The Global Leadership Initiative on Malnutrition (GLIM) Tool for Nutritional Assessment of Adult Patients After Sleeve Gastrectomy: Is It the Recommended Tool?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Data Collection
2.2.1. Demographic Data
2.2.2. Anthropometric Measurement
2.2.3. Body Composition Analysis
2.2.4. Biochemical Assessment
2.2.5. Dietary Assessment
2.2.6. Subjective Global Assessment (SGA)
2.2.7. Nutrition Risk Screening 2002 (NRS-2002)
2.2.8. GLIM Criteria
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Al-Enazi, N.; Al-Falah, H. A needs assessment of bariatric surgery services in Saudi Arabia. Saudi J. Obes. 2017, 5, 15–21. [Google Scholar] [CrossRef]
- Gloy, V.L.; Briel, M.; Bhatt, D.L.; Kashyap, S.R.; Schauer, P.R.; Mingrone, G.; Bucher, H.C.; Nordmann, A.J. Bariatric surgery versus non-surgical treatment for obesity: A systematic review and meta-analysis of randomized controlled trials. BMJ 2013, 347, f5934. [Google Scholar] [CrossRef]
- Quigley, S.; Colledge, J.; Mukherjee, S.; Patel, K. Bariatric surgery: A review of normal postoperative anatomy and complications. Clin. Radiol. 2011, 66, 903–914. [Google Scholar] [CrossRef]
- Krzizek, E.C.; Brix, J.M.; Stöckl, A.; Parzer, V.; Ludvik, B. Prevalence of Micronutrient Deficiency after Bariatric Surgery. Obes. Facts 2021, 14, 197–204. [Google Scholar] [CrossRef]
- Lange, J.; Königsrainer, A. Malnutrition as a Complication of Bariatric Surgery–A Clear and Present Danger? Visc. Med. 2019, 35, 305–311. [Google Scholar] [CrossRef] [PubMed]
- Beckman, L.; Earthman, C. Nutritional implications of bariatric surgery and the role of registered dietitians. J. Acad. Nutr. Diet. 2013, 113, 398–399. [Google Scholar] [CrossRef] [PubMed]
- Duerksen, D.R.; Laporte, M.; Jeejeebhoy, K. Evaluation of Nutrition Status Using the Subjective Global Assessment: Malnutrition, Cachexia, and Sarcopenia. Nutr. Clin. Pract. 2021, 36, 942–956. [Google Scholar] [CrossRef]
- Skipper, A.; Ferguson, M.; Thompson, K.; Castellanos, V.H.; Porcari, J. Nutrition Screening Tools: An Analysis of the Evidence. J. Parenter. Enter. Nutr. 2012, 36, 292–298. [Google Scholar] [CrossRef]
- Serón-Arbeloa, C.; Labarta-Monzón, L.; Puzo-Foncillas, J.; Mallor-Bonet, T.; Lafita-López, A.; Bueno-Vidales, N.; Montoro-Huguet, M. Malnutrition Screening and Assessment. Nutrients 2022, 14, 2392. [Google Scholar] [CrossRef]
- Cederholm, T.; Jensen, G.L.; Correia, M.I.T.D.; Gonzalez, M.C.; Fukushima, R.; Higashiguchi, T.; Baptista, G.; Barazzoni, R.; Blaauw, R.; Coats, A.; et al. GLIM criteria for the diagnosis of malnutrition—A consensus report from the global clinical nutrition community. Clin. Nutr. 2019, 38, 1–9. [Google Scholar] [CrossRef]
- de van der Schueren, M.A.E.; Keller, H.; Cederholm, T.; Barazzoni, R.; Compher, C.; Correia, M.I.T.D.; Gonzalez, M.C.; Jager-Wittenaar, H.; Pirlich, M.; Steiber, A.; et al. Global Leadership Initiative on Malnutrition (GLIM): Guidance on validation of the operational criteria for the diagnosis of protein-energy malnutrition in adults. Clin. Nutr. 2020, 39, 2872–2880. [Google Scholar] [CrossRef] [PubMed]
