Omega-3 Fatty Acids, Furan Fatty Acids, and Hydroxy Fatty Acid Esters: Dietary Bioactive Lipids with Potential Benefits for MAFLD and Liver Health
Highlights
- Polyunsaturated fatty acids (PUFAs), particularly omega-3 fatty acids, have shown positive results in managing liver dysfunctions including MAFLD.
- Other bioactive lipids, such as the furan fatty acids (FuFAs) and the newly discovered fatty acid esters of hydroxylated fatty acids (FAHFAs), may be promising options for diversifying and enhancing the resilience of the available pool of bioactive lipids.
- Furan fatty acids (FuFAs) have insulin-sensitizing properties and may therefore have a beneficial effect on MAFLD.
- FAHFAs have been found to be beneficial for hepatic insulin resistance and inflammation.
- Further research is needed to confirm the beneficial effects of FuFAs and FAHFAs on MAFLD and hepatic metabolism.
Abstract
:1. Introduction
2. Methodology
3. Omega-3 Fatty Acids
4. Furan Fatty Acids (FuFAs)
4.1. FuFAs Structure and Metabolism
4.2. Benefits of FuFAs on Liver Health
5. Branched Fatty Acid Esters of Hydroxy Fatty Acids (FAHFAs)
5.1. FAHFAs Structure and Metabolism
5.2. Benefits of FAHFAs on Liver Health
Author, Year | FAHFAs | Experimental Models | Dose & Duration | Conclusion |
---|---|---|---|---|
Wang et al., 2018 [129] | 9-PAHSA | Mouse Model (obesogenic mice, oral gavage) In vitro model 3T3-L1 | 50 mg/kg/day (4 weeks) 5/10/20/30 μM (8 days) | Increased browning of white adipose tissue Increased browning of 3T3-L1 adipocytes |
Wang et al., 2019 [124] | 5-PAHSA | Mouse model (obesogenic mice, oral gavage) In vitro model (HepG2, 3T3-L1) | 50–150 mg/kg/day (1 month) 20 μM (2 days) | No effect on body weight, glycemia, and insulin levels Increased liver steatosis and inflammation Improvement in glucose tolerance Significant decrease in insulin resistance |
Zhou et al., 2019 [126] | 5-PAHSA 9-PAHSA | Mouse model (obesogenic mice, IV infusion) | 30 mg/kg/day (up to 29 weeks) | Decreased glycemia and white adipose tissue lipolysis Increased hepatic and systemic insulin sensitivity |
Schultz Moreira et al., 2020 [125] | 9-PAHSA | In vitro model (HepG2 and primary murine hepatocytes) | 5/10/20/40 μM (6 h) | Improvement in mitochondrial dysfunction Reduction in lipid accumulation |
Benlebna et al., 2020 [119] | 9-PAHPA 9-OAHPA | Mouse model (obesogenic mice, dietary intake) | 15 mg/kg/day (12 weeks) | No effect on body weight, glucose tolerance, liver steatosis, and oxidative stress Increase in basal metabolism Improvement in insulin sensitivity |
Benlebna et al., 2021 [122] | 9-PAHPA 9-OAHPA | Mouse model (healthy mice, dietary intake) | 15 mg/kg/day (12 weeks) | No effect on obesity, hyperlipidemia, glucose intolerance, liver steatosis, and oxidative stress Amelioration of peripheral insulin resistance Thermogenic phenotype in white adipose tissue induction |
Bonafos et al., 2023 [123] | 9-PAHPA | Mouse model (obesogenic mice, dietary intake) | 15 mg/kg/day (8 weeks) | No effect on body weight, energy expenditure, hyperglycemia, liver steatosis, and oxidative stress Improvement in insulin sensitivity |
Situmorang et al., 2023 [127] | 9-POHSA | In vitro model (rat hepatocytes) | 2.5/5/10 μM (24 h) | Decreased IL6, TNF-α, and connective tissue growth factor (CTGF) expression |
Loh et al., 2023 [128] | 9-OHSA | Syrian hamster model (obesogenic model, continuous delivery via mini-osmotic pump implanted subcutaneously) In vitro models (rat hepatocytes) | ND (42 days) 10/20/40 μM (24 h) | Decreased lipoapoptosis and dyslipidemia Decreased apoptosis and oxidative stress Improvement in protein kinase Cδ |
Colson et al., 2023 [130] | 9-PAHPA 9-PAHSA | In vitro model (human multipotent adipose-derived stem cell) | 1/3/10 Μm (4 days) | Increased browning of white adipocytes |
6. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Younossi, Z.M.; Wong, G.; Anstee, Q.M.; Henry, L. The Global Burden of Liver Disease. Clin. Gastroenterol. Hepatol. 2023, 21, 1978–1991. [Google Scholar] [CrossRef] [PubMed]
- Gofton, C.; Upendran, Y.; Zheng, M.-H.; George, J. MAFLD: How Is It Different from NAFLD? Clin. Mol. Hepatol. 2023, 29, S17–S31. [Google Scholar] [CrossRef] [PubMed]
- Younossi, Z.M.; Koenig, A.B.; Abdelatif, D.; Fazel, Y.; Henry, L.; Wymer, M. Global Epidemiology of Nonalcoholic Fatty Liver Disease-Meta-Analytic Assessment of Prevalence, Incidence, and Outcomes. Hepatology 2016, 64, 73–84. [Google Scholar] [CrossRef]
- Younossi, Z.M.; Golabi, P.; Paik, J.M.; Henry, A.; Van Dongen, C.; Henry, L. The Global Epidemiology of Nonalcoholic Fatty Liver Disease (NAFLD) and Nonalcoholic Steatohepatitis (NASH): A Systematic Review. Hepatology 2023, 77, 1335–1347. [Google Scholar] [CrossRef]
- Argo, C.K.; Caldwell, S.H. Epidemiology and Natural History of Non-Alcoholic Steatohepatitis. Clin. Liver Dis. 2009, 13, 511–531. [Google Scholar] [CrossRef]
- Adams, L.A.; Lymp, J.F.; St. Sauver, J.; Sanderson, S.O.; Lindor, K.D.; Feldstein, A.; Angulo, P. The Natural History of Nonalcoholic Fatty Liver Disease: A Population-Based Cohort Study. Gastroenterology 2005, 129, 113–121. [Google Scholar] [CrossRef] [PubMed]
- Hui, J.M.; Kench, J.G.; Chitturi, S.; Sud, A.; Farrell, G.C.; Byth, K.; Hall, P.; Khan, M.; George, J. Long-Term Outcomes of Cirrhosis in Nonalcoholic Steatohepatitis Compared with Hepatitis C. Hepatology 2003, 38, 420–427. [Google Scholar] [CrossRef]
- Buzzetti, E.; Pinzani, M.; Tsochatzis, E.A. The Multiple-Hit Pathogenesis of Non-Alcoholic Fatty Liver Disease (NAFLD). Metabolism 2016, 65, 1038–1048. [Google Scholar] [CrossRef]
- Loomba, R.; Friedman, S.L.; Shulman, G.I. Mechanisms and Disease Consequences of Nonalcoholic Fatty Liver Disease. Cell 2021, 184, 2537–2564. [Google Scholar] [CrossRef]
- Harrison, S.A.; Bedossa, P.; Guy, C.D.; Schattenberg, J.M.; Loomba, R.; Taub, R.; Labriola, D.; Moussa, S.E.; Neff, G.W.; Rinella, M.E.; et al. A Phase 3, Randomized, Controlled Trial of Resmetirom in NASH with Liver Fibrosis. N. Engl. J. Med. 2024, 390, 497–509. [Google Scholar] [CrossRef]
- FDA Approves First Treatment for Patients with Liver Scarring Due to Fatty Liver Disease. Available online: https://www.fda.gov/news-events/press-announcements/fda-approves-first-treatment-patients-liver-scarring-due-fatty-liver-disease (accessed on 10 May 2024).
