20 ng/mL | 82/39.8% | 45/68.2% |
insufficiency 20–30 ng/mL | 74/35.9% | 8/12.1% |
sufficiency 30–50 ng/mL | 44/21.4% | 12/18.2% |
high supply 50–100 ng/mL | 6/2.9% | 1/1.5% |
toxicity > 100 ng/mL | 0 | 0 |
Metabolite | Alphacalcidol Supply; n = 25 | Without Alphacalcidol; n = 41 | HD Group; n = 66 | p-Value |
---|---|---|---|---|
1,25(OH)2D3 [pg/mL] | 30.4 | 16.2 | 21.4 | p < 0.01 |
25(OH)D3 [ng/mL] | 14.06 | 14.94 | 14.57 | p > 0.05 |
24,25(OH)2D3 [ng/mL] | 0.15 | 0.14 | 0.14 | p > 0.05 |
VMR | 0.87% | 0.96% | 0.91% | p > 0.05 |
3-epi-25(OH)D3 | 0.42 | 0.38 | 0.40 | p > 0.05 |
Metabolite | HD Group (R, p-Value) | Control Group (R, p-Value) | Interpretation |
---|---|---|---|
24,25(OH)2D3 and 25(OH)D3 | R = 0.714 p < 0.001 | R = 0.885 p < 0.001 | Statistically significant positive correlation in both groups. |
25(OH)D2 and 25(OH)D3 | R = −0.179 p = 0.150 | R = −0.046 p = 0.513 | No statistically significant correlation in either group. |
3-epi-25(OH)D3 and 25(OH)D3 | R = 0.915 p < 0.001 | R = 0.776 p < 0.001 | Statistically significant positive correlation in both groups. |
24,25(OH)2D3 and 3-epi-25(OH)D3 | R = 0.692 p < 0.001 | R = 0.780 p < 0.001 | Statistically significant positive correlation in both groups. |
1,25(OH)2D3 and 25(OH)D3 | R = 0.383 p < 0.003 | lack of data for control group | Statistically significant positive correlation in HD group |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hryciuk, M.; Heleniak, Z.; Małgorzewicz, S.; Kowalski, K.; Antosiewicz, J.; Koelmer, A.; Żmijewski, M.; Dębska-Ślizień, A. Assessment of Vitamin D Metabolism Disorders in Hemodialysis Patients. Nutrients 2025, 17, 774. https://doi.org/10.3390/nu17050774
Hryciuk M, Heleniak Z, Małgorzewicz S, Kowalski K, Antosiewicz J, Koelmer A, Żmijewski M, Dębska-Ślizień A. Assessment of Vitamin D Metabolism Disorders in Hemodialysis Patients. Nutrients. 2025; 17(5):774. https://doi.org/10.3390/nu17050774
Chicago/Turabian StyleHryciuk, Maksymilian, Zbigniew Heleniak, Sylwia Małgorzewicz, Konrad Kowalski, Jędrzej Antosiewicz, Anna Koelmer, Michał Żmijewski, and Alicja Dębska-Ślizień. 2025. "Assessment of Vitamin D Metabolism Disorders in Hemodialysis Patients" Nutrients 17, no. 5: 774. https://doi.org/10.3390/nu17050774
APA StyleHryciuk, M., Heleniak, Z., Małgorzewicz, S., Kowalski, K., Antosiewicz, J., Koelmer, A., Żmijewski, M., & Dębska-Ślizień, A. (2025). Assessment of Vitamin D Metabolism Disorders in Hemodialysis Patients. Nutrients, 17(5), 774. https://doi.org/10.3390/nu17050774