- Albukhari, S.; Abulmeaty, M.M.A.; Alguwaihes, A.M.; Shoqeair, M.; Aldisi, D.; Alhamdan, A. GLIM Criteria for Assessment of Malnutrition in Saudi Patients with Type 2 Diabetes. Nutrients 2023, 15, 897. [Google Scholar] [CrossRef]
- Fontane, L.; Reig, M.H.; Garcia-Ribera, S.; Herranz, M.; Miracle, M.; Chillaron, J.J.; Estepa, A.; Toro, S.; Ballesta, S.; Navarro, H.; et al. Validity and Applicability of the Global Leadership Initiative on Malnutrition (GLIM) Criteria in Patients Hospitalized for Acute Medical Conditions. Nutrients 2023, 15, 4012. [Google Scholar] [CrossRef] [PubMed]
- Allard, J.P.; Keller, H.; Gramlich, L.; Jeejeebhoy, K.N.; Laporte, M.; Duerksen, D.R. GLIM criteria has fair sensitivity and specificity for diagnosing malnutrition when using SGA as comparator. Clin. Nutr. 2020, 39, 2771–2777. [Google Scholar] [CrossRef] [PubMed]
- Alkhalaf, M.M.; Edwards, C.A.; Lean, M.E.J.; Combet, E.; Sm, L. Skeletal muscle mass estimation in Saudi adults–relationship with obesity and hypertension. Proc. Nutr. Soc. 2015, 74, E170. [Google Scholar] [CrossRef]
- Cade, J.; Thompson, R.; Burley, V.; Warm, D.; Alissa, E.M.; Bahjri, S.M. Validation of a food frequency questionnaire specific for salt intake in Saudi Arabian adults using urinary biomarker and repeated multiple pass 24-hour dietary recall. Proc. Nutr. Soc. 2015, 74, E337. [Google Scholar] [CrossRef]
- Detsky, A.S.; Mclaughlin, J.; Baker, J.P.; Johnston, N.; Whittaker, S.; Mendelson, R.A.; Jeejeebhoy, K.N. What is a subjective global assessment of nutritional status? J. Parenter. Enter. Nutr. 1987, 11, 8–13. [Google Scholar] [CrossRef]
- Kondrup, J.; Ramussen, H.H.; Hamberg, O.; Stanga, Z.; Camilo, M.; Richardson, R.; Elia, M.; Allison, S.; Meier, R.; Plauth, M. Nutritional risk screening (NRS 2002): A new method based on an analysis of controlled clinical trials. Clin. Nutr. 2003, 22, 321–336. [Google Scholar] [CrossRef]
- Zahorec, R. Neutrophil-to-lymphocyte ratio, past, present and future perspectives. Bratisl. Lek. Listy. 2021, 122, 474–488. [Google Scholar] [CrossRef]
- Cederholm, T.; Barazzoni, R. Validity and feasibility of the global leadership initiative on malnutrition diagnostic concept in older people: A literature review from August 2021 to August 2022. Curr. Opin. Clin. Nutr. Metab. Care 2023, 26, 23–31. [Google Scholar] [CrossRef]
- DeLong, E.R.; DeLong, D.M.; Clarke-Pearson, D.L. Comparing the Areas under Two or More Correlated Receiver Operating Characteristic Curves: A Nonparametric Approach. Biometrics 1988, 44, 837. [Google Scholar] [CrossRef]
- Cederholm, T.; Barazzoni, R.; Austin, P.; Ballmer, P.; Biolo, G.; Bischoff, S.C.; Compher, C.; Correia, I.; Higashiguchi, T.; Holst, M.; et al. ESPEN guidelines on definitions and terminology of clinical nutrition. Clin. Nutr. 2017, 36, 49–64. [Google Scholar] [CrossRef] [PubMed]