- Zeng, X.-F.; Varady, K.A.; Wang, X.-D.; Targher, G.; Byrne, C.D.; Tayyem, R.; Latella, G.; Bergheim, I.; Valenzuela, R.; George, J.; et al. The Role of Dietary Modification in the Prevention and Management of Metabolic Dysfunction-Associated Fatty Liver Disease: An International Multidisciplinary Expert Consensus. Metabolism 2024, 161, 156028. [Google Scholar] [CrossRef]
- Gammone, M.A.; Riccioni, G.; Parrinello, G.; D’Orazio, N. Omega-3 Polyunsaturated Fatty Acids: Benefits and Endpoints in Sport. Nutrients 2019, 11, 46. [Google Scholar] [CrossRef] [PubMed]
- Videla, L.A.; Hernandez-Rodas, M.C.; Metherel, A.H.; Valenzuela, R. Influence of the Nutritional Status and Oxidative Stress in the Desaturation and Elongation of n-3 and n-6 Polyunsaturated Fatty Acids: Impact on Non-Alcoholic Fatty Liver Disease. Prostaglandins Leukot. Essent. Fat. Acids 2022, 181, 102441. [Google Scholar] [CrossRef]
- Valenzuela, R.; Metherel, A.H.; Cisbani, G.; Smith, M.E.; Chouinard-Watkins, R.; Klievik, B.J.; Videla, L.A.; Bazinet, R.P. Protein Concentrations and Activities of Fatty Acid Desaturase and Elongase Enzymes in Liver, Brain, Testicle, and Kidney from Mice: Substrate Dependency. BioFactors 2024, 50, 89–100. [Google Scholar] [CrossRef] [PubMed]
- Office of Dietary Supplements—Omega-3 Fatty Acids. Available online: https://ods.od.nih.gov/factsheets/Omega3FattyAcids-Consumer/ (accessed on 16 April 2024).
- Ghasemi Fard, S.; Cameron-Smith, D.; Sinclair, A.J. N-3 Docosapentaenoic Acid: The Iceberg n-3 Fatty Acid. Curr. Opin. Clin. Nutr. Metab. Care 2021, 24, 134–138. [Google Scholar] [CrossRef]
- Alvarado, K.; Durand, E.; Vaysse, L.; Liengprayoon, S.; Gaillet, S.; Coudray, C.; Casas, F.; Feillet-Coudray, C. Effets Bénéfiques Potentiels Des Acides Gras Furaniques, Des Lipides Alimentaires Bioactifs. Cah. Nutr. Diététique 2021, 56, 117–125. [Google Scholar] [CrossRef]
- Swanson, D.; Block, R.; Mousa, S.A. Omega-3 Fatty Acids EPA and DHA: Health Benefits throughout Life. Adv. Nutr. 2012, 3, 1–7. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA). Dietary Reference Values for Nutrients Summary Report. EFSA Support. Publ. 2017, 14, e15121E. [Google Scholar] [CrossRef]
- Actualisation des Apports Nutritionnels Conseillés Pour les Acides Gras—Version Intégrant les Modifications Apportées par L’erratum du 28 Juillet 2011. Available online: https://www.anses.fr/fr/system/files/NUT2006sa0359Ra.pdf (accessed on 30 December 2024).
- Innes, J.K.; Calder, P.C. Omega-6 Fatty Acids and Inflammation. Prostaglandins Leukot Essent Fat. Acids 2018, 132, 41–48. [Google Scholar] [CrossRef]
- Étude Individuelle Nationale des Consommations Alimentaires 3 (INCA 3). Available online: https://www.anses.fr/fr/system/files/NUT2014SA0234Ra.pdf (accessed on 30 December 2024).
- Khoury, M.; Chamsine, S.; Merheb, C.; Arfoul, E.; Rached, M.; Younes, F.; Osta, N.E.; Laye, S.; Aoun, C.; Papazian, T.; et al. Binge Eating among Young Adults: Association with Sociodemographic Factors, Nutritional Intake, Dietary n-6:N-3 Ratio and Impulsivity. Br. J. Nutr. 2021, 126, 1431–1440. [Google Scholar] [CrossRef]
- Simopoulos, A.P. Evolutionary Aspects of Diet: The Omega-6/Omega-3 Ratio and the Brain. Mol. Neurobiol. 2011, 44, 203–215. [Google Scholar] [CrossRef] [PubMed]
- Simopoulos, A.P.; DiNicolantonio, J.J. The Importance of a Balanced ω-6 to ω-3 Ratio in the Prevention and Management of Obesity. Open Heart 2016, 3, e000385. [Google Scholar] [CrossRef]
- West, A.L.; Miles, E.A.; Lillycrop, K.A.; Napier, J.A.; Calder, P.C.; Burdge, G.C. Genetically Modified Plants Are an Alternative to Oily Fish for Providing N-3 Polyunsaturated Fatty Acids in the Human Diet: A Summary of the Findings of a Biotechnology and Biological Sciences Research Council Funded Project. Nutr. Bull. 2021, 46, 60–68. [Google Scholar] [CrossRef] [PubMed]
- Baker, E.J. Alternative Sources of Bioactive Omega-3 Fatty Acids: What Are the Options? Curr. Opin. Clin. Nutr. Metab. Care 2024, 27, 106–115. [Google Scholar] [CrossRef] [PubMed]
- Colombo, S.M.; Rodgers, T.F.M.; Diamond, M.L.; Bazinet, R.P.; Arts, M.T. Projected Declines in Global DHA Availability for Human Consumption as a Result of Global Warming. Ambio 2020, 49, 865–880. [Google Scholar] [CrossRef]
- Belide, S.; Shrestha, P.; Kennedy, Y.; Leonforte, A.; Devine, M.D.; Petrie, J.R.; Singh, S.P.; Zhou, X.-R. Engineering Docosapentaenoic Acid (DPA) and Docosahexaenoic Acid (DHA) in Brassica Juncea. Plant Biotechnol. J. 2022, 20, 19–21. [Google Scholar] [CrossRef]
- Drouin, G.; Rioux, V.; Legrand, P. The N-3 Docosapentaenoic Acid (DPA): A New Player in the n-3 Long Chain Polyunsaturated Fatty Acid Family. Biochimie 2019, 159, 36–48. [Google Scholar] [CrossRef]
- Leaf, A. Prevention of Sudden Cardiac Death by N-3 Polyunsaturated Fatty Acids. J. Cardiovasc. Med. 2007, 8 (Suppl. S1), S27–S29. [Google Scholar] [CrossRef]
- Laukkanen, J.A.; Bernasconi, A.A.; Lavie, C.J. Bringing the Potential Benefits of Omega-3 to a Higher Level. Mayo Clin. Proc. 2024, 99, 520–523. [Google Scholar] [CrossRef]
- Von Schacky, C.; Harris, W.S. Why Docosapentaenoic Acid Is Not Included in the Omega-3 Index. Prostaglandins Leukot Essent Fat. Acids 2018, 135, 18–21. [Google Scholar] [CrossRef]
- Richter, C.K.; Bisselou, K.S.; Nordgren, T.M.; Smith, L.; Appiah, A.K.; Hein, N.; Anderson-Berry, A.; Kris-Etherton, P.; Hanson, C.; Skulas-Ray, A.C. N-3 Docosapentaenoic Acid Intake and Relationship with Plasma Long-Chain n-3 Fatty Acid Concentrations in the United States: NHANES 2003–2014. Lipids 2019, 54, 221–230. [Google Scholar] [CrossRef]
