Moderate Chili Consumption During Pregnancy Is Associated with a Low Risk of Gestational Diabetes (GDM) †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Setting
2.2. Exposure Measures
2.3. Outcome Measures
2.4. Correlates of Exposures and Outcomes
2.5. Statistical Analysis
3. Results
3.1. Sample Characteristics
3.2. Distribution and Correlates of Bean Consumption
3.3. Correlates of GDM
3.4. Association Between Bean Consumption and GDM
4. Discussion
Limitations and Strengths
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
GDM | gestational diabetes mellitus |
USDA | United States Department of Agriculture |
iAUC | incremental area under the glycemic response curve |
DASH | Dietary Approaches to Stop Hypertension |
aHEI | alternate Healthy Eating Index |
OR | odds ratio |
aOR | confounder-adjusted odds ratio |
IFPS II | Infant Feeding Practices Study II |
FDA | Food and Drug Administration |
CDC | Centers for Disease Control and Prevention |
WIC | Special Supplemental Nutrition Program for Women, Infants, and Children |
DHQ | Diet History Questionnaire |
NCI | National Cancer Institute |
HEI | Healthy Eating Index |
SD | standard deviation |
ANOVA | analysis of variance |
CI | confidence interval |
USD | U.S. dollar |
NHANES | National Health and Nutrition Examination Survey |
SCFA | short-chain fatty acid |
HbA1c | glycated hemoglobin A1c |
Appendix A
Analytic Sample (N = 1397) | Excluded Sample (N = 3505) | ||||
---|---|---|---|---|---|
Characteristics * | n (%) | Mean ± SD | n (%) | Mean ± SD | p-Value |
Age, years | 28.8 ± 5.6 | 27.9 ± 5.8 | <0.001 | ||
% of federal poverty level | 257.5 ± 189.0 | 243.9 ± 200.1 | 0.025 | ||
Race/ethnicity | |||||
Non-Hispanic White | 1161 (83.8) | 2702 (80.2) | 0.016 | ||
Non-Hispanic Black | 67 (4.8) | 233 (6.9) | |||
Hispanic | 93 (6.7) | 242 (7.2) | |||
Non-Hispanic Asian/Pacific Islander/other | 65 (4.7) | 191 (5.7) | |||
Highest education level | |||||
1–8 years of grade school | 4 (0.3) | 14 (0.5) | <0.001 | ||
High school | 271 (20.9) | 767 (25.7) | |||
1–3 years of college | 519 (40.0) | 1238 (41.5) | |||
College graduate | 383 (29.5) | 707 (23.7) | |||
Postgraduate | 120 (9.3) | 255 (8.6) | |||
College education | |||||
Did not attend college | 275 (21.2) | 781 (26.2) | <0.001 | ||
Attended college | 1022 (78.8) | 2200 (73.8) | |||
Mothers’ employment status | |||||
Unemployed | 496 (35.7) | 1139 (32.7) | 0.046 | ||
Employed | 895 (64.3) | 2347 (67.3) | |||
Household size | |||||
1–2 people | 358 (25.6) | 953 (27.2) | 0.011 | ||
3 people | 527 (37.7) | 1148 (32.8) | |||
4 people | 282 (20.2) | 774 (22.1) | |||
5+ people | 230 (16.5) | 630 (18.0) | |||
Annual household income level | |||||
<USD 25,000 | 312 (22.3) | 893 (25.5) | 0.009 | ||
USD 25,000–<USD 40,000 | 314 (22.5) | 843 (24.1) | |||
USD 40,000–<USD 60,000 | 317 (22.7) | 784 (22.4) | |||
≥USD 60,000 | 454 (32.5) | 985 (28.1) | |||
WIC recipient status | |||||
Non-recipient | 823 (58.9) | 1838 (52.4) | <0.001 | ||
Recipient | 574 (41.1) | 1667 (47.6) | |||
Region | |||||
New England | 68 (4.9) | 138 (3.9) | 0.277 | ||
Middle Atlantic | 165 (11.8) | 454 (13.0) | |||
East North Central | 281 (20.1) | 702 (20.0) | |||
West North Central | 136 (9.7) | 292 (8.3) | |||
South Atlantic | 230 (16.5) | 621 (17.7) | |||
East South Central | 79 (5.7) | 222 (6.3) | |||
West South Central | 151 (10.8) | 401 (11.4) | |||
Mountain | 136 (9.7) | 290 (8.3) | |||
Pacific | 151 (10.8) | 385 (11.0) | |||
Smoking during pregnancy | |||||
No | 1240 (89.3) | 3041 (87.4) | 0.065 | ||
Yes | 149 (10.7) | 440 (12.6) |
Among Mothers Who Never Consumed Dried Beans (N = 633) | Among Mothers Who Consumed Dried Beans 1 Time per Month (N = 214) | Among Mothers Who Consumed Dried Beans 2–3 Times per Month (N = 320) | Among Mothers Who Consumed Dried Beans 1 Time per Week or More (N = 229) | p-Value | |||||
---|---|---|---|---|---|---|---|---|---|
Characteristics * | n (%) | Mean ± SD | n (%) | Mean ± SD | n (%) | Mean ± SD | n (%) | Mean ± SD | |
Age, years | 28.3 ± 5.5 | 28.7 ± 5.8 | 28.9 ± 5.4 | 30.2 ± 5.3 | <0.001 | ||||
% of federal poverty level | 257.8 ± 193.4 | 248.1 ± 189.0 | 255.8 ± 189.7 | 268.6 ± 176.0 | 0.721 | ||||
Race/ethnicity | 0.037 | ||||||||
Non-Hispanic White | 540 (85.7) | 175 (82.2) | 271 (85.2) | 174 (77.7) | |||||
Non-Hispanic Black | 33 (5.2) | 11 (5.2) | 15 (4.7) | 8 (3.6) | |||||
Hispanic | 32 (5.1) | 15 (7.0) | 17 (5.4) | 29 (13.0) | |||||
Non-Hispanic Asian/Pacific Islander/other | 25 (4.0) | 12 (5.6) | 15 (4.7) | 13 (5.8) | |||||
Highest education level | 0.477 | ||||||||
1–8 years of grade school | 2 (0.3) | 1 (0.5) | 1 (0.3) | 0 (0.0) | |||||
High school | 135 (22.8) | 47 (23.9) | 57 (19.1) | 31 (14.8) | |||||
1–3 years of college | 242 (40.9) | 72 (36.6) | 126 (42.3) | 79 (37.8) | |||||
College graduate | 163 (27.5) | 61 (31.0) | 85 (28.5) | 74 (35.4) | |||||
Postgraduate | 50 (8.5) | 16 (8.1) | 29 (9.7) | 25 (12.0) | |||||
College education | 0.091 | ||||||||
Did not attend college | 137 (23.1) | 48 (24.4) | 58 (19.5) | 31 (14.8) | |||||
Attended college | 455 (76.9) | 149 (75.6) | 240 (80.5) | 178 (85.2) | |||||
Mothers’ employment status | 0.502 | ||||||||
Unemployed | 217 (34.4) | 83 (38.8) | 114 (35.7) | 82 (36.3) | |||||