- Huo, Z.; Chong, F.; Yin, L.; Lu, Z.; Liu, J.; Xu, H. Accuracy of the GLIM criteria for diagnosing malnutrition: A systematic review and meta-analysis. Clin. Nutr. 2022, 41, 1208–1217. [Google Scholar] [CrossRef]
- Brito, J.E.; Burgel, C.F.; Lima, J.; Chites, V.S.; Saragiotto, C.B.; Rabito, E.I.; Silva, F.M. GLIM criteria for malnutrition diagnosis of hospitalised patients presents satisfactory criterion validity: A prospective cohort study. Clin. Nutr. 2021, 40, 4366–4372. [Google Scholar] [CrossRef]
- Ozeki, Y.; Masaki, T.; Yoshida, Y.; Okamoto, M.; Anai, M.; Gotoh, K.; Endo, Y.; Ohta, M.; Inomata, M.; Shibata, H. Bioelectrical Impedance Analysis Results for Estimating Body Composition Are Associated with Glucose Metabolism Following Laparoscopic Sleeve Gastrectomy in Obese Japanese Patients. Nutrients 2018, 10, 1456. [Google Scholar] [CrossRef]
- Hafida, S.; Mirshahi, T.; Nikolajczyk, B.S. The Impact of Bariatric Surgery on Inflammation: Quenching the Fire of Obesity? Curr. Opin. Endocrinol. Diabetes Obes. 2016, 23, 373. [Google Scholar] [CrossRef]
- Hakeam, H.A.; O’Regan, P.J.; Salem, A.M.; Bamehriz, F.Y.; Jomaa, L.F. Inhibition of C-reactive protein in morbidly obese patients after laparoscopic sleeve gastrectomy. Obes. Surg. 2009, 19, 456–460. [Google Scholar] [CrossRef]
Variable | N (%) |
---|---|
Age in years (Median ± IQR) | 35.0 ± 22 |
Academic level | |
Illiterate | 2 (4.3) |
Elementary | 5 (10.6) |
High school | 17 (36.2) |
University | 21 (44.7) |
Higher education | 2 (4.3) |
Marital Status | |
Single | 24 (51.1) |
Married | 17 (36.2) |
Divorced | 4 (8.5) |
Widowed | 2 (4.3) |
Nutrition Supplement (Multivitamins, vitamin D and B12) | |
Yes | 34 (72.3) |
No | 13 (27.7) |
Protein supplementation | |
Yes | 6 (12.8) |
No | 41 (87.2) |
Duration post-sleeve gastrectomy | |
≥6 months–1 year | 32 (69.6) |
1–1.5 years | 5 (10.9) |
1.5–2 years | 9 (19.6) |
Comorbidities Diseases | |
Yes | 13 (74.5) |
No | 12 (25.5) |
Nutrition Status | |
GLIM | |
Well-nourished | 24 (51.1) |
Malnourished | 23 (48.9) |
SGA | |
Well-nourished | 27 (57.4) |
Malnourished | 20 (42.6) |
NRS-2002 | |
At risk of malnutrition | 34 (72.3) |
Not at risk of malnutrition | 13 (27.7) |
(a) | ||||
Variable | GLIM | |||
All n = 47 | Well-Nourished (n = 24) | Malnutrition (n = 23) | p Value | |
Weight | 82.28 ± 19.03 | 84.95 (32.5) | 70.70 (25.1) | 0.012 |
BMI | 31.29 ± 5.98 | 32.45 (10.55) | 27.60 (8.10) | 0.042 |
Muscle mass | 49.87 ± 11.67 | 51.94 ± 10.72 | 47.72 ± 12.45 | 0.221 |
Fat mass | 28.92 ± 14.86 | 33.55 ± 14.89 | 24.09 ± 13.49 | 0.027 |
FFMI | 20.11 ± 3.67 | 20.56 (3.15) | 19.96 (4.41) | 0.476 |
Fat percentage | 3.40 ± 10.39 | 39.25 (16.85) | 28.20 (17.8) | 0.225 |
ASMMI | 9.39 ± 3.28 | 9.01 (2.73) | 8.94 (2.74) | 0.125 |
(b) | ||||
Variable | SGA | |||
All n = 47 | Well-Nourished (n = 27) | Malnutrition (n = 20) | p Value | |
Weight | 82.28 ± 19.03 | 85.30 (32.0) | 71.15 (17.1) | 0.031 |