- Shrestha, N.; Sleep, S.L.; Cuffe, J.S.M.; Holland, O.J.; Perkins, A.V.; Yau, S.Y.; McAinch, A.J.; Hryciw, D.H. Role of Omega-6 and Omega-3 Fatty Acids in Fetal Programming. Clin. Exp. Pharmacol. Physiol. 2020, 47, 907–915. [Google Scholar] [CrossRef] [PubMed]
- Covington, M.B. Omega-3 Fatty Acids. Am. Fam. Physician 2004, 70, 133–140. [Google Scholar]
- Zhang, X.; Ritonja, J.A.; Zhou, N.; Chen, B.E.; Li, X. Omega-3 Polyunsaturated Fatty Acids Intake and Blood Pressure: A Dose-Response Meta-Analysis of Randomized Controlled Trials. J. Am. Heart Assoc. 2022, 11, e025071. [Google Scholar] [CrossRef] [PubMed]
- Rajaei, E.; Mowla, K.; Ghorbani, A.; Bahadoram, S.; Bahadoram, M.; Dargahi-Malamir, M. The Effect of Omega-3 Fatty Acids in Patients With Active Rheumatoid Arthritis Receiving DMARDs Therapy: Double-Blind Randomized Controlled Trial. Glob. J. Health Sci. 2016, 8, 18–25. [Google Scholar] [CrossRef]
- Bozzatello, P.; Brignolo, E.; De Grandi, E.; Bellino, S. Supplementation with Omega-3 Fatty Acids in Psychiatric Disorders: A Review of Literature Data. J. Clin. Med. 2016, 5, 67. [Google Scholar] [CrossRef] [PubMed]
- Cadenhead, K.S.; Minichino, A.; Kelsven, S.; Addington, J.; Bearden, C.; Cannon, T.D.; Cornblatt, B.A.; Mathalon, D.; McGlashan, T.H.; Perkins, D.O.; et al. Metabolic Abnormalities and Low Dietary Omega 3 Are Associated with Symptom Severity and Worse Functioning Prior to the Onset of Psychosis: Findings from the North American Prodrome Longitudinal Studies Consortium. Schizophr. Res. 2019, 204, 96–103. [Google Scholar] [CrossRef]
- Polokowski, A.R.; Shakil, H.; Carmichael, C.L.; Reigada, L.C. Omega-3 Fatty Acids and Anxiety: A Systematic Review of the Possible Mechanisms at Play. Nutr. Neurosci. 2020, 23, 494–504. [Google Scholar] [CrossRef]
- Kaur, G.; Mason, R.P.; Steg, P.G.; Bhatt, D.L. Omega-3 Fatty Acids for Cardiovascular Event Lowering. Eur. J. Prev. Cardiol. 2024, 31, 1005–1014. [Google Scholar] [CrossRef]
- Rohwer, N.; Jelleschitz, J.; Höhn, A.; Weber, D.; Kühl, A.A.; Wang, C.; Ohno, R.-I.; Kampschulte, N.; Pietzner, A.; Schebb, N.H.; et al. Prevention of Colitis-Induced Liver Oxidative Stress and Inflammation in a Transgenic Mouse Model with Increased Omega-3 Polyunsaturated Fatty Acids. Redox Biol. 2023, 64, 102803. [Google Scholar] [CrossRef]
- Yang, J.; Fernández-Galilea, M.; Martínez-Fernández, L.; González-Muniesa, P.; Pérez-Chávez, A.; Martínez, J.A.; Moreno-Aliaga, M.J. Oxidative Stress and Non-Alcoholic Fatty Liver Disease: Effects of Omega-3 Fatty Acid Supplementation. Nutrients 2019, 11, 872. [Google Scholar] [CrossRef] [PubMed]
- Spooner, M.H.; Jump, D.B. Nonalcoholic Fatty Liver Disease and Omega-3 Fatty Acids: Mechanisms and Clinical Use. Annu. Rev. Nutr. 2023, 43, 199–223. [Google Scholar] [CrossRef] [PubMed]
- Moore, E.; Patanwala, I.; Jafari, A.; Davies, I.G.; Kirwan, R.P.; Newson, L.; Mazidi, M.; Lane, K.E. A Systematic Review and Meta-Analysis of Randomized Controlled Trials to Evaluate Plant-Based Omega-3 Polyunsaturated Fatty Acids in Nonalcoholic Fatty Liver Disease Patient Biomarkers and Parameters. Nutr. Rev. 2024, 82, 143–165. [Google Scholar] [CrossRef] [PubMed]
- Musazadeh, V.; Karimi, A.; Malekahmadi, M.; Ahrabi, S.S.; Dehghan, P. Omega-3 Polyunsaturated Fatty Acids in the Treatment of Non-Alcoholic Fatty Liver Disease: An Umbrella Systematic Review and Meta-Analysis. Clin. Exp. Pharmacol. Physiol. 2023, 50, 327–334. [Google Scholar] [CrossRef]
- Lee, C.-H.; Fu, Y.; Yang, S.-J.; Chi, C.-C. Effects of Omega-3 Polyunsaturated Fatty Acid Supplementation on Non-Alcoholic Fatty Liver: A Systematic Review and Meta-Analysis. Nutrients 2020, 12, 2769. [Google Scholar] [CrossRef]
- Musa-Veloso, K.; Venditti, C.; Lee, H.Y.; Darch, M.; Floyd, S.; West, S.; Simon, R. Systematic Review and Meta-Analysis of Controlled Intervention Studies on the Effectiveness of Long-Chain Omega-3 Fatty Acids in Patients with Nonalcoholic Fatty Liver Disease. Nutr. Rev. 2018, 76, 581. [Google Scholar] [CrossRef]
- Yan, J.-H.; Guan, B.-J.; Gao, H.-Y.; Peng, X.-E. Omega-3 Polyunsaturated Fatty Acid Supplementation and Non-Alcoholic Fatty Liver Disease: A Meta-Analysis of Randomized Controlled Trials. Medicine 2018, 97, e12271. [Google Scholar] [CrossRef]
- Yu, L.; Yuan, M.; Wang, L. The Effect of Omega-3 Unsaturated Fatty Acids on Non-Alcoholic Fatty Liver Disease: A Systematic Review and Meta-Analysis of RCTs. Pak. J. Med. Sci. 2017, 33, 1022. [Google Scholar] [CrossRef]
- He, X.-X.; Wu, X.-L.; Chen, R.-P.; Chen, C.; Liu, X.-G.; Wu, B.-J.; Huang, Z.-M. Effectiveness of Omega-3 Polyunsaturated Fatty Acids in Non-Alcoholic Fatty Liver Disease: A Meta-Analysis of Randomized Controlled Trials. PLoS ONE 2016, 11, e0162368. [Google Scholar] [CrossRef]
- Lu, W.; Li, S.; Li, J.; Wang, J.; Zhang, R.; Zhou, Y.; Yin, Q.; Zheng, Y.; Wang, F.; Xia, Y.; et al. Effects of Omega-3 Fatty Acid in Nonalcoholic Fatty Liver Disease: A Meta-Analysis. Gastroenterol. Res. Pract. 2016, 2016, 1459790. [Google Scholar] [CrossRef]
- Parker, H.M.; Johnson, N.A.; Burdon, C.A.; Cohn, J.S.; O’Connor, H.T.; George, J. Omega-3 Supplementation and Non-Alcoholic Fatty Liver Disease: A Systematic Review and Meta-Analysis. J. Hepatol. 2012, 56, 944–951. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.-F.; Yang, B.; Tang, J.; Li, D. Fatty Acid and Non-Alcoholic Fatty Liver Disease: Meta-Analyses of Case-Control and Randomized Controlled Trials. Clin. Nutr. 2018, 37, 113–122. [Google Scholar] [CrossRef]