Employed | 414 (65.6) | 131 (61.2) | 205 (64.3) | 144 (63.7) | |||||
Household size | 0.925 | ||||||||
1–2 people | 163 (25.8) | 54 (25.2) | 86 (26.9) | 55 (24.0) | |||||
3 people | 245 (38.7) | 83 (38.8) | 115 (35.9) | 83 (36.2) | |||||
4 people | 132 (20.9) | 39 (18.2) | 62 (19.4) | 49 (21.4) | |||||
5+ people | 93 (14.7) | 38 (17.8) | 57 (17.8) | 42 (18.3) | |||||
Annual household income level | 0.300 | ||||||||
<USD 25,000 | 149 (23.5) | 55 (25.7) | 70 (21.9) | 37 (16.2) | |||||
USD 25,000–<USD 40,000 | 129 (20.4) | 49 (22.9) | 79 (24.7) | 57 (24.9) | |||||
USD 40,000–<USD 60,000 | 150 (23.7) | 42 (19.6) | 73 (22.8) | 52 (22.7) | |||||
≥USD 60,000 | 205 (32.4) | 68 (31.8) | 98 (30.6) | 83 (36.2) | |||||
WIC recipient status | 0.198 | ||||||||
Non-recipient | 373 (58.9) | 115 (53.7) | 189 (59.1) | 146 (63.8) | |||||
Recipient | 260 (41.1) | 99 (46.3) | 131 (40.9) | 83 (36.2) | |||||
Region | <0.001 | ||||||||
New England | 37 (5.9) | 11 (5.1) | 10 (3.1) | 10 (4.4) | |||||
Middle Atlantic | 91 (14.4) | 21 (9.8) | 23 (7.2) | 30 (13.1) | |||||
East North Central | 145 (22.9) | 37 (17.3) | 69 (21.6) | 30 (13.1) | |||||
West North Central | 76 (12.0) | 23 (10.8) | 29 (9.1) | 8 (3.5) | |||||
South Atlantic | 102 (16.1) | 33 (15.4) | 53 (16.6) | 42 (18.3) | |||||
East South Central | 22 (3.5) | 15 (7.0) | 19 (5.9) | 22 (9.6) | |||||
West South Central | 51 (8.1) | 26 (12.2) | 44 (13.8) | 30 (13.1) | |||||
Mountain | 54 (8.5) | 24 (11.2) | 36 (11.3) | 22 (9.6) | |||||
Pacific | 55 (8.7) | 24 (11.2) | 37 (11.6) | 35 (15.3) | |||||
Smoking during pregnancy | 0.577 | ||||||||
No | 556 (88.4) | 187 (87.8) | 283 (89.3) | 213 (93.0) | |||||
Yes | 73 (11.6) | 26 (12.2) | 34 (10.7) | 16 (7.0) |
Among Mothers Who Never Consumed Chili (N = 903) | Among Mothers Who Consumed Chili 1 Time per Month (N = 312) | Among Mothers Who Consumed Chili 2 or More Times per Month (N = 179) | p-Value | ||||
---|---|---|---|---|---|---|---|
Characteristics * | n (%) | Mean ± SD | n (%) | Mean ± SD | n (%) | Mean ± SD | |
Age, years | 29.0 ± 5.4 | 28.4 ± 5.7 | 28.3 ± 5.8 | 0.118 | |||
% of federal poverty level | 266.0 ± 198.0 | 244.5 ± 171.1 | 236.3 ± 169.7 | 0.062 | |||
Race/ethnicity | 0.038 | ||||||
Non-Hispanic White | 765 (85.0) | 254 (83.0) | 139 (78.5) | ||||
Non-Hispanic Black | 33 (3.7) | 20 (6.5) | 14 (7.9) | ||||
Hispanic | 63 (7.0) | 20 (6.5) | 10 (5.7) | ||||
Non-Hispanic Asian/Pacific Islander/other | 39 (4.3) | 12 (3.9) | 14 (7.9) | ||||
Highest education level | <0.001 | ||||||
1–8 years of grade school | 0 (0.0) | 2 (0.7) | 2 (1.3) | ||||
High school | 175 (20.4) | 58 (21.1) | 37 (23.3) | ||||
1–3 years of college | 328 (38.1) | 126 (45.8) | 64 (40.3) | ||||
College graduate | 267 (31.1) | 72 (26.2) | 44 (27.7) | ||||
Postgraduate | 90 (10.5) | 17 (6.2) | 12 (7.6) | ||||
College education | <0.001 | ||||||
Did not attend college | 175 (20.4) | 60 (21.8) | 39 (24.5) | ||||
Attended college | 685 (79.7) | 215 (78.2) | 120 (75.5) | ||||
Mothers’ employment status | 0.702 | ||||||
Unemployed | 317 (35.3) | 109 (35.2) | 70 (39.1) | ||||
Employed | 582 (64.7) | 201 (64.8) | 109 (60.9) | ||||
Household size | 0.220 | ||||||
1–2 people | 227 (25.1) | 81 (26.0) | 49 (27.4) | ||||
3 people | 363 (40.2) | 113 (36.2) | 50 (27.9) | ||||
4 people | 175 (19.4) | 63 (20.2) | 43 (24.0) | ||||
5+ people | 138 (15.3) | 55 (17.6) | 37 (20.7) | ||||
Annual household income level | 0.531 | ||||||
<USD 25,000 | 200 (22.2) | 65 (20.8) | 46 (25.7) | ||||
USD 25,000–<USD 40,000 | 195 (21.6) | 80 (25.6) | 39 (21.8) | ||||
USD 40,000–<USD 60,000 | 201 (22.3) | 76 (24.4) | 40 (22.4) | ||||
≥USD 60,000 | 307 (34.0) | 91 (29.2) | 54 (30.2) | ||||
WIC recipient status | 0.234 | ||||||
Non-recipient | 549 (60.8) | 176 (56.4) | 96 (53.6) | ||||
Recipient | 354 (39.2) | 136 (43.6) | 83 (46.4) | ||||
Region | <0.001 | ||||||
New England | 52 (5.8) | 10 (3.2) | 6 (3.4) | ||||
Middle Atlantic | 126 (14.0) | 28 (9.0) | 11 (6.2) | ||||
East North Central | 186 (20.6) | 64 (20.5) | 31 (17.3) | ||||
West North Central | 96 (10.6) | 26 (8.3) | 13 (7.3) | ||||
South Atlantic | 158 (17.5) | 43 (13.8) | 28 (15.6) | ||||
East South Central | 34 (3.8) | 25 (8.0) | 20 (11.2) | ||||
West South Central | 88 (9.8) | 39 (12.5) | 23 (12.9) | ||||
Mountain | 78 (8.6) | 36 (11.5) | 22 (12.3) | ||||
Pacific | 85 (9.4) | 41 (13.1) | 25 (14.0) | ||||
Smoking during pregnancy | 0.846 | ||||||
No | 802 (89.5) | 275 (88.4) | 160 (89.4) | ||||
Yes | 94 (10.5) | 36 (11.6) | 19 (10.6) |
Among Mothers Who Never Consumed Bean Soup (N = 1140) | Among Mothers Who Consumed Bean Soup 1 Time per Month (N = 211) | Among Mothers Who Consumed Bean Soup 2 or More Times per Month (N = 41) | p-Value | ||||
---|---|---|---|---|---|---|---|
Characteristics * | n (%) | Mean ± SD | n (%) | Mean ± SD | n (%) | Mean ± SD | |
Age, years | 28.7 ± 5.5 | 29.3 ± 5.7 | 30.3 ± 6.1 | 0.075 | |||
% of federal poverty level | 258.6 ± 187.9 | 261.4 ± 201.1 | 220.2 ± 162.6 | 0.425 | |||
Race/ethnicity | 0.001 | ||||||
Non-Hispanic White | 948 (83.8) | 179 (84.8) | 31 (77.5) | ||||
Non-Hispanic Black | 58 (5.1) | 7 (3.3) | 2 (5.0) | ||||
Hispanic | 71 (6.3) | 16 (7.6) | 5 (12.5) | ||||
Non-Hispanic Asian/Pacific Islander/other | 54 (4.8) | 9 (4.3) | 2 (5.0) | ||||
Highest education level | 0.244 | ||||||
