The Impact of Physical Activity on Weight Loss in Relation to the Pillars of Lifestyle Medicine—A Narrative Review
Highlights
- A combination of physical activity with other lifestyle interventions is the most effective weight-loss strategy.
- Physical activity positively influences major pillars of lifestyle—sleep quality, appetite control, and mental health.
- Physical activity alleviates alcohol willingness and enhances an individual’s social engagement—both crucial in controlling weight.
Abstract
:1. Introduction
2. Methodological Approach and Search Strategy
3. Effects of Physical Activity on Pillars of Healthy Lifestyle
3.1. Physical Activity and Nutrition
3.2. Physical Activity and Sleep
3.3. Physical Activity and Psychological Status
3.4. Physical Activity and Alcohol
3.5. Physical Activity and Social Issues
4. Types of Physical Activity and Their Impact on Body Composition and Health
5. Reports on the Impact of Physical Activity on Weight Loss
Study | Design and Sample | Intervention | Results |
---|---|---|---|
Redman et al. [81] | Design: RCT N = 36 Sample characteristics: 36 overweight but otherwise healthy participants (16 males, 19 females) | C: healthy weight maintenance diet CR: 25% reduction in energy intake, n = 12 CR + EX: 12.5% reduction in energy intake + 12.5% increase in exercise energy expenditure L: 6 months Exercise specifics: self-selected three exercise work-loads on a treadmill, stationary cycle or StairMaster |
|
Donnelly et al. [82] | Design: RCT N = 141 EX: (n = 40); CON: (n = 35) Age: 22.6 ± 3.9 years Sample characteristics: overweight and obese participants (body mass index, 31.0 ± 4.6 kg/m2) | C: non-exercise control condition; usual ad libitum diets EX: usual ad libitum diets, 400 and 600 kcal/exercise session, primarily walking/jogging on motor-driven treadmills F: 5 days/week L: 10 months |
|
Johns et al. [84] | Design: Systematic review and meta-analysis N = 1022 Age: ≥18 years Sample characteristics: overweight or obese | Group characteristics: EX: moderate to high intensity PA (e.g., brisk walking) 3 to 5 times per week D: energy restriction and recommendation to consume low-fat diet D + EX: combined behavioral weight management programs |
|
Foster-Schubert et al. [87] | Design: RCT N = 439 Sample characteristics: overweight-to-obese postmenopausal sedentary women | Intervention design: D: calorie-reduced, low-fat diet EX: moderate-intensity, facility-based aerobic exercise program D + EX: combination of both interventions C: no lifestyle change L: 1 year |
|
Olateju et al. [85] | Design: Systematic review N = 2191 Age: 18–79 Sample characteristics: adult patients with obesity | Groups characteristics: D:
|
|
Elliot et al. [86] | Design: survey N = 1488 Age: ≥60 Sample characteristics: health program participants | Group characteristics: EX: increased PA, D: changed diet D + EX: increased PA and changed diet CON: no changes to PA and diet |
|
Joseph et al. [88] | Design: retrospective observational study N = 145 Age: 40–60 Sample characteristics: overweight women | Group characteristics: D: diet protocol with adjustment and customization to each participant with no advice concerning PA EX: training at least 3 times/week, which included: strength training, aerobic training and stretching for 60 min with no diet advice D + EX: customized diet and training protocol same as in EX CON: no intervention L: 8 weeks |
|
6. Strengths and Limitations
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
PA | Physical activity |
BMI | Body mass index |
WHR | Waist-to-hip ratio |