- Das, U.N. Essential Fatty Acids and Their Metabolites Could Function as Endogenous HMG-CoA Reductase and ACE Enzyme Inhibitors, Anti-Arrhythmic, Anti-Hypertensive, Anti-Atherosclerotic, Anti-Inflammatory, Cytoprotective, and Cardioprotective Molecules. Lipids Health Dis. 2008, 7, 37. [Google Scholar] [CrossRef]
- Anand, R.; Kaithwas, G. Anti-Inflammatory Potential of Alpha-Linolenic Acid Mediated Through Selective COX Inhibition: Computational and Experimental Data. Inflammation 2014, 37, 1297–1306. [Google Scholar] [CrossRef] [PubMed]
- Cholewski, M.; Tomczykowa, M.; Tomczyk, M. A Comprehensive Review of Chemistry, Sources and Bioavailability of Omega-3 Fatty Acids. Nutrients 2018, 10, 1662. [Google Scholar] [CrossRef] [PubMed]
- Pham, T.-P.-T.; Hoang, T.-V.; Cao, P.-T.-N.; Le, T.-T.-D.; Ho, V.-T.-N.; Vu, T.-M.-H.; Le, T.-H.-T.; Pham, H.-T.-X.; Tran, T.-T.; Mafruhah, O.R.; et al. Comparison of Omega-3 Polyunsaturated Fatty Acids Bioavailability in Fish Oil and Krill Oil: Network Meta-Analyses. Food Chem. X 2024, 24, 101880. [Google Scholar] [CrossRef]
- Theodoridis, X.; Kalopitas, G.; Vadarlis, A.; Bakaloudi, D.R.; Gkiourtzis, Ν.; Dionysopoulos, G.; Karanika, E.; Tsekitsidi, E.; Chourdakis, M. Comparative Efficacy of Different Treatment Modalities in the Management of Pediatric Non-Alcoholic Fatty Liver Disease: A Systematic Review and Network Meta-Analysis. Pharmacol. Ther. 2022, 240, 108294. [Google Scholar] [CrossRef]
- Paik, J.M.; Kabbara, K.; Eberly, K.E.; Younossi, Y.; Henry, L.; Younossi, Z.M. Global Burden of NAFLD and Chronic Liver Disease among Adolescents and Young Adults. Hepatology 2022, 75, 1204–1217. [Google Scholar] [CrossRef]
- Golabi, P.; Paik, J.M.; AlQahtani, S.; Younossi, Y.; Tuncer, G.; Younossi, Z.M. Burden of Non-Alcoholic Fatty Liver Disease in Asia, the Middle East and North Africa: Data from Global Burden of Disease 2009–2019. J. Hepatol. 2021, 75, 795–809. [Google Scholar] [CrossRef]
- Albracht-Schulte, K.; Kalupahana, N.S.; Ramalingam, L.; Wang, S.; Rahman, S.M.; Robert-McComb, J.; Moustaid-Moussa, N. Omega-3 Fatty Acids in Obesity and Metabolic Syndrome: A Mechanistic Update. J. Nutr. Biochem. 2018, 58, 1–16. [Google Scholar] [CrossRef]
- Lombardo, Y.B.; Chicco, A.G. Effects of Dietary Polyunsaturated N-3 Fatty Acids on Dyslipidemia and Insulin Resistance in Rodents and Humans. A Review. J. Nutr. Biochem. 2006, 17, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Dyall, S.C.; Balas, L.; Bazan, N.G.; Brenna, J.T.; Chiang, N.; da Costa Souza, F.; Dalli, J.; Durand, T.; Galano, J.-M.; Lein, P.J.; et al. Polyunsaturated Fatty Acids and Fatty Acid-Derived Lipid Mediators: Recent Advances in the Understanding of Their Biosynthesis, Structures, and Functions. Prog. Lipid Res. 2022, 86, 101165. [Google Scholar] [CrossRef] [PubMed]
- Juárez-Hernández, E.; Chávez-Tapia, N.C.; Uribe, M.; Barbero-Becerra, V.J. Role of Bioactive Fatty Acids in Nonalcoholic Fatty Liver Disease. Nutr. J. 2016, 15, 72. [Google Scholar] [CrossRef] [PubMed]
- Ronis, M.J.J.; Baumgardner, J.N.; Sharma, N.; Vantrease, J.; Ferguson, M.; Tong, Y.; Wu, X.; Cleves, M.A.; Badger, T.M. Medium Chain Triglycerides Dose-Dependently Prevent Liver Pathology in a Rat Model of Non-Alcoholic Fatty Liver Disease. Exp. Biol. Med. 2013, 238, 151–162. [Google Scholar] [CrossRef]
- Coudray, C.; Durand, E.; Balas, L.; Sultan, A.; Casas, F.; Feillet-Coudray, C. Potential Favourable Health Effects of Some Dietary Uncommon Fatty Acids. OCL 2021, 28, 41. [Google Scholar] [CrossRef]
- Wendlinger, C.; Vetter, W. High Concentrations of Furan Fatty Acids in Organic Butter Samples from the German Market. J. Agric. Food Chem. 2014, 62, 8740–8744. [Google Scholar] [CrossRef]
- Gowda, S.G.B.; Minami, Y.; Gowda, D.; Furuko, D.; Chiba, H.; Hui, S.-P. Lipidomic Analysis of Non-Esterified Furan Fatty Acids and Fatty Acid Compositions in Dietary Shellfish and Salmon by UHPLC/LTQ-Orbitrap-MS. Food Res. Int. 2021, 144, 110325. [Google Scholar] [CrossRef]
- Xu, L.; Sinclair, A.J.; Faiza, M.; Li, D.; Han, X.; Yin, H.; Wang, Y. Furan Fatty Acids—Beneficial or Harmful to Health? Prog. Lipid Res. 2017, 68, 119–137. [Google Scholar] [CrossRef]
- Morris, L.J.; Marshall, M.O.; Kelly, W. A Unique Furanoid Fatty Acid from Exocarpus Seed Oil. Tetrahedron Lett. 1966, 7, 4249–4253. [Google Scholar] [CrossRef]
- Glass, R.L.; Krick, T.P.; Echardt, A.E. New Series of Fatty Acids in Northern Pike (Esox lucius). Lipids 1974, 9, 1004–1008. [Google Scholar] [CrossRef]
- Hasma, H.; Subramaniam, A. The Occurrence of a Furanoid Fatty Acid inHevea Brasiliensis Latex. Lipids 1978, 13, 905–907. [Google Scholar] [CrossRef] [PubMed]
- Glass, R.L.; Krick, T.P.; Sand, D.M.; Rahn, C.H.; Schlenk, H. Furanoid Fatty Acids from Fish Lipids. Lipids 1975, 10, 695–702. [Google Scholar] [CrossRef]
- Vetter, W.; Laure, S.; Wendlinger, C.; Mattes, A.; Smith, A.W.T.; Knight, D.W. Determination of Furan Fatty Acids in Food Samples. J. Am. Oil Chem. Soc. 2012, 89, 1501–1508. [Google Scholar] [CrossRef]
- Batna, A.; Scheinkönig, J.; Spiteller, G. The Occurrence of Furan Fatty Acids in Isochrysis Sp. and Phaeodactylum tricornutum. Biochim. Biophys. Acta (BBA) Lipids Lipid Metab. 1993, 1166, 171–176. [Google Scholar] [CrossRef]
- Yurawecz, M.P.; Hood, J.K.; Mossoba, M.M.; Roach, J.A.; Ku, Y. Furan Fatty Acids Determined as Oxidation Products of Conjugated Octadecadienoic Acid. Lipids 1995, 30, 595–598. [Google Scholar] [CrossRef]
- Sand, D.M.; Schlenk, H.; Thoma, H.; Spiteller, G. Catabolism of Fish Furan Fatty Acids to Urofuran Acids in the Rat. Biochim. Biophys. Acta 1983, 751, 455–461. [Google Scholar] [CrossRef]