1–8 years of grade school | 3 (0.3) | 1 (0.5) | 0 (0.0) | ||||
High school | 231 (21.7) | 34 (17.5) | 4 (11.8) | ||||
1–3 years of college | 430 (40.4) | 73 (37.6) | 14 (41.2) | ||||
College graduate | 310 (29.1) | 62 (32.0) | 11 (32.4) | ||||
Postgraduate | 91 (8.5) | 24 (12.4) | 5 (14.7) | ||||
College education | 0.043 | ||||||
Did not attend college | 234 (22.0) | 35 (18.0) | 4 (11.8) | ||||
Attended college | 831 (78.0) | 159 (82.0) | 30 (88.2) | ||||
Mothers’ employment status | <0.001 | ||||||
Unemployed | 401 (35.2) | 79 (37.6) | 15 (38.5) | ||||
Employed | 737 (64.8) | 131 (62.4) | 24 (61.5) | ||||
Household size | 0.102 | ||||||
1–2 people | 292 (25.6) | 53 (25.1) | 13 (31.7) | ||||
3 people | 436 (38.3) | 76 (36.0) | 12 (29.3) | ||||
4 people | 240 (21.1) | 35 (16.6) | 7 (17.1) | ||||
5+ people | 172 (15.1) | 47 (22.3) | 9 (22.0) | ||||
Annual household income level | 0.313 | ||||||
<USD 25,000 | 251 (22.0) | 46 (21.8) | 14 (34.2) | ||||
USD 25,000–<USD 40,000 | 257 (22.5) | 46 (21.8) | 8 (19.5) | ||||
USD 40,000–<USD 60,000 | 253 (22.2) | 56 (26.5) | 7 (17.1) | ||||
≥USD 60,000 | 379 (33.3) | 63 (29.9) | 12 (29.3) | ||||
WIC recipient status | 0.240 | ||||||
Non-recipient | 676 (59.3) | 125 (59.2) | 21 (51.2) | ||||
Recipient | 464 (40.7) | 86 (40.8) | 20 (48.8) | ||||
Region | 0.116 | ||||||
New England | 55 (4.8) | 11 (5.2) | 2 (4.9) | ||||
Middle Atlantic | 136 (11.9) | 20 (9.5) | 8 (19.5) | ||||
East North Central | 235 (20.6) | 42 (19.9) | 3 (7.3) | ||||
West North Central | 121 (10.6) | 13 (6.2) | 2 (4.9) | ||||
South Atlantic | 193 (16.9) | 27 (12.8) | 9 (22.0) | ||||
East South Central | 57 (5.0) | 20 (9.5) | 2 (4.9) | ||||
West South Central | 123 (10.8) | 23 (10.9) | 5 (12.2) | ||||
Mountain | 103 (9.0) | 30 (14.2) | 2 (4.9) | ||||
Pacific | 117 (10.3) | 25 (11.9) | 8 (19.5) | ||||
Smoking during pregnancy | 0.911 | ||||||
No | 1007 (88.9) | 191 (91.0) | 38 (92.7) | ||||
Yes | 126 (11.1) | 19 (9.1) | 3 (7.3) |
References
- Lende, M.; Rijhsinghani, A. Gestational Diabetes: Overview with Emphasis on Medical Management. Int. J. Environ. Res. Public Health 2020, 17, 9573. [Google Scholar] [CrossRef]
- Mack, L.R.; Tomich, P.G. Gestational Diabetes: Diagnosis, Classification, and Clinical Care. Obstet. Gynecol. Clin. N. Am. 2017, 44, 207–217. [Google Scholar] [CrossRef]
- Gregory, E.C.; Ely, D.M. Trends and Characteristics in Gestational Diabetes: United States, 2016–2020. Natl. Vital Stat. Rep. 2022, 71, 1–15. [Google Scholar]
- McIntyre, H.D.; Catalano, P.; Zhang, C.; Desoye, G.; Mathiesen, E.R.; Damm, P. Gestational diabetes mellitus. Nat. Rev. Dis. Primers 2019, 5, 47. [Google Scholar] [CrossRef] [PubMed]
- Gardner, A.B.; Champion, M.L.; Battarbee, A.N. Exploring racial/ethnic groups at risk for gestational diabetes mellitus: Genetic differences or effects of racism? Am. J. Obstet. Gynecol. 2022, 226, S616–S617. [Google Scholar] [CrossRef]
- Zhang, C.; Tobias, D.K.; Chavarro, J.E.; Bao, W.; Wang, D.; Ley, S.H.; Hu, F.B. Adherence to healthy lifestyle and risk of gestational diabetes mellitus: Prospective cohort study. BMJ 2014, 349, g5450. [Google Scholar] [CrossRef] [PubMed]
- La Verde, M.; Torella, M.; Riemma, G.; Narciso, G.; Iavarone, I.; Gliubizzi, L.; Palma, M.; Morlando, M.; Colacurci, N.; De Franciscis, P. Incidence of gestational diabetes mellitus before and after the Covid-19 lockdown: A retrospective cohort study. J. Obstet. Gynaecol. Res. 2022, 48, 1126–1131. [Google Scholar] [CrossRef]
- Zhang, C.; Rawal, S.; Chong, Y.S. Risk factors for gestational diabetes: Is prevention possible? Diabetologia 2016, 59, 1385–1390. [Google Scholar] [CrossRef]
- Kc, K.; Shakya, S.; Zhang, H. Gestational diabetes mellitus and macrosomia: A literature review. Ann. Nutr. Metab. 2015, 66 (Suppl. S2), 14–20. [Google Scholar] [CrossRef]
- Bellamy, L.; Casas, J.P.; Hingorani, A.D.; Williams, D. Type 2 diabetes mellitus after gestational diabetes: A systematic review and meta-analysis. Lancet 2009, 373, 1773–1779. [Google Scholar] [CrossRef]
- Odermatt, A. The Western-style diet: A major risk factor for impaired kidney function and chronic kidney disease. Am. J. Physiol. Ren. Physiol. 2011, 301, F919–F931. [Google Scholar] [CrossRef] [PubMed]
- Casagrande, S.S.; Wang, Y.; Anderson, C.; Gary, T.L. Have Americans increased their fruit and vegetable intake? The trends between 1988 and 2002. Am. J. Prev. Med. 2007, 32, 257–263. [Google Scholar] [CrossRef] [PubMed]
- Shin, D.; Lee, K.W.; Song, W.O. Pre-Pregnancy Weight Status Is Associated with Diet Quality and Nutritional Biomarkers during Pregnancy. Nutrients 2016, 8, 162. [Google Scholar] [CrossRef]
- Bailey, R.L.; Pac, S.G.; Fulgoni, V.L., 3rd; Reidy, K.C.; Catalano, P.M. Estimation of Total Usual Dietary Intakes of Pregnant Women in the United States. JAMA Netw. Open 2019, 2, e195967. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, D.C.; Lawrence, F.R.; Hartman, T.J.; Curran, J.M. Consumption of dry beans, peas, and lentils could improve diet quality in the US population. J. Am. Diet. Assoc. 2009, 109, 909–913. [Google Scholar] [CrossRef]
- U.S. Department of Agriculture. Dietary Guidelines for Americans, 2020–2025; U.S. Department of Health and Human Services: Washington, DC, USA, 2020.