NEAT | Non-exercise activity thermogenesis |
References
- Górski, J. Fizjologia Wysiłku i Treningu Fizycznego; Wydawnictwo Lekarskie PZWL: Warszawa, Poland, 2019. [Google Scholar]
- Kozłowski, S.; Nazar, K. Wprowadzenie do Fizjologii Klinicznej; Wydawnictwo Lekarskie PZWL: Warszawa, Poland, 1999. [Google Scholar]
- Lloyd, D.; Aon, M.A.; Cortassa, S. Why homeodynamics, not homeostasis? Sci. World J. 2001, 1, 133–145. [Google Scholar] [CrossRef] [PubMed]
- Traczyk, W.Z.; Trzebiński, A.; Godlewski, A.; Gryczyński, M.; Gwóźdź, B.; Kaciuba-Uściłko, H.; Konturek, S.; Latkowski, B.J.; Lewartowski, B.; Nazar, K.; et al. Regulacja Czynności Fizjologicznych w: Fizjologia Człowieka z Elementami Fizjologii Stosowanej i Klinicznej; Wyd. Lek. PZWL: Warsaw, Poland, 2016. [Google Scholar]
- Hill, J.O.; Wyatt, H.R.; Peters, J.C. The Importance of Energy Balance. Eur. Endocrinol. 2013, 9, 111–115. [Google Scholar] [CrossRef] [PubMed]
- Hall, K.D.; Heymsfield, S.B.; Kemnitz, J.W.; Klein, S.; Schoeller, D.A.; Speakman, J.R. Energy balance and its components: Implications for body weight regulation. Am. J. Clin. Nutr. 2012, 95, 989–994. [Google Scholar] [CrossRef] [PubMed]
- Esquivel, M.K. Energy Balance Dynamics: Exercise, Appetite, Diet, and Weight Control. Am. J. Lifestyle Med. 2021, 15, 220–223. [Google Scholar] [CrossRef] [PubMed]
- Ghanemi, A.; Yoshioka, M.; St-Amand, J. Broken Energy Homeostasis and Obesity Pathogenesis: The Surrounding Concepts. J. Clin. Med. 2018, 7, 453. [Google Scholar] [CrossRef]
- Boutari, C.; Mantzoros, C.S. A 2022 update on the epidemiology of obesity and a call to action: As its twin COVID-19 pandemic appears to be receding, the obesity and dysmetabolism pandemic continues to rage on. Metabolism 2022, 133, 155217. [Google Scholar] [CrossRef]
- Obesity and Overweight. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 1 March 2024).
- Berthoud, H.R.; Morrison, C.D.; Münzberg, H. The obesity epidemic in the face of homeostatic body weight regulation: What went wrong and how can it be fixed? Physiol. Behav. 2020, 222, 112959. [Google Scholar] [CrossRef]
- Cinteza, M. The Six Pillars. Maedica 2024, 19, 209–211. [Google Scholar] [CrossRef]
- Frates, B. The Power and Connection of the Six Pillars. Am. J. Lifestyle Med. 2023, 17, 216–218. [Google Scholar] [CrossRef]
- Dasso, N.A. How is exercise different from physical activity? A concept analysis. Nurs. Forum 2019, 54, 45–52. [Google Scholar] [CrossRef]
- Caro, J.; Navarro, I.; Romero, P.; Lorente, R.I.; Priego, M.A.; Martínez-Hervás, S.; Real, J.T.; Ascaso, J.F. Metabolic effects of regular physical exercise in healthy population. Endocrinol. Nutr. 2013, 60, 167–172. [Google Scholar] [CrossRef] [PubMed]
- Shariful Islam, M.; Fardousi, A.; Sizear, M.I.; Rabbani, M.G.; Islam, R.; Saif-Ur-Rahman, K.M. Effect of leisure-time physical activity on blood pressure in people with hypertension: A systematic review and meta-analysis. Sci. Rep. 2023, 13, 10639. [Google Scholar] [CrossRef] [PubMed]
- Weiss, E.P.; Jordan, R.C.; Frese, E.M.; Albert, S.G.; Villareal, D.T. Effects of Weight Loss on Lean Mass, Strength, Bone, and Aerobic Capacity. Med. Sci. Sports Exerc. 2017, 49, 206–217. [Google Scholar] [CrossRef] [PubMed]
- Blaha, M.J.; Hung, R.K.; Dardari, Z.; Feldman, D.I.; Whelton, S.P.; Nasir, K.; Blumenthal, R.S.; Brawner, C.A.; Ehrman, J.K.; Keteyian, S.J.; et al. Age-dependent prognostic value of exercise capacity and derivation of fitness-associated biologic age. Heart 2016, 102, 431–437. [Google Scholar] [CrossRef]