- Gerwick, W.H.; Moghaddam, M.; Hamberg, M. Oxylipin Metabolism in the Red Alga Gracilariopsis Lemaneiformis: Mechanism of Formation of Vicinal Dihydroxy Fatty Acids. Arch. Biochem. Biophys. 1991, 290, 436–444. [Google Scholar] [CrossRef]
- Spiteller, G. Furan Fatty Acids: Occurrence, Synthesis, and Reactions. Are Furan Fatty Acids Responsible for the Cardioprotective Effects of a Fish Diet? Lipids 2005, 40, 755–771. [Google Scholar] [CrossRef]
- Masuchi Buscato, M.H.; Müller, F.; Vetter, W.; Weiss, J.; Salminen, H. Furan Fatty Acids in Enriched ω-3 Fish Oil: Oxidation Kinetics with and without Added Monomethyl Furan Fatty Acid as Potential Natural Antioxidant. Food Chem. 2020, 327, 127087. [Google Scholar] [CrossRef]
- Okada, Y.; Okajima, H.; Konishi, H.; Terauchi, M.; Ishii, K.; Liu, I.-M.; Watanabe, H. Antioxidant Effect of Naturally Occurring Furan Fatty Acids on Oxidation of Linoleic Acid in Aqueous Dispersion. J. Am. Oil Chem. Soc. 1990, 67, 858–862. [Google Scholar] [CrossRef]
- Batna, A.; Spiteller, G. Oxidation of Furan Fatty Acids by Soybean Lipoxygenase-1 in the Presence of Linoleic Acid. Chem. Phys. Lipids 1994, 70, 179–185. [Google Scholar] [CrossRef] [PubMed]
- Lauvai, J.; Becker, A.-K.; Lehnert, K.; Schumacher, M.; Hieronimus, B.; Vetter, W.; Graeve, L. The Furan Fatty Acid 9M5 Acts as a Partial Ligand to Peroxisome Proliferator-Activated Receptor Gamma and Enhances Adipogenesis in 3T3-L1 Preadipocytes. Lipids 2019, 54, 277–288. [Google Scholar] [CrossRef]
- Khan, M.A.; Pace-Asciak, C.; Al-Hassan, J.M.; Afzal, M.; Liu, Y.F.; Oommen, S.; Paul, B.M.; Nair, D.; Palaniyar, N. Furanoid F-Acid F6 Uniquely Induces NETosis Compared to C16 and C18 Fatty Acids in Human Neutrophils. Biomolecules 2018, 8, 144. [Google Scholar] [CrossRef] [PubMed]
- Wakimoto, T.; Kondo, H.; Nii, H.; Kimura, K.; Egami, Y.; Oka, Y.; Yoshida, M.; Kida, E.; Ye, Y.; Akahoshi, S.; et al. Furan Fatty Acid as an Anti-Inflammatory Component from the Green-Lipped Mussel Perna Canaliculus. Proc. Natl. Acad. Sci. USA 2011, 108, 17533–17537. [Google Scholar] [CrossRef]
- Dore, L.; Durand, E.; Bonafos, B.; Chaiyut, J.; Vaysse, L.; Liengprayoon, S.; Gaillet, S.; Pessemesse, L.; Lambert, K.; Bertrand-Gaday, C.; et al. Preventive Nutritional Supplementation with Furan Fatty Acid in a DIO Mouse Model Increases Muscle Mass and Reduces Metabolic Disorders. Biomed. Pharmacother. 2023, 164, 114945. [Google Scholar] [CrossRef] [PubMed]
- Sand, D.M.; Glass, R.L.; Olson, D.L.; Pike, H.M.; Schlenk, H. Metabolism of Furan Fatty Acids in Fish. Biochim. Et Biophys. Acta (BBA) Lipids Lipid Metab. 1984, 793, 429–434. [Google Scholar] [CrossRef]
- Wahl, H.G.; Tetschner, B.; Liebich, H.M. The Effect of Dietary Fish Oil Supplementation on the Concentration of 3-Carboxy-4-Methyl-5-Propyl-2-Furanpropionic Acid in Human Blood and Urine. J. High Resolut. Chromatogr. 1992, 15, 815–818. [Google Scholar] [CrossRef]
- Gorst-Allman, C.P.; Puchta, V.; Spiteller, G. Investigations of the Origin of the Furan Fatty Acids (F-Acids). Lipids 1988, 23, 1032–1036. [Google Scholar] [CrossRef]
- Dai, J.; Yi, J.; Zhang, S.; Chen, P.; Jin, H.; Yu, X.; Zhang, X. Serum 3-carboxy-4-methyl-5-propyl-2-furanpropanoic Acid Is Associated with Lipid Profiles and Might Protect against Non-alcoholic Fatty Liver Disease in Chinese Individuals. J. Diabetes Investig. 2019, 10, 793–800. [Google Scholar] [CrossRef]
- Mohan, H.; Brandt, S.L.; Kim, J.H.; Wong, F.; Lai, M.; Prentice, K.J.; Al Rijjal, D.; Magomedova, L.; Batchuluun, B.; Burdett, E.; et al. 3-Carboxy-4-Methyl-5-Propyl-2-Furanpropanoic Acid (CMPF) Prevents High Fat Diet-Induced Insulin Resistance via Maintenance of Hepatic Lipid Homeostasis. Diabetes Obes. Metab. 2019, 21, 61–72. [Google Scholar] [CrossRef]
- Lankinen, M.A.; Hanhineva, K.; Kolehmainen, M.; Lehtonen, M.; Auriola, S.; Mykkänen, H.; Poutanen, K.; Schwab, U.; Uusitupa, M. CMPF Does Not Associate with Impaired Glucose Metabolism in Individuals with Features of Metabolic Syndrome. PLoS ONE 2015, 10, e0124379. [Google Scholar] [CrossRef] [PubMed]
- Savolainen, O.; Lind, M.V.; Bergström, G.; Fagerberg, B.; Sandberg, A.-S.; Ross, A. Biomarkers of Food Intake and Nutrient Status Are Associated with Glucose Tolerance Status and Development of Type 2 Diabetes in Older Swedish Women. Am. J. Clin. Nutr. 2017, 106, 1302–1310. [Google Scholar] [CrossRef]
- Retnakaran, R.; Ye, C.; Kramer, C.K.; Connelly, P.W.; Hanley, A.J.; Sermer, M.; Zinman, B. Evaluation of Circulating Determinants of Beta-Cell Function in Women With and Without Gestational Diabetes. J. Clin. Endocrinol. Metab. 2016, 101, 2683–2691. [Google Scholar] [CrossRef] [PubMed]
- Yi, J.; Jin, H.; Zhang, R.; Zhang, S.; Chen, P.; Yu, X.; Zhang, X. Increased Serum 3-Carboxy-4-Methyl-5-Propyl-2-Furanpropanoic Acid (CMPF) Levels Are Associated with Glucose Metabolism in Chinese Pregnant Women. J. Endocrinol. Investig. 2018, 41, 663–670. [Google Scholar] [CrossRef]
- Nolan, C.J. Lipotoxicity, β Cell Dysfunction, and Gestational Diabetes. Cell Metab. 2014, 19, 553–554. [Google Scholar] [CrossRef]
- Liu, Y.; Prentice, K.J.; Eversley, J.A.; Hu, C.; Batchuluun, B.; Leavey, K.; Hansen, J.B.; Wei, D.W.; Cox, B.; Dai, F.F.; et al. Rapid Elevation in CMPF May Act As a Tipping Point in Diabetes Development. Cell Rep. 2016, 14, 2889–2900. [Google Scholar] [CrossRef]
- Prentice, K.J.; Luu, L.; Allister, E.M.; Liu, Y.; Jun, L.S.; Sloop, K.W.; Hardy, A.B.; Wei, L.; Jia, W.; Fantus, I.G.; et al. The Furan Fatty Acid Metabolite CMPF Is Elevated in Diabetes and Induces β Cell Dysfunction. Cell Metab. 2014, 19, 653–666. [Google Scholar] [CrossRef] [PubMed]