- McCrory, M.A.; Hamaker, B.R.; Lovejoy, J.C.; Eichelsdoerfer, P.E. Pulse consumption, satiety, and weight management. Adv. Nutr. 2010, 1, 17–30. [Google Scholar] [CrossRef]
- Leterme, P.; Carmenza Munoz, L. Factors influencing pulse consumption in Latin America. Br. J. Nutr. 2002, 88 (Suppl. S3), S251–S255. [Google Scholar] [CrossRef]
- Ramdath, D.; Renwick, S.; Duncan, A.M. The Role of Pulses in the Dietary Management of Diabetes. Can. J. Diabetes 2016, 40, 355–363. [Google Scholar] [CrossRef]
- Jenkins, D.J.; Kendall, C.W.; Augustin, L.S.; Mitchell, S.; Sahye-Pudaruth, S.; Blanco Mejia, S.; Chiavaroli, L.; Mirrahimi, A.; Ireland, C.; Bashyam, B.; et al. Effect of legumes as part of a low glycemic index diet on glycemic control and cardiovascular risk factors in type 2 diabetes mellitus: A randomized controlled trial. Arch. Intern. Med. 2012, 172, 1653–1660. [Google Scholar] [CrossRef]
- Hosseinpour-Niazi, S.; Mirmiran, P.; Hedayati, M.; Azizi, F. Substitution of red meat with legumes in the therapeutic lifestyle change diet based on dietary advice improves cardiometabolic risk factors in overweight type 2 diabetes patients: A cross-over randomized clinical trial. Eur. J. Clin. Nutr. 2015, 69, 592–597. [Google Scholar] [CrossRef]
- Nilsson, A.; Johansson, E.; Ekstrom, L.; Bjorck, I. Effects of a brown beans evening meal on metabolic risk markers and appetite regulating hormones at a subsequent standardized breakfast: A randomized cross-over study. PLoS ONE 2013, 8, e59985. [Google Scholar] [CrossRef]
- Thompson, S.V.; Winham, D.M.; Hutchins, A.M. Bean and rice meals reduce postprandial glycemic response in adults with type 2 diabetes: A cross-over study. Nutr. J. 2012, 11, 23. [Google Scholar] [CrossRef]
- Vasić, M.; Vujičić, B.L.; Tepić, A.; Gvozdanović-Varga, J.; Šumić, Z. Dietary fiber content in some dry beans. Acta Period. Technol. 2009, 40, 103–110. [Google Scholar] [CrossRef]
- de Almeida Costa, G.E.; da Silva Queiroz-Monici, K.; Reis, S.M.P.M.; de Oliveira, A.C. Chemical composition, dietary fibre and resistant starch contents of raw and cooked pea, common bean, chickpea and lentil legumes. Food Chem. 2006, 94, 327–330. [Google Scholar] [CrossRef]
- Garcia, O.; Infante, R.; Rivera, C. Determination of total, soluble and insoluble dietary fibre in two new varieties of Phaseolus vulgaris L. using chemical and enzymatic gravimetric methods. Food Chem. 1997, 59, 171–174. [Google Scholar] [CrossRef]
- Behall, K.M.; Scholfield, D.J.; Hallfrisch, J.G.; Liljeberg-Elmstahl, H.G. Consumption of both resistant starch and beta-glucan improves postprandial plasma glucose and insulin in women. Diabetes Care 2006, 29, 976–981. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez Madrera, R.; Campa Negrillo, A.; Suarez Valles, B.; Ferreira Fernandez, J.J. Phenolic Content and Antioxidant Activity in Seeds of Common Bean (Phaseolus vulgaris L.). Foods 2021, 10, 864. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Suzuki, M.; Satsu, H.; Arai, S.; Hara, Y.; Suzuki, K.; Miyamoto, Y.; Shimizu, M. Green tea polyphenols inhibit the sodium-dependent glucose transporter of intestinal epithelial cells by a competitive mechanism. J. Agric. Food Chem. 2000, 48, 5618–5623. [Google Scholar] [CrossRef]
- Agrawal, S.; Ebrahim, S. Association between legume intake and self-reported diabetes among adult men and women in India. BMC Public Health 2013, 13, 706. [Google Scholar] [CrossRef]
- Villegas, R.; Gao, Y.T.; Yang, G.; Li, H.L.; Elasy, T.A.; Zheng, W.; Shu, X.O. Legume and soy food intake and the incidence of type 2 diabetes in the Shanghai Women’s Health Study. Am. J. Clin. Nutr. 2008, 87, 162–167. [Google Scholar] [CrossRef]
- Becerra-Tomas, N.; Diaz-Lopez, A.; Rosique-Esteban, N.; Ros, E.; Buil-Cosiales, P.; Corella, D.; Estruch, R.; Fito, M.; Serra-Majem, L.; Aros, F.; et al. Legume consumption is inversely associated with type 2 diabetes incidence in adults: A prospective assessment from the PREDIMED study. Clin. Nutr. 2018, 37, 906–913. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Wu, W.; Yang, H.; Zhang, P.; Feng, Y.; Wang, K.; Wang, Y.; Wang, S.; Zhang, Y. A Vegetable Dietary Pattern Is Associated with Lowered Risk of Gestational Diabetes Mellitus in Chinese Women. Diabetes Metab. J. 2020, 44, 887–896. [Google Scholar] [CrossRef]
- Petry, C.J.; Ong, K.K.; Hughes, I.A.; Acerini, C.L.; Dunger, D.B. Temporal Trends in Maternal Food Intake Frequencies and Associations with Gestational Diabetes: The Cambridge Baby Growth Study. Nutrients 2019, 11, 2822. [Google Scholar] [CrossRef] [PubMed]
- Tobias, D.K.; Zhang, C.; Chavarro, J.; Bowers, K.; Rich-Edwards, J.; Rosner, B.; Mozaffarian, D.; Hu, F.B. Prepregnancy adherence to dietary patterns and lower risk of gestational diabetes mellitus. Am. J. Clin. Nutr. 2012, 96, 289–295. [Google Scholar] [CrossRef] [PubMed]
- Pang, X.; Cai, C.; Dong, H.; Lan, X.; Zhang, Y.; Bai, D.; Hao, L.; Sun, H.; Li, F.; Zeng, G. Soy foods and nuts consumption during early pregnancy are associated with decreased risk of gestational diabetes mellitus: A prospective cohort study. J. Matern. Fetal Neonatal Med. 2022, 35, 9122–9130. [Google Scholar] [CrossRef]
- Goshtasebi, A.; Hosseinpour-Niazi, S.; Mirmiran, P.; Lamyian, M.; Moghaddam Banaem, L.; Azizi, F. Pre-pregnancy consumption of starchy vegetables and legumes and risk of gestational diabetes mellitus among Tehranian women. Diabetes Res. Clin. Pract. 2018, 139, 131–138. [Google Scholar] [CrossRef]
- Fein, S.B.; Labiner-Wolfe, J.; Shealy, K.R.; Li, R.; Chen, J.; Grummer-Strawn, L.M. Infant Feeding Practices Study II: Study methods. Pediatrics 2008, 122 (Suppl. S2), S28–S35. [Google Scholar] [CrossRef]
- Subar, A.F.; Thompson, F.E.; Kipnis, V.; Midthune, D.; Hurwitz, P.; McNutt, S.; McIntosh, A.; Rosenfeld, S. Comparative validation of the Block, Willett, and National Cancer Institute food frequency questionnaires: The Eating at America’s Table Study. Am. J. Epidemiol. 2001, 154, 1089–1099. [Google Scholar] [CrossRef]