BMI | 31.29 ± 5.98 | 33.90 (9.70) | 26.90 (7.45) | 0.004 |
Muscle mass | 49.87 ± 11.67 | 49.97 ± 13.03 | 49.75 ± 9.86 | 0.948 |
Fat mass | 28.92 ± 14.86 | 33.78 ± 14.49 | 22.35 ± 12.97 | 0.007 |
FFMI | 20.11 ± 3.67 | 20.61 (4.14) | 19.74 (3.00) | 0.212 |
Fat percentage | 3.40 ± 10.39 | 38.90 (18.5) | 32.25 (20.6) | 0.013 |
ASMMI | 9.39 ± 3.29 | 9.06 (2.32) | 8.95 (1.98) | 0.983 |
Variable | GLIM | SGA | ||||
---|---|---|---|---|---|---|
Well-Nourished (n = 24) | Malnutrition (n = 23) | p Value | Well-Nourished (n = 24) | Malnutrition (n = 23) | p Value | |
Macronutrients | ||||||
Calories (Kcal) | 779.39 (900.72) | 1483.89 (3435.79) | 0.157 | 812.38 (1016.15) | 2471.92 (3826.81) | 0.115 |
Carbohydrates (g) | 129.65 (608.64) | 211.45 (645.61) | 0.427 | 106.48 (148.08) | 380.61 (720.28) | 0.208 |
Sugar (g) | 53.14 (73.37) | 66.89 (61.16) | 0.851 | 43.24 (56.78) | 74.87 (63.70) | 0.208 |
Added Sugar (g) | 4.78 (38.39) | 0.14 (12.50) | 0.069 | 0.70 (32.63) | 0.36 (33.01) | 0.97 |
Protein (g) | 32.22 (112.36) | 98.18 (116.65) | 0.135 | 44.73 (81.07) | 120.91 (155.64) | 0.098 |
Fat (g) | 14.11 (31.06) | 43.03 (43.87) | 0.305 | 15.71 (22.04) | 50.25 (56.28) | 0.069 |
Saturated Fat (g) | 3.55 (4.98) | 7.78 (8.74) | 0.135 | 3.55 (4.89) | 7.84 (8.82) | 0.135 |
Monounsaturated Fat (g) | 1.76 (7.10) | 2.57 (4.32) | 0.851 | 1.35 (3.32) | 5.00 (10.00) | 0.208 |
Polyunsaturated Fat (g) | 1.2 (4.80) | 1.13 (4.17) | 0.97 | 1.04 (3.02) | 1.29 (5.96) | 0.678 |
Water (mL) | 428.08 (681.76) | 198.45 (674.27) | 0.624 | 275.62 (621.18) | 331.46 (829.81) | 0.678 |
Micronutrients | ||||||
Vitamin A (µg) | 59.61 (91.07) | 68.01 (193.63) | 0.624 | 72.55 (210.09) | 55.09 (69.60) | 0.384 |
Vitamin D (µg) | 0.52 (1.40) | 0.67 (3.07) | 0.678 | 0.44 (1.88) | 0.78 (1.23) | 0.792 |
Vitamin B12 (µg) | 0.30 (0.83) | 0.89 (0.80) | 0.208 | 0.56 (0.98) | 0.46 (0.77) | 0.678 |
Folic acid (µg) | 55.88 (62.51) | 42.63 (56.86) | 0.571 | 44.36 (40.36) | 83.68 (119.76) | 0.208 |
Vitamin E (mg) | 0.69 (1.35) | 0.56 (1.63) | 0.792 | 0.62 (0.72) | 0.88 (2.25) | 0.851 |
Iron (µg) | 4.91 (6.66) | 15.10 (49.15) | 0.521 | 3.79 (7.02) | 27.67 (50.26) | 0.069 |
Zinc (mg) | 1.00 (0.60) | 1.56 (1.79) | 0.624 | 1.08 (0.80) | 1.25 (3.06) | 0.624 |
Copper (mg) | 0.14 (0.22) | 0.09 (0.28 | 0.473 | 0.11 (0.12) | 0.18 (0.44) | 0.521 |
Selenium (µg) | 11.26 (27.85) | 19.43 (79.54) | 0.473 | 17.76 (29.03) | 11.26 (27.39) | 0.734 |
Variable | GLIM | SGA | ||||
---|---|---|---|---|---|---|
Well-Nourished n (% Within Raw) | Malnutrition n (% Within Raw) | p Value | Well-Nourished n (% Within Raw) | Malnutrition n (% Within Raw) | p Value | |
Albumin (g/L) | ||||||
Normal | 23 (51.1%) | 22 (48.9%) | 0.975 | 27 (60%) | 18 (40%) | 0.093 |
Low (˂35 g/L) | 1 (50.0%) | 1 (50.0%) | 0 | 2 (100%) | ||
NLR | 0.124 | |||||
Normal | 24 (51.1%) | 23 (48.9%) | 0.975 | 27 (57.4%) | 20 (42.6%) | |
≥3 or ˂0.7 | 0 | 0 | 0 | 0 | ||
CRP | ||||||
Normal | 21 (50%) | 21 (50%) | 0.672 | 24 (57.1) | 18 (42.9%) | 0.903 |