- Olajide, T.M.; Cao, W. Exploring Foods as Natural Sources of FAHFAs—A Review of Occurrence, Extraction, Analytical Techniques and Emerging Bioactive Potential. Trends Food Sci. Technol. 2022, 129, 591–607. [Google Scholar] [CrossRef]
- Liberati-Čizmek, A.-M.; Biluš, M.; Brkić, A.L.; Barić, I.C.; Bakula, M.; Hozić, A.; Cindrić, M. Analysis of Fatty Acid Esters of Hydroxyl Fatty Acid in Selected Plant Food. Plant Foods Hum. Nutr. 2019, 74, 235–240. [Google Scholar] [CrossRef]
- Pham, T.H.; Vidal, N.P.; Manful, C.F.; Fillier, T.A.; Pumphrey, R.P.; Doody, K.M.; Thomas, R.H. Moose and Caribou as Novel Sources of Functional Lipids: Fatty Acid Esters of Hydroxy Fatty Acids, Diglycerides and Monoacetyldiglycerides. Molecules 2019, 24, 232. [Google Scholar] [CrossRef]
- Kellerer, T.; Kleigrewe, K.; Brandl, B.; Hofmann, T.; Hauner, H.; Skurk, T. Fatty Acid Esters of Hydroxy Fatty Acids (FAHFAs) Are Associated With Diet, BMI, and Age. Front. Nutr. 2021, 8, 691401. [Google Scholar] [CrossRef]
- Brejchova, K.; Balas, L.; Paluchova, V.; Brezinova, M.; Durand, T.; Kuda, O. Understanding FAHFAs: From Structure to Metabolic Regulation. Prog. Lipid Res. 2020, 79, 101053. [Google Scholar] [CrossRef]
- Yore, M.M.; Syed, I.; Moraes-Vieira, P.M.; Zhang, T.; Herman, M.A.; Homan, E.A.; Patel, R.T.; Lee, J.; Chen, S.; Peroni, O.D.; et al. Discovery of a Class of Endogenous Mammalian Lipids with Anti-Diabetic and Anti-Inflammatory Effects. Cell 2014, 159, 318–332. [Google Scholar] [CrossRef] [PubMed]
- Benlebna, M.; Balas, L.; Gaillet, S.; Durand, T.; Coudray, C.; Casas, F.; Feillet-Coudray, C. Potential Physio-Pathological Effects of Branched Fatty Acid Esters of Hydroxy Fatty Acids. Biochimie 2021, 182, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Kuda, O.; Brezinova, M.; Silhavy, J.; Landa, V.; Zidek, V.; Dodia, C.; Kreuchwig, F.; Vrbacky, M.; Balas, L.; Durand, T.; et al. Nrf2-Mediated Antioxidant Defense and Peroxiredoxin 6 Are Linked to Biosynthesis of Palmitic Acid Ester of 9-Hydroxystearic Acid. Diabetes 2018, 67, 1190–1199. [Google Scholar] [CrossRef]
- Parsons, W.H.; Kolar, M.J.; Kamat, S.S.; Cognetta, A.B.; Hulce, J.J.; Saez, E.; Kahn, B.B.; Saghatelian, A.; Cravatt, B.F. AIG1 and ADTRP Are Atypical Integral Membrane Hydrolases That Degrade Bioactive FAHFAs. Nat. Chem. Biol. 2016, 12, 367–372. [Google Scholar] [CrossRef]
- Kolar, M.J.; Kamat, S.S.; Parsons, W.H.; Homan, E.A.; Maher, T.; Peroni, O.D.; Syed, I.; Fjeld, K.; Molven, A.; Kahn, B.B.; et al. Branched Fatty Acid Esters of Hydroxy Fatty Acids Are Preferred Substrates of the MODY8 Protein Carboxyl Ester Lipase. Biochemistry 2016, 55, 4636–4641. [Google Scholar] [CrossRef]
- Kuda, O.; Brezinova, M.; Rombaldova, M.; Slavikova, B.; Posta, M.; Beier, P.; Janovska, P.; Veleba, J.; Kopecky, J.; Kudova, E.; et al. Docosahexaenoic Acid-Derived Fatty Acid Esters of Hydroxy Fatty Acids (FAHFAs) With Anti-Inflammatory Properties. Diabetes 2016, 65, 2580–2590. [Google Scholar] [CrossRef] [PubMed]
- Brezinova, M.; Kuda, O.; Hansikova, J.; Rombaldova, M.; Balas, L.; Bardova, K.; Durand, T.; Rossmeisl, M.; Cerna, M.; Stranak, Z.; et al. Levels of Palmitic Acid Ester of Hydroxystearic Acid (PAHSA) Are Reduced in the Breast Milk of Obese Mothers. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2018, 1863, 126–131. [Google Scholar] [CrossRef]
- Vijayakumar, A.; Aryal, P.; Wen, J.; Syed, I.; Vazirani, R.P.; Moraes-Vieira, P.M.; Camporez, J.P.; Gallop, M.R.; Perry, R.J.; Peroni, O.D.; et al. Absence of Carbohydrate Response Element Binding Protein in Adipocytes Causes Systemic Insulin Resistance and Impairs Glucose Transport. Cell Rep. 2017, 21, 1021–1035. [Google Scholar] [CrossRef]
- Moraes-Vieira, P.M.; Saghatelian, A.; Kahn, B.B. GLUT4 Expression in Adipocytes Regulates De Novo Lipogenesis and Levels of a Novel Class of Lipids With Antidiabetic and Anti-Inflammatory Effects. Diabetes 2016, 65, 1808–1815. [Google Scholar] [CrossRef]
- Aryal, P.; Syed, I.; Lee, J.; Patel, R.; Nelson, A.T.; Siegel, D.; Saghatelian, A.; Kahn, B.B. Distinct Biological Activities of Isomers from Several Families of Branched Fatty Acid Esters of Hydroxy Fatty Acids (FAHFAs). J. Lipid Res. 2021, 62, 100108. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Moraes-Vieira, P.M.; Castoldi, A.; Aryal, P.; Yee, E.U.; Vickers, C.; Parnas, O.; Donaldson, C.J.; Saghatelian, A.; Kahn, B.B. Branched Fatty Acid Esters of Hydroxy Fatty Acids (FAHFAs) Protect against Colitis by Regulating Gut Innate and Adaptive Immune Responses. J. Biol. Chem. 2016, 291, 22207–22217. [Google Scholar] [CrossRef] [PubMed]
- Gowda, S.G.B.; Fuda, H.; Tsukui, T.; Chiba, H.; Hui, S.-P. Discovery of Eicosapentaenoic Acid Esters of Hydroxy Fatty Acids as Potent Nrf2 Activators. Antioxidants 2020, 9, 397. [Google Scholar] [CrossRef] [PubMed]
- Benlebna, M.; Balas, L.; Bonafos, B.; Pessemesse, L.; Vigor, C.; Grober, J.; Bernex, F.; Fouret, G.; Paluchova, V.; Gaillet, S.; et al. Long-Term High Intake of 9-PAHPA or 9-OAHPA Increases Basal Metabolism and Insulin Sensitivity but Disrupts Liver Homeostasis in Healthy Mice. J. Nutr. Biochem. 2020, 79, 108361. [Google Scholar] [CrossRef]
- Benlebna, M.; Balas, L.; Pessemesse, L.; Bonafos, B.; Fouret, G.; Pavlin, L.; Goustard, B.; Gaillet, S.; Durand, T.; Coudray, C.; et al. FAHFAs Regulate the Proliferation of C2C12 Myoblasts and Induce a Shift toward a More Oxidative Phenotype in Mouse Skeletal Muscle. Int. J. Mol. Sci. 2020, 21, 9046. [Google Scholar] [CrossRef]