- Willett, W. Issues in analysis and presentation of dietary data. In Nutritional Epidemiology; Oxford University Press: New York, NY, USA, 1998; pp. 321–346. [Google Scholar]
- Hinkle, S.N.; Rawal, S.; Zhu, Y.; Grewal, J.; Albert, P.S.; Zhang, C. Validation of Self-reported Diagnosis of Gestational Diabetes at 6-weeks Postpartum. Epidemiology 2017, 28, 747–752. [Google Scholar] [CrossRef]
- Beekers, P.; Jamaladin, H.; van Drongelen, J.; Roeleveld, N.; van Gelder, M. Data from Web-Based Questionnaires Were Valid for Gestational Diabetes and Preeclampsia, but Not Gestational Hypertension. J. Clin. Epidemiol. 2020, 125, 84–90. [Google Scholar] [CrossRef]
- Lucier, G.; Lin, B.-H.; Allshouse, J.; Kantor, L.S. Factors Affecting Dry Bean Consumption in the United States. Small 2000, 19, 2–5. [Google Scholar]
- Mitchell, D.C.; Marinangeli, C.P.; Pigat, S.; Bompola, F.; Campbell, J.; Pan, Y.; Curran, J.M.; Cai, D.J.; Jaconis, S.Y.; Rumney, J. Pulse intake improves nutrient density among US adult consumers. Nutrients 2021, 13, 2668. [Google Scholar] [CrossRef]
- Heer, M.M.; Winham, D.M. Bean Preferences Vary by Acculturation Level among Latinas and by Ethnicity with Non-Hispanic White Women. Int. J. Environ. Res. Public Health 2020, 17, 2100. [Google Scholar] [CrossRef]
- Giannakou, K.; Evangelou, E.; Yiallouros, P.; Christophi, C.A.; Middleton, N.; Papatheodorou, E.; Papatheodorou, S.I. Risk factors for gestational diabetes: An umbrella review of meta-analyses of observational studies. PLoS ONE 2019, 14, e0215372. [Google Scholar] [CrossRef]
- Khan, R.; Ali, K.; Khan, Z. Socio-demographic Risk Factors of Gestational Diabetes Mellitus. Pak. J. Med. Sci. 2013, 29, 843–846. [Google Scholar] [CrossRef] [PubMed]
- Bar-Zeev, Y.; Haile, Z.T.; Chertok, I.A. Association Between Prenatal Smoking and Gestational Diabetes Mellitus. Obstet. Gynecol. 2020, 135, 91–99. [Google Scholar] [CrossRef] [PubMed]
- Guenther, P.M.; Reedy, J.; Krebs-Smith, S.M. Development of the Healthy Eating Index-2005. J. Am. Diet. Assoc. 2008, 108, 1896–1901. [Google Scholar] [CrossRef] [PubMed]
- Willett, W. Nutritional Epidemiology; Oxford University Press: New York, NY, USA, 2012. [Google Scholar]
- Hailpern, S.M.; Visintainer, P.F. Odds ratios and logistic regression: Further examples of their use and interpretation. Stata J. 2003, 3, 213–225. [Google Scholar] [CrossRef]
- Huang, F.L. Alternatives to logistic regression models in experimental studies. J. Exp. Educ. 2022, 90, 213–228. [Google Scholar] [CrossRef]
- Shah, N.S.; Wang, M.C.; Freaney, P.M.; Perak, A.M.; Carnethon, M.R.; Kandula, N.R.; Gunderson, E.P.; Bullard, K.M.; Grobman, W.A.; O’Brien, M.J.; et al. Trends in Gestational Diabetes at First Live Birth by Race and Ethnicity in the US, 2011–2019. JAMA 2021, 326, 660–669. [Google Scholar] [CrossRef]
- Rono, K.; Masalin, S.; Kautiainen, H.; Gissler, M.; Eriksson, J.G.; Laine, M.K. The impact of educational attainment on the occurrence of gestational diabetes mellitus in two successive pregnancies of Finnish primiparous women: A population-based cohort study. Acta Diabetol. 2020, 57, 1035–1042. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Stevens, G.D.; Wulu, J.T., Jr.; Politzer, R.M.; Xu, J. America’s Health Centers: Reducing racial and ethnic disparities in perinatal care and birth outcomes. Health Serv. Res. 2004, 39, 1881–1901. [Google Scholar] [CrossRef] [PubMed]
- La Verde, M.; Marrapodi, M.M.; Capristo, C.; Conte, A.; Molitierno, R.; Morlando, M.; Fordellone, M.; De Franciscis, P.; Campitiello, M.R.; Torella, M. Racial and ethnic disparities in non-invasive prenatal testing adherence: A retrospective cohort study. Minerva Obstet. Gynecol. 2024. [Google Scholar] [CrossRef] [PubMed]
- Carolan, M.; Davey, M.A.; Biro, M.A.; Kealy, M. Maternal age, ethnicity and gestational diabetes mellitus. Midwifery 2012, 28, 778–783. [Google Scholar] [CrossRef]
- DeSisto, C.L.; Kim, S.Y.; Sharma, A.J. Prevalence estimates of gestational diabetes mellitus in the United States, Pregnancy Risk Assessment Monitoring System (PRAMS), 2007–2010. Prev. Chronic Dis. 2014, 11, E104. [Google Scholar] [CrossRef]
- Winham, D.M.; Tisue, M.E.; Palmer, S.M.; Cichy, K.A.; Shelley, M.C. Dry Bean Preferences and Attitudes among Midwest Hispanic and Non-Hispanic White Women. Nutrients 2019, 11, 178. [Google Scholar] [CrossRef]
- National Center for Health Statistics. The National Health and Nutrition Examination Survey, 1999–2000. 2000. Available online: https://wwwn.cdc.gov/nchs/nhanes/continuousnhanes/overview.aspx?BeginYear=1999 (accessed on 30 June 2023).
- Guenther, P.M.; Dodd, K.W.; Reedy, J.; Krebs-Smith, S.M. Most Americans eat much less than recommended amounts of fruits and vegetables. J. Am. Diet. Assoc. 2006, 106, 1371–1379. [Google Scholar] [CrossRef]
- Semba, R.D.; Rahman, N.; Du, S.; Ramsing, R.; Sullivan, V.; Nussbaumer, E.; Love, D.; Bloem, M.W. Patterns of Legume Purchases and Consumption in the United States. Front. Nutr. 2021, 8, 732237. [Google Scholar] [CrossRef]
- Winham, D.M.; Armstrong Florian, T.L.; Thompson, S.V. Low-Income US Women Under-informed of the Specific Health Benefits of Consuming Beans. PLoS ONE 2016, 11, e0147592. [Google Scholar] [CrossRef]
- Inglis, V.; Ball, K.; Crawford, D. Why do women of low socioeconomic status have poorer dietary behaviours than women of higher socioeconomic status? A qualitative exploration. Appetite 2005, 45, 334–343. [Google Scholar] [CrossRef]
- Bartakova, V.; Kuricova, K.; Zlamal, F.; Belobradkova, J.; Kankova, K. Differences in food intake and genetic variability in taste receptors between Czech pregnant women with and without gestational diabetes mellitus. Eur. J. Nutr. 2018, 57, 513–521. [Google Scholar] [CrossRef]
- He, J.-R.; Yuan, M.-Y.; Chen, N.-N.; Lu, J.-H.; Hu, C.-Y.; Mai, W.-B.; Zhang, R.-F.; Pan, Y.-H.; Qiu, L.; Wu, Y.-F. Maternal dietary patterns and gestational diabetes mellitus: A large prospective cohort study in China. Br. J. Nutr. 2015, 113, 1292–1300. [Google Scholar] [CrossRef]