>3 mg/L | 3 (60%) | 2 (40%) | 3 (60.0) | 2 (40%) |
GLIM | |||
---|---|---|---|
Well-Nourished (n = 24) | Malnutrition (n = 23) | p Value | |
Phenotypic criteria | |||
Weight loss | 24 (51.1%) | 23 (48.9%) | NA |
Low BMI | 0 (0%) | 1 (100%) | 0.302 |
Reduce Muscle Mass | 0 (0.0%) | 23 (100) | <0.0001 |
Etiologic criteria | |||
Reduce food intake | |||
25% | 3 (50%) | 3 (50%) | 0.885 |
50% | 11 (47.8%) | 12 (52.2%) | |
75% | 10 (55.6%) | 8 (44.4%) | |
Diseases/Inflammation | 0 (0%) | 0 (0%) | NA |
Actual Malnutrition, as Confirmed by SGA | |||
---|---|---|---|
Predicted malnutrition by GLIM | Positives | Negatives | |
Positives | 13 | 10 | |
Negatives | 9 | 15 |
False Positives (n = 12) | False Negatives (n = 9) | p Value | |
---|---|---|---|
Pre-op weight (kg) | 116.42 ± 25.07 | 126.33 ± 23.83 | 0.371 |
Current weight (kg) | 80.45 ± 20.96 | 81.32 ± 19.90 | 0.924 |
Current BMI (kg/m2) | 31.42 ± 6.11 | 29.29 ± 4.57 | 0.393 |
% weight loss (%) | 29.23 ± 9.22 | 33.09 ± 7.35 | 0.316 |
Current muscle mass (kg) | 46.62 ± 15.62 | 50.75 ± 11.89 | 0.516 |
Current fat mass (kg) | 29.83 ± 13.62 | 27.89 ± 13.96 | 0.752 |
Current fat-free mass (kg) | 52.66 ± 12.68 | 53.44 ± 12.64 | 0.89 |
Calorie intake (kcal) | 795.31 (408.18) | 635.26 (326.76) | 0.347 |
CHO intake (g) | 107.90 (54.29) | 85.42 (44.01) | 0.323 |
Fat intake (g) | 20.99 (13.20) | 17.80 (12.31) | 0.58 |
Protein (g) | 42.91 (29.48) | 32.75 (19.42) | 0.382 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alotaibi, A.N.; Bamehriz, F.; Aljomah, N.A.; Almutairi, K.; Tharkar, S.; Al-Muammar, M.; Alhamdan, A.; Aldisi, D.; Abulmeaty, M.M.A. The Global Leadership Initiative on Malnutrition (GLIM) Tool for Nutritional Assessment of Adult Patients After Sleeve Gastrectomy: Is It the Recommended Tool? Nutrients 2025, 17, 1074. https://doi.org/10.3390/nu17061074
Alotaibi AN, Bamehriz F, Aljomah NA, Almutairi K, Tharkar S, Al-Muammar M, Alhamdan A, Aldisi D, Abulmeaty MMA. The Global Leadership Initiative on Malnutrition (GLIM) Tool for Nutritional Assessment of Adult Patients After Sleeve Gastrectomy: Is It the Recommended Tool? Nutrients. 2025; 17(6):1074. https://doi.org/10.3390/nu17061074
Chicago/Turabian StyleAlotaibi, Amani N., Fahad Bamehriz, Nadia A. Aljomah, Khalid Almutairi, Shabana Tharkar, May Al-Muammar, Adel Alhamdan, Dara Aldisi, and Mahmoud M. A. Abulmeaty. 2025. "The Global Leadership Initiative on Malnutrition (GLIM) Tool for Nutritional Assessment of Adult Patients After Sleeve Gastrectomy: Is It the Recommended Tool?" Nutrients 17, no. 6: 1074. https://doi.org/10.3390/nu17061074
APA StyleAlotaibi, A. N., Bamehriz, F., Aljomah, N. A., Almutairi, K., Tharkar, S., Al-Muammar, M., Alhamdan, A., Aldisi, D., & Abulmeaty, M. M. A. (2025). The Global Leadership Initiative on Malnutrition (GLIM) Tool for Nutritional Assessment of Adult Patients After Sleeve Gastrectomy: Is It the Recommended Tool? Nutrients, 17(6), 1074. https://doi.org/10.3390/nu17061074