- Yuan, J.; Zhang, J.; Luo, Q.; Peng, L. Effects of Nonalcoholic Fatty Liver Disease on Sarcopenia: Evidence from Genetic Methods. Sci. Rep. 2024, 14, 2709. [Google Scholar] [CrossRef]
- Benlebna, M.; Balas, L.; Bonafos, B.; Pessemesse, L.; Fouret, G.; Vigor, C.; Gaillet, S.; Grober, J.; Bernex, F.; Landrier, J.-F.; et al. Long-Term Intake of 9-PAHPA or 9-OAHPA Modulates Favorably the Basal Metabolism and Exerts an Insulin Sensitizing Effect in Obesogenic Diet-Fed Mice. Eur. J. Nutr. 2021, 60, 2013–2027. [Google Scholar] [CrossRef]
- Bonafos, B.; Cortés-Espinar, A.J.; Balas, L.; Pessemesse, L.; Lambert, K.; Benlebna, M.; Gaillet, S.; Pelletier, F.; Delobel, P.; Ávila-Román, J.; et al. 9-PAHPA Long Term Intake in DIO and Db/Db Mice Ameliorates Insulin Sensitivity but Has Few Effects on Obesity and Associated Metabolic Disorders. J. Nutr. Biochem. 2023, 112, 109216. [Google Scholar] [CrossRef]
- Wang, Y.-M.; Liu, H.-X.; Fang, N.-Y. High Glucose Concentration Impairs 5-PAHSA Activity by Inhibiting AMP-Activated Protein Kinase Activation and Promoting Nuclear Factor-Kappa-B-Mediated Inflammation. Front. Pharmacol. 2019, 9, 1491. [Google Scholar] [CrossRef]
- Schultz Moreira, A.R.; Rüschenbaum, S.; Schefczyk, S.; Hendgen-Cotta, U.; Rassaf, T.; Broering, R.; Hardtke-Wolenski, M.; Buitrago-Molina, L.E. 9-PAHSA Prevents Mitochondrial Dysfunction and Increases the Viability of Steatotic Hepatocytes. Int. J. Mol. Sci. 2020, 21, 8279. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.; Santoro, A.; Peroni, O.D.; Nelson, A.T.; Saghatelian, A.; Siegel, D.; Kahn, B.B. PAHSAs Enhance Hepatic and Systemic Insulin Sensitivity through Direct and Indirect Mechanisms. J. Clin. Investig. 2019, 129, 4138–4150. [Google Scholar] [CrossRef] [PubMed]
- Situmorang, J.H.; Chen, M.-C.; Kuo, W.-W.; Lin, S.-Z.; Shih, C.-Y.; Lin, P.-Y.; Loh, C.-H.; Huang, C.-Y. 9-POHSA Prevents NF-kB Activation and Ameliorates LPS-Induced Inflammation in Rat Hepatocytes. Lipids 2023, 58, 241–249. [Google Scholar] [CrossRef] [PubMed]
- Loh, C.-H.; Kuo, W.-W.; Lin, S.-Z.; Shih, C.-Y.; Lin, P.-Y.; Situmorang, J.H.; Huang, C.-Y. PKC-δ-Dependent Mitochondrial ROS Attenuation Is Involved as 9-OAHSA Combats Lipoapotosis in Rat Hepatocytes Induced by Palmitic Acid and in Syrian Hamsters Induced by High-Fat High-Cholesterol High-Fructose Diet. Toxicol. Appl. Pharmacol. 2023, 470, 116557. [Google Scholar] [CrossRef]
- Wang, Y.-M.; Liu, H.-X.; Fang, N.-Y. 9-PAHSA Promotes Browning of White Fat via Activating G-Protein-Coupled Receptor 120 and Inhibiting Lipopolysaccharide / NF-Kappa B Pathway. Biochem. Biophys. Res. Commun. 2018, 506, 153–160. [Google Scholar] [CrossRef]
- Colson, C.; Batrow, P.-L.; Dieckmann, S.; Contu, L.; Roux, C.H.; Balas, L.; Vigor, C.; Fourmaux, B.; Gautier, N.; Rochet, N.; et al. Effects of Fatty Acid Metabolites on Adipocytes Britening: Role of Thromboxane A2. Cells 2023, 12, 446. [Google Scholar] [CrossRef]
- Rychtrmoc, D.; Staňková, P.; Kučera, O.; Červinková, Z. Comparison of Two Anti-Diabetic Monoestolides Regarding Effects on Intact Murine Liver Tissue. Arch. Physiol. Biochem. 2022, 128, 985–992. [Google Scholar] [CrossRef]
Source | Concentration (mg/g) |
---|---|
Cod liver | |
EPA | 30 |
DHA | 40 |
Fish | |
EPA | 3–30 |
DHA | 3–33 |
Vegetable oil | |
ALA | 75–530 |
Meta-Analysis (Author, Year) | No. of Studies | No. of Participants | Type of PUFA | Age (Year) | Dose (mg/day) & Duration | Outcomes Assessed | Conclusion (Effect on MAFLD-Related Parameters) |
---|---|---|---|---|---|---|---|
Moore et al., 2024 [47] | 6 | 362 (210 adults–152 children/adolescents) | Plant-based omega-3 PUFAs | ND | ND (2–12 weeks) | Liver enzymes, glycemic control, blood lipid levels, body composition | Significant decrease in ALT (p = 0.02; 95% Confidence Interval (CI): −14.7, −1.38; I2 = 48.62), TAG (p = 0.01; 95% CI: −76.93, −12.08; I2 = 69.93%), and body composition factors: BMI (p < 0.001; 95% CI: −2.99, 0.68; I2 = 76.37%), waist circumference (WC) (p < 0.001; 95% CI: −4.92, −1.50; I2 = 20.32%, body weight (BW) (p < 0.01; 95% CI: −8.33, −1.04; I2 = 0.00%) No effect on AST, GGT, blood glucose, and HOMA-IR Non-significant decrease in LDL-C |
Musazadeh et al., 2023 [48] | 8 | 6561 | Marine-based omega-3 PUFAs | 40 | 250–5000 (8–72 weeks) | Liver fat content, liver enzymes | Significant decrease in AST (p < 0.001; 95% CI: −8.61, −4.84; I2 = 23.4%), ALT (p < 0.000; 95% CI: −5.93, −1.53; I2 = 0%), GGT (p < 0.002; 95% CI: −6.85, −1.55; I2 = 47.7%) Non-significant decrease in liver fat content |
Lee et al., 2020 [49] | 22 | 1366 | Marine-based omega-3 PUFAs | ND | 250–5000 (8–72 weeks) | Liver fat content, liver enzymes, blood lipid levels, glycemic control, body composition | Significant improvement in liver fat content (p < 0.01; 95% CI: 1.09, 2.13; I2 = 49%), levels of TAG (p = 0.0001; 95% CI: −40.81, −16.33; I2 = 64%), TC (p = 0.0002; 95% CI: −14.86, −0.79; I2 = 64%), HDL-C (p < 0.0001; 95% CI: 1.38, 5.73; I2 = 70%), and BMI (p = 0.04; 95% CI: −0.84, −0.08; I2 = 44%) |
Musa-Veloso et al., 2018 [50] | 18 | 1132 | Long-chain omega-3 PUFAs (EPA/DHA) | 41 | 1000–4000 (8–96 weeks) | Liver fat content, liver enzymes, blood lipid levels, glycemic control, body composition | Significant decrease in ALT (p = 0.046; 95% CI: −9.18, −0.08; I2 (ND)), GGT (p < 0.05; 95% CI: −8.92, −1.40; I2 (ND)), liver fat content (p = 0.021; 95% CI: −9.58, −0.79; I2 (ND)), TC (p = 0.035; 95% CI: −15.8, −0.60; I2 (ND)), TAG (p < 0.001; 95% CI: −36.7, −12.9; I2 (ND)), LDL-C (p = 0.001; 95% CI: −11.4, −3.1; I2 (ND)), HOMA-IR (p = 0.008; 95% CI: −0.93, −0.14; I2 (ND)) and BMI (p = 0.005; 95% CI: −1.44, −0.26; I2 (ND)) Significant increase in HDL-C (p < 0.001; 95% CI: 1.5, 4.8; I2 (ND)) Non-significant decrease in AST No effect on fasting blood glucose, adiponectin, BW, and WC |