- Jenkins, D.J.; Wolever, T.M.; Leeds, A.R.; Gassull, M.A.; Haisman, P.; Dilawari, J.; Goff, D.V.; Metz, G.L.; Alberti, K.G. Dietary fibres, fibre analogues, and glucose tolerance: Importance of viscosity. Br. Med. J. 1978, 1, 1392–1394. [Google Scholar] [CrossRef]
- Yuan, L.J.; Qin, Y.; Wang, L.; Zeng, Y.; Chang, H.; Wang, J.; Wang, B.; Wan, J.; Chen, S.H.; Zhang, Q.Y.; et al. Capsaicin-containing chili improved postprandial hyperglycemia, hyperinsulinemia, and fasting lipid disorders in women with gestational diabetes mellitus and lowered the incidence of large-for-gestational-age newborns. Clin. Nutr. 2016, 35, 388–393. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, D.J.; Wolever, T.M.; Taylor, R.H.; Barker, H.M.; Fielden, H. Exceptionally low blood glucose response to dried beans: Comparison with other carbohydrate foods. Br. Med. J. 1980, 281, 578–580. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.R.; Alam, S.; Ali, S.; Bibi, S.; Khalil, I.A. Dietary fiber profile of food legumes. Sarhad J. Agric. 2007, 23, 763. [Google Scholar]
- Ou, S.; Kwok, K.; Li, Y.; Fu, L. In vitro study of possible role of dietary fiber in lowering postprandial serum glucose. J. Agric. Food Chem. 2001, 49, 1026–1029. [Google Scholar] [CrossRef]
- Miehle, E.; Haas, M.; Bader-Mittermaier, S.; Eisner, P. The role of hydration properties of soluble dietary fibers on glucose diffusion. Food Hydrocoll. 2022, 131, 107822. [Google Scholar] [CrossRef]
- Fabbri, A.D.; Schacht, R.W.; Crosby, G.A. Evaluation of resistant starch content of cooked black beans, pinto beans, and chickpeas. NFS J. 2016, 3, 8–12. [Google Scholar] [CrossRef]
- Haenen, D.; Zhang, J.; Souza da Silva, C.; Bosch, G.; van der Meer, I.M.; van Arkel, J.; van den Borne, J.J.; Perez Gutierrez, O.; Smidt, H.; Kemp, B.; et al. A diet high in resistant starch modulates microbiota composition, SCFA concentrations, and gene expression in pig intestine. J. Nutr. 2013, 143, 274–283. [Google Scholar] [CrossRef]
- Andrieux, C.; Pacheco, E.D.; Bouchet, B.; Gallant, D.; Szylit, O. Contribution of the digestive tract microflora to amylomaize starch degradation in the rat. Br. J. Nutr. 1992, 67, 489–499. [Google Scholar] [CrossRef] [PubMed]
- Bird, A.R.; Hayakawa, T.; Marsono, Y.; Gooden, J.M.; Record, I.R.; Correll, R.L.; Topping, D.L. Coarse brown rice increases fecal and large bowel short-chain fatty acids and starch but lowers calcium in the large bowel of pigs. J. Nutr. 2000, 130, 1780–1787. [Google Scholar] [CrossRef] [PubMed]
- Rahat-Rozenbloom, S.; Fernandes, J.; Cheng, J.; Gloor, G.B.; Wolever, T.M. The acute effects of inulin and resistant starch on postprandial serum short-chain fatty acids and second-meal glycemic response in lean and overweight humans. Eur. J. Clin. Nutr. 2017, 71, 227–233. [Google Scholar] [CrossRef] [PubMed]
- Chinedum, E.; Sanni, S.; Theressa, N.; Ebere, A. Effect of domestic cooking on the starch digestibility, predicted glycemic indices, polyphenol contents and alpha amylase inhibitory properties of beans (Phaseolis vulgaris) and breadfruit (Treculia africana). Int. J. Biol. Macromol. 2018, 106, 200–206. [Google Scholar] [CrossRef]
- Lee, S.-H.; Park, H.-J.; Chun, H.-K.; Cho, S.-Y.; Cho, S.-M.; Lillehoj, H.S. Dietary phytic acid lowers the blood glucose level in diabetic KK mice. Nutr. Res. 2006, 26, 474–479. [Google Scholar] [CrossRef]
- United States Department of Agriculture. USDA Standardized Recipe for Chili Con Carne with Beans. Available online: https://theicn.org/cnrb/pdfs/cacfp/Chili_Con_Carne_With_Beans_25-50_Final.pdf (accessed on 7 June 2023).
- Chaiyasit, K.; Khovidhunkit, W.; Wittayalertpanya, S. Pharmacokinetic and the effect of capsaicin in Capsicum frutescens on decreasing plasma glucose level. J. Med. Assoc. Thai 2009, 92, 108–113. [Google Scholar]
- Virginia Cooperative Extension Service Programs. Smart Shopper Recipe #4. Available online: https://vtechworks.lib.vt.edu/bitstream/handle/10919/75734/VCE348_163.pdf?sequence=1 (accessed on 7 June 2023).
- Mari-Sanchis, A.; Diaz-Jurado, G.; Basterra-Gortari, F.J.; de la Fuente-Arrillaga, C.; Martinez-Gonzalez, M.A.; Bes-Rastrollo, M. Association between pre-pregnancy consumption of meat, iron intake, and the risk of gestational diabetes: The SUN project. Eur. J. Nutr. 2018, 57, 939–949. [Google Scholar] [CrossRef]
- Zhang, C.; Schulze, M.B.; Solomon, C.G.; Hu, F.B. A prospective study of dietary patterns, meat intake and the risk of gestational diabetes mellitus. Diabetologia 2006, 49, 2604–2613. [Google Scholar] [CrossRef]
- Bao, W.; Bowers, K.; Tobias, D.K.; Hu, F.B.; Zhang, C. Prepregnancy dietary protein intake, major dietary protein sources, and the risk of gestational diabetes mellitus: A prospective cohort study. Diabetes Care 2013, 36, 2001–2008. [Google Scholar] [CrossRef]
- Heidemann, C.; Hoffmann, K.; Spranger, J.; Klipstein-Grobusch, K.; Mohlig, M.; Pfeiffer, A.F.; Boeing, H. A dietary pattern protective against type 2 diabetes in the European Prospective Investigation into Cancer and Nutrition (EPIC)—Potsdam Study cohort. Diabetologia 2005, 48, 1126–1134. [Google Scholar] [CrossRef] [PubMed]
- Jiang, R.; Ma, J.; Ascherio, A.; Stampfer, M.J.; Willett, W.C.; Hu, F.B. Dietary iron intake and blood donations in relation to risk of type 2 diabetes in men: A prospective cohort study. Am. J. Clin. Nutr. 2004, 79, 70–75. [Google Scholar] [CrossRef] [PubMed]
- U.S. Department of Agriculture. MyPlate. Available online: https://www.myplate.gov/myplate-kitchen/recipes?search=bean%20soup&items_per_page=50&sort_bef_combine=search_api_relevance_DESC&prev_search=bean%20soup (accessed on 13 June 2023).
- U.S. Department of Agriculture. USDA Adult Portion Recipe for Bean Soup. Available online: https://fns-prod.azureedge.us/sites/default/files/resource-files/Bean%20Soup%2025%20Servings.pdf (accessed on 13 June 2023).
- Rothman, K.J.; Greenland, S.; Lash, T.L. Modern Epidemiology; Wolters Kluwer Health/Lippincott Williams & Wilkins Philadelphia: Philadelphia, PA, USA, 2008; Volume 3. [Google Scholar]
- Morkrid, K.; Jenum, A.K.; Berntsen, S.; Sletner, L.; Richardsen, K.R.; Vangen, S.; Holme, I.; Birkeland, K.I. Objectively recorded physical activity and the association with gestational diabetes. Scand. J. Med. Sci. Sports 2014, 24, e389–e397. [Google Scholar] [CrossRef] [PubMed]
Analytic Sample (N = 1397) | ||
---|---|---|
Characteristics * | n (%[95% CI]) | Mean ± SD |
Age, years | 28.8 ± 5.6 | |
% of federal poverty level | 257.5 ± 189.0 | |
Race/ethnicity | ||
Non-Hispanic White | 1161 (83.8 [81.8–85.7]) | |
Non-Hispanic Black | 67 (4.8 [3.7–6.0]) | |
Hispanic | 93 (6.7 [5.4–8.0]) | |
Non-Hispanic Asian/Pacific Islander/other | 65 (4.7 [3.6–5.8]) | |
Highest education level | ||
1–8 years of grade school | 4 (0.3 [0.0–0.6]) | |
High school | 271 (20.9 [18.7–23.1]) | |
1–3 years of college | 519 (40.0 [37.4–42.7]) | |
College graduate | 383 (29.5 [27.1–32.0]) | |
Postgraduate | 120 (9.3 [7.7–10.8]) | |
College education | ||
Did not attend college | 275 (21.2 [19.0–23.4]) | |
Attended college | 1022 (78.8 [76.6–81.0]) | |
Mothers’ employment status | ||
Unemployed | 496 (35.7 [33.1–38.2]) | |
Employed | 895 (64.3 [61.8–66.9]) | |
Household size | ||
1–2 people | 358 (25.6 [23.3–27.9]) | |
3 people | 527 (37.7 [35.2–40.3]) | |
4 people | 282 (20.2 [18.1–22.3]) | |
5+ people | 230 (16.5 [14.5–18.4]) | |
Annual household income level | ||
<USD 25,000 | 312 (22.3 [20.2–24.5]) | |
USD 25,000–<USD 40,000 | 314 (22.5 [20.3–24.7]) | |
USD 40,000–<USD 60,000 | 317 (22.7 [20.5–24.9]) | |
≥USD 60,000 | 454 (32.5 [30.0–35.0]) | |
WIC recipient status | ||
Non-recipient | 823 (58.9 [56.3–61.5]) | |
Recipient | 574 (41.1 [38.5–43.7]) | |
Region | ||
New England | 68 (4.9 [3.7–6.0]) | |
Middle Atlantic | 165 (11.8 [10.1–13.5]) | |
East North Central | 281 (20.1 [18.0–22.2]) | |
West North Central | 136 (9.7 [8.2–11.3]) | |
South Atlantic | 230 (16.5 [14.5–18.4]) | |
East South Central | 79 (5.7 [4.4–6.9]) | |
West South Central | 151 (10.8 [9.2–12.4]) | |
Mountain | 136 (9.7 [8.2–11.3]) | |
Pacific | 151 (10.8 [9.2–12.4]) | |
Smoking during pregnancy | ||
No | 1240 (89.3 [87.7–90.9]) | |
Yes | 149 (10.7 [9.1–12.4]) |
Dried Bean | Chili | Bean Soup | |||||||
---|---|---|---|---|---|---|---|---|---|
Characteristics | Mean ± SD (Cups/Week) | Overall p-Value * | Pairwise Comparisons ** | Mean ± SD (Cups/Week) | Overall p-Value * | Pairwise Comparisons ** | Mean ± SD (Cups/Week) | Overall p-Value * | Pairwise Comparisons ** |
Overall | 0.31 ± 0.57 | 0.16 ± 0.35 | 0.10 ± 0.36 | ||||||
Race/ethnicity | <0.001 | <0.001 | 0.832 | ||||||
Non-Hispanic White | 0.28 ± 0.49 | a | 0.14 ± 0.28 | a | 0.10 ± 0.34 | ||||
Non-Hispanic Black | 0.25 ± 0.38 | a | 0.33 ± 0.90 | b | 0.09 ± 0.41 | ||||
Hispanic | 0.65 ± 1.06 | b | 0.15 ± 0.35 | a | 0.13 ± 0.36 | ||||
Non-Hispanic Asian/Pacific Islander/other | 0.33 ± 0.56 | a | 0.18 ± 0.31 | a,b | 0.11 ± 0.36 | ||||
Education level | 0.219 | 0.011 | 0.214 | ||||||
1–8 years of grade school | 0.12 ± 0.21 | 0.57 ± 0.41 | a | 0.05 ± 0.11 | |||||
High school | 0.28 ± 0.61 | 0.18 ± 0.37 | a,b | 0.07 ± 0.25 | |||||
1–3 years of college | 0.28 ± 0.46 | 0.15 ± 0.37 | a,b | 0.08 ± 0.29 | |||||
College graduate | 0.30 ± 0.52 | 0.11 ± 0.23 | b | 0.12 ± 0.45 | |||||
Postgraduate | 0.41 ± 0.79 | 0.13 ± 0.33 | a,b | 0.12 ± 0.30 | |||||
College education | 0.517 | 0.045 | 0.176 | ||||||
Did not attend college | 0.28 ± 0.60 | 0.18 ± 0.37 | a | 0.07 ± 0.25 | |||||
Attended college | 0.30 ± 0.53 | 0.14 ± 0.32 | b | 0.10 ± 0.36 | |||||
Mothers’ employment status | 0.382 | 0.332 | 0.615 | ||||||
Unemployed | 0.33 ± 0.62 | 0.17 ± 0.36 | 0.09 ± 0.29 | ||||||
Employed | 0.30 ± 0.54 | 0.15 ± 0.34 | 0.10 ± 0.38 | ||||||
Household size | 0.179 | 0.005 | 0.127 | ||||||
1–2 people | 0.32 ± 0.54 | 0.17 ± 0.43 | a, b | 0.13 ± 0.49 | |||||
3 people | 0.28 ± 0.56 | 0.11 ± 0.23 | a | 0.09 ± 0.29 | |||||
4 people | 0.29 ± 0.49 | 0.19 ± 0.40 | b | 0.07 ± 0.27 | |||||
5+ people | 0.38 ± 0.71 | 0.19 ± 0.34 | b | 0.13 ± 0.35 | |||||
Annual household income level | 0.278 | 0.032 | 0.841 | ||||||
<USD 25,000 | 0.26 ± 0.52 | 0.20 ± 0.51 | a | 0.11 ± 0.33 | |||||
USD 25,000–<USD 40,000 | 0.35 ± 0.63 | 0.14 ± 0.23 | a, b | 0.11 ± 0.44 | |||||
USD 40,000–<USD 60,000 | 0.32 ± 0.59 | 0.15 ± 0.28 | a, b | 0.10 ± 0.31 | |||||
≥USD 60,000 | 0.31 ± 0.54 | 0.13 ± 0.32 | b | 0.09 ± 0.34 | |||||
WIC recipient status | 0.567 | 0.016 | 0.765 | ||||||
Non-recipient | 0.32 ± 0.57 | 0.14 ± 0.29 | a | 0.10 ± 0.36 | |||||
Recipient | 0.30 ± 0.58 | 0.18 ± 0.41 | b | 0.10 ± 0.35 | |||||
Region | <0.001 | 0.034 | 0.597 | ||||||
New England | 0.26 ± 0.64 | a, b, c | 0.10 ± 0.24 | a, b | 0.13 ± 0.51 | ||||
Middle Atlantic | 0.31 ± 0.71 | a, b, c | 0.10 ± 0.26 | a | 0.14 ± 0.48 | ||||
East North Central | 0.22 ± 0.41 | a, b | 0.15 ± 0.26 | a, b | 0.07 ± 0.22 | ||||
West North Central | 0.15 ± 0.29 | a | 0.14 ± 0.31 | a, b | 0.07 ± 0.32 | ||||
South Atlantic | 0.36 ± 0.61 | b, c | 0.15 ± 0.52 | a, b | 0.10 ± 0.39 | ||||
East South Central | 0.44 ± 0.56 | b, c | 0.26 ± 0.36 | b | 0.11 ± 0.33 | ||||
West South Central | 0.40 ± 0.63 | c | 0.16 ± 0.27 | a, b | 0.10 ± 0.37 | ||||