Yan et al., 2018 [51] | 18 | 1424 | Marine-based omega-3 PUFAs | 43 | 250–1000 (12–96 weeks) | Liver fat, liver enzymes, blood lipid levels, glycemic control, body composition | Significant decrease in ALT (p < 0.001; 95% CI: −0.88, −0.11; I2 = 86.4%), AST (p < 0.001; 95% CI: −1.04, −0.05; I2 = 91.2%), TAG (p < 0.01; 95% CI: −0.76, −0.19; I2 = 79.6%), and liver fat (p = 0.018; 95% CI: 1.23, 1.98; I2 = 60.7%) Non-significant effect on TC, HDL-C, LDL-C, insulin, BMI, and WC |
Guo et al., 2018 [56] | 11 | 536 | Marine-based omega-3 PUFAs | 47 | 450–5000 (8–72 weeks) | Liver fat content, liver enzymes, blood lipid levels, glycemic control | Significant decrease in ALT (p < 0.001; 95% CI: −9.98, −5.08, 1.98; I2 = 0%), AST (p = 0.002; 95% CI: −11.67, −2.52, 1.98; I2 = 83.4%), liver fat (p = 0.051; 95% CI: −10.24, 0.02; I2 = 72.1%), TAG (p < 0.001; 95% CI: −49.15, −23.18; I2 = 51%) Non-significant decrease in fasting glucose |
Yu et al., 2017 [52] | 13 | 668 | Marine-based omega-3 PUFAs | 40 | 1200–4500 (12–96 weeks) | Liver enzymes, blood lipid levels, glycemic control | Significant decrease in AST (p < 0.0001; 95% CI: −12.65, 2.51; I2 = 84%) and TAG (p = 0.04; 95% CI: −48.22, −9.91; I2 = 57%) Significant increase in HDL-C (p = 0.009; 95% CI: 1.59, 8.03; I2 = 65%) Non-significant decrease in ALT, GGT, and fasting glucose |
He et al., 2016 [53] | 7 | 442 | Marine-based omega-3 PUFAs | 49 | 2000–6400 (24–96 weeks) | Liver enzymes, blood lipid levels, glycemic control, liver fat content and fibrosis | Significant decrease in AST (p = 0.002; 95% CI: −17.71, 3.92; I2 = 76%), TC (p = 0.04; 95% CI: −21.44, −5.38; I2 = 56%), LDL-C (p = 0.010; 95% CI: −14.26, −0.00; I2 = 70%) Trend towards an increase in HDL-C Trend towards a decrease in ALT, TAG, and GGT No effect on liver fibrosis |
Lu et al., 2016 [54] | 10 | 577 | Marine-based omega-3 PUFAs | ND | 830–9000 (8–96 weeks) | Liver fat content, liver enzymes, blood lipid levels | Significant decrease in liver fat (p = 0.01; 95% CI: 1.31, 9.89; I2 = 51%), GGT (p = 0.002; 95% CI: −14.80, −3.24; I2 = 0%), and TAG (p = 0.0001; 95% CI: −53.90, 17.90; I2 = 73%) Trend towards decrease in ALT, AST, TC, and LDL-C Significant increase in HDL-C (p = 0.05; 95% CI: 0.03, 11; I2 = 80%) |
Parker et al., 2012 [55] | 9 | 355 | Marine-based omega-3 PUFAs | ND | 830–13,700 (8–48 weeks) | Liver fat, liver enzymes | Significant decrease in liver fat (p < 0.001; 95% CI: −0.48, −1.72; I2 = 66.12%), AST (p < 0.001; 95% CI: −0.16, −0.60; I2 = 91.62%), and ALT fat (p = 0.001; 95% CI: −0.06, −0.44; I2 = 88.32%) |
Source | Concentration (μg/g) |
---|---|
Fish | 4–250 |
Shellfish [71] | 5–200 |
Dairy products | 50 to 500 |
Vegetable oils | 2 to 400 |
Vegetables/fruits/rice/wheat | 1 to 350 (dry weight) |
Acronym | Nomenclature |
---|---|
9D3 | 9-(3,4-dimethy-5-propyl-furan-2-yl) nonanoic acid |
9M5 | 9-(3-methy-5-pentyl-furan-2-yl) nonanoic acid |
9D5 | 9-(3,4-dimethy-5-pentyl-furan-2-yl) nonanoic acid |
11D3 | 11-(3,4-dimethy-5-propyl-furan-2-yl) undecanoic acid |
11M5 | 11-(3-methy-5-pentyl-furan-2-yl) undecanoic acid |
11D5 | 11-(3,4-dimethy-5-pentyl-furan-2-yl) undecanoic acid |
13M5 | 13-(3-methy-5-pentyl-furan-2-yl) tridecanoic acid |
13D5 | 13-(3,4-dimethy-5-pentyl-furan-2-yl) tridecanoic acid |
Author, Year | FuFAs | Experimental Model | Dose & Duration | Conclusion |
---|---|---|---|---|
Wakimoto et al., 2011 [88] | 11D5 | Rat model of adjuvant-induced arthritis (oral gavage) | 1 to 10 mg/kg/day (day 10 to day 15) | Dose dependent effect 10 mg/kg of F6 ethyl ester showed 74% suppression of paw swellin |
Khan et al., 2018 [87] | 11D5 | Human neutrophil | 0.05 to 5 µg/0.1 mL (120–240 min) | Induced NETosis in human neutrophils |
Lauvai et al., 2019 [86] | 9M5 | 3T3-L1 preadipocytes | 10 µM (7 days) | Increased protein expression of PPARγ, C/EBPα, FABP4, and adiponectin |
Dore et al., 2023 [89] | 9M5 | DIO mice (in diet) | 40 mg and 110 mg/kg/day (3 months) | Reduced liver steatosis, improved insulin sensitivity, decreased fat mass, restored normal energy expenditure and increased muscle mass |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Merheb, C.; Gerbal-Chaloin, S.; Casas, F.; Diab-Assaf, M.; Daujat-Chavanieu, M.; Feillet-Coudray, C. Omega-3 Fatty Acids, Furan Fatty Acids, and Hydroxy Fatty Acid Esters: Dietary Bioactive Lipids with Potential Benefits for MAFLD and Liver Health. Nutrients 2025, 17, 1031. https://doi.org/10.3390/nu17061031
Merheb C, Gerbal-Chaloin S, Casas F, Diab-Assaf M, Daujat-Chavanieu M, Feillet-Coudray C. Omega-3 Fatty Acids, Furan Fatty Acids, and Hydroxy Fatty Acid Esters: Dietary Bioactive Lipids with Potential Benefits for MAFLD and Liver Health. Nutrients. 2025; 17(6):1031. https://doi.org/10.3390/nu17061031
Chicago/Turabian StyleMerheb, Camil, Sabine Gerbal-Chaloin, François Casas, Mona Diab-Assaf, Martine Daujat-Chavanieu, and Christine Feillet-Coudray. 2025. "Omega-3 Fatty Acids, Furan Fatty Acids, and Hydroxy Fatty Acid Esters: Dietary Bioactive Lipids with Potential Benefits for MAFLD and Liver Health" Nutrients 17, no. 6: 1031. https://doi.org/10.3390/nu17061031
APA StyleMerheb, C., Gerbal-Chaloin, S., Casas, F., Diab-Assaf, M., Daujat-Chavanieu, M., & Feillet-Coudray, C. (2025). Omega-3 Fatty Acids, Furan Fatty Acids, and Hydroxy Fatty Acid Esters: Dietary Bioactive Lipids with Potential Benefits for MAFLD and Liver Health. Nutrients, 17(6), 1031. https://doi.org/10.3390/nu17061031