Mountain | 0.32 ± 0.57 | a, b, c | 0.19 ± 0.36 | a, b | 0.11 ± 0.31 | ||||
Pacific | 0.38 ± 0.65 | b, c | 0.19 ± 0.35 | a, b | 0.13 ± 0.35 | ||||
Smoking during pregnancy | 0.135 | 0.616 | 0.350 | ||||||
No | 0.32 ± 0.58 | 0.15 ± 0.35 | 0.10 ± 0.37 | ||||||
Yes | 0.24 ± 0.48 | 0.17 ± 0.35 | 0.08 ± 0.28 |
Risk of Gestational Diabetes | ||||
---|---|---|---|---|
Characteristics * | Sample Size, N | n (% [95% CI]) | Mean Difference ± SE ** | p-Value *** |
Age, years | 1391 | 2.6 ± 0.6 | <0.001 | |
% of federal poverty level | 1397 | 38.5 ± 20.0 | 0.144 | |
Race/ethnicity | 0.862 | |||
Non-Hispanic White | 1161 | 82 (7.1 [5.6–8.5]) | ||
Non-Hispanic Black | 67 | 3 (4.5 [0.0–9.4]) | ||
Hispanic | 93 | 6 (6.5 [1.5–11.4]) | ||
Non-Hispanic Asian/Pacific Islander/other | 65 | 5 (7.7 [1.2–14.2]) | ||
Highest education level | 0.461 | |||
1–8 years of grade school | 4 | 0 (0.0 [0.0–0.0]) | ||
High school | 271 | 19 (7.0 [4.0–10.1]) | ||
1–3 years of college | 519 | 32 (6.2 [4.1–8.2]) | ||
College graduate | 383 | 26 (6.8 [4.3–9.3]) | ||
Postgraduate | 120 | 13 (10.8 [5.3–16.4]) | ||
College education | 0.982 | |||
Did not attend college | 275 | 19 (6.9 [3.9–9.9]) | ||
Attended college | 1022 | 71 (7.0 [5.4–8.5]) | ||
Mothers’ employment status | 0.696 | |||
Unemployed | 496 | 36 (7.3 [5.0–9.5]) | ||
Employed | 895 | 60 (6.7 [5.1–8.3]) | ||
Household size | 0.408 | |||
1–2 people | 358 | 26 (7.3 [4.6–10.0]) | ||
3 people | 527 | 39 (7.4 [5.2–9.6]) | ||
4 people | 282 | 13 (4.6 [2.2–7.1]) | ||
5+ people | 230 | 18 (7.8 [4.4–11.3]) | ||
Annual household income level | 0.326 | |||
<25,000 | 312 | 23 (7.4 [4.5–10.3]) | ||
25,000–<40,000 | 314 | 15 (4.8 [2.4–7.1]) | ||
40,000–<60,000 | 317 | 21 (6.6 [3.9–9.4]) | ||
≥60,000 | 454 | 37 (8.2 [5.6–10.7]) | ||
WIC recipient status | 0.599 | |||
Non-recipient | 823 | 59 (7.2 [5.4–8.9]) | ||
Recipient | 574 | 37 (6.5 [4.4–8.5]) | ||
Region | 0.557 | |||
New England | 68 | 4 (5.9 [0.3–11.5]) | ||
Middle Atlantic | 165 | 13 (7.9 [3.8–12.0]) | ||
East North Central | 281 | 18 (6.4 [3.5–9.3]) | ||
West North Central | 136 | 10 (7.4 [3.0–11.7]) | ||
South Atlantic | 230 | 15 (6.5 [3.3–9.7]) | ||
East South Central | 79 | 3 (3.8 [0.0–8.0]) | ||
West South Central | 151 | 15 (9.9 [5.2–14.7]) | ||
Mountain | 136 | 5 (3.7 [0.5–6.8]) | ||
Pacific | 151 | 13 (8.6 [4.1–13.1]) | ||
Smoking during pregnancy | 0.019 | |||
No | 1240 | 78 (6.3 [4.9–7.6]) | ||
Yes | 149 | 17 (11.4 [6.3–16.5]) |
Maternal Bean Consumption During Pregnancy | Risk of Gestational Diabetes | |||||
---|---|---|---|---|---|---|
Sample Size, N | n (% [95% CI]) | Crude OR (95% CI) | Crude OR p-Value | Adjusted OR (95% CI) * | Adjusted OR p-Value | |
Frequency of dried bean consumption | ||||||
Never | 633 | 44 (7.0 [5.0–8.9]) | Reference | Reference | ||
1 time per month | 214 | 14 (6.5 [3.2–9.9]) | 0.94 (0.50–1.75) | 0.838 | 0.93 (0.48–1.79) | 0.834 |
2–3 times per month | 320 | 23 (7.2 [4.4–10.0]) | 1.04 (0.61–1.75) | 0.893 | 1.01 (0.58–1.78) | 0.969 |
1 time per week or more | 229 | 15 (6.6 [3.4–9.8]) | 0.94 (0.51–1.72) | 0.837 | 0.82 (0.41–1.62) | 0.569 |
Amount of dried bean consumption, 1 cup/week increment | 1394 | 0.98 (0.68–1.42) | 0.930 | 0.82 (0.51–1.34) | 0.430 | |
Frequency of chili consumption | ||||||
Never | 903 | 67 (7.4 [5.7–9.1]) | Reference | Reference | ||
1 time per month | 312 | 11 (3.5 [1.5–5.6]) | 0.46 (0.24–0.87) | 0.018 | 0.37 (0.17–0.79) | 0.011 |
2–3 times per month or more | 179 | 18 (10.1 [5.7–14.5]) | 1.40 (0.81–2.41) | 0.233 | 1.41 (0.77–2.57) | 0.266 |
Amount of chili consumption, 1 cup/week increment | 1393 | 1.36 (0.87–2.12) | 0.176 | 1.42 (0.84–2.40) | 0.196 | |
Frequency of bean soup consumption | ||||||
Never | 1140 | 75 (6.6 [5.1–8.0]) | Reference | Reference | ||
1 time per month | 211 | 19 (9.0 [5.1–12.9]) | 1.41 (0.83–2.38) | 0.205 | 1.30 (0.72–2.33) | 0.380 |
2–3 times per month or more | 41 | 2 (4.9 [0.0–11.5]) | 0.73 (0.17–3.07) | 0.666 | 0.40 (0.05–3.08) | 0.382 |
Amount of bean soup consumption, 1 cup/week increment | 1392 | 0.93 (0.50–1.73) | 0.817 | 0.76 (0.33–1.72) | 0.505 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wen, X.; Makama, F.; Buzby, R.; Nguyen, J.; Durnell, R.; Ekhator, I.; Chan, D.; Rideout, T.C. Moderate Chili Consumption During Pregnancy Is Associated with a Low Risk of Gestational Diabetes (GDM). Nutrients 2025, 17, 1025. https://doi.org/10.3390/nu17061025
Wen X, Makama F, Buzby R, Nguyen J, Durnell R, Ekhator I, Chan D, Rideout TC. Moderate Chili Consumption During Pregnancy Is Associated with a Low Risk of Gestational Diabetes (GDM). Nutrients. 2025; 17(6):1025. https://doi.org/10.3390/nu17061025
Chicago/Turabian StyleWen, Xiaozhong, Fatima Makama, Ryan Buzby, Jeremy Nguyen, Rose Durnell, Iyobosa Ekhator, Daren Chan, and Todd C. Rideout. 2025. "Moderate Chili Consumption During Pregnancy Is Associated with a Low Risk of Gestational Diabetes (GDM)" Nutrients 17, no. 6: 1025. https://doi.org/10.3390/nu17061025
APA StyleWen, X., Makama, F., Buzby, R., Nguyen, J., Durnell, R., Ekhator, I., Chan, D., & Rideout, T. C. (2025). Moderate Chili Consumption During Pregnancy Is Associated with a Low Risk of Gestational Diabetes (GDM). Nutrients, 17(6), 1025. https://doi.org/10.3390/nu17061025