- Hong, S.; Lee, J.; Park, J.; Lee, M.; Kim, J.Y.; Kim, K.C.; Kim, S.H.; Im, J.A.; Chu, S.H.; Suh, S.H.; et al. Association between cardiorespiratory fitness and the prevalence of metabolic syndrome among Korean adults: A cross sectional study. BMC Public Health 2014, 14, 481. [Google Scholar] [CrossRef]
- Nunn, A.V.; Guy, G.W.; Brodie, J.S.; Bell, J.D. Inflammatory modulation of exercise salience: Using hormesis to return to a healthy lifestyle. Nutr. Metab. 2010, 7, 87. [Google Scholar] [CrossRef]
- Niemiro, G.M.; Rewane, A.; Algotar, A.M. Exercise and Fitness Effect On Obesity. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Chauhan, H.; Belski, R.; Bryant, E.; Cooke, M. Dietary Assessment Tools and Metabolic Syndrome: Is It Time to Change the Focus? Nutrients 2022, 14, 1557. [Google Scholar] [CrossRef]
- Kasiak, P.S.; Wiecha, S.; Cieśliński, I.; Takken, T.; Lach, J.; Lewandowski, M.; Barylski, M.; Mamcarz, A.; Śliż, D. Validity of the Maximal Heart Rate Prediction Models among Runners and Cyclists. J. Clin. Med. 2023, 12, 2884. [Google Scholar] [CrossRef]
- Broom, D.R.; Stensel, D.J.; Bishop, N.C.; Burns, S.F.; Miyashita, M. Exercise-induced suppression of acylated ghrelin in humans. J. Appl. Physiol. 2007, 102, 2165–2171. [Google Scholar] [CrossRef]
- King, N.A.; Burley, V.J.; Blundell, J.E. Exercise-induced suppression of appetite: Effects on food intake and implications for energy balance. Eur. J. Clin. Nutr. 1994, 48, 715–724. [Google Scholar]
- Malm, C.; Jakobsson, J.; Isaksson, A. Physical Activity and Sports-Real Health Benefits: A Review with Insight into the Public Health of Sweden. Sports 2019, 7, 127. [Google Scholar] [CrossRef] [PubMed]
- Dorling, J.; Broom, D.R.; Burns, S.F.; Clayton, D.J.; Deighton, K.; James, L.J.; King, J.A.; Miyashita, M.; Thackray, A.E.; Batterham, R.L.; et al. Acute and Chronic Effects of Exercise on Appetite, Energy Intake, and Appetite-Related Hormones: The Modulating Effect of Adiposity, Sex, and Habitual Physical Activity. Nutrients 2018, 10, 1140. [Google Scholar] [CrossRef] [PubMed]
- Ballard, T.P.; Melby, C.L.; Camus, H.; Cianciulli, M.; Pitts, J.; Schmidt, S.; Hickey, M.S. Effect of resistance exercise, with or without carbohydrate supplementation, on plasma ghrelin concentrations and postexercise hunger and food intake. Metabolism 2009, 58, 1191–1199. [Google Scholar] [CrossRef] [PubMed]
- Martins, C.; Morgan, L.M.; Bloom, S.R.; Robertson, M.D. Effects of exercise on gut peptides, energy intake and appetite. J. Endocrinol. 2007, 193, 251–258. [Google Scholar] [CrossRef]
- Chasens, E.R.; Imes, C.C.; Kariuki, J.K.; Luyster, F.S.; Morris, J.L.; DiNardo, M.M.; Godzik, C.M.; Jeon, B.; Yang, K. Sleep and Metabolic Syndrome. Nurs. Clin. N. Am. 2021, 56, 203–217. [Google Scholar] [CrossRef]
- Cappuccio, F.P.; Miller, M.A. Sleep and Cardio-Metabolic Disease. Curr. Cardiol. Rep. 2017, 19, 110. [Google Scholar] [CrossRef]
- Hua, J.; Jiang, H.; Wang, H.; Fang, Q. Sleep Duration and the Risk of Metabolic Syndrome in Adults: A Systematic Review and Meta-Analysis. Front. Neurol. 2021, 12, 635564. [Google Scholar] [CrossRef]
- Che, T.; Yan, C.; Tian, D.; Zhang, X.; Liu, X.; Wu, Z. The Association Between Sleep and Metabolic Syndrome: A Systematic Review and Meta-Analysis. Front. Endocrinol. 2021, 12, 773646. [Google Scholar] [CrossRef]
- Kim, C.E.; Shin, S.; Lee, H.W.; Lim, J.; Lee, J.K.; Shin, A.; Kang, D. Association between sleep duration and metabolic syndrome: A cross-sectional study. BMC Public Health 2018, 18, 720. [Google Scholar] [CrossRef]
- Watson, N.F.; Badr, M.S.; Belenky, G.; Bliwise, D.L.; Buxton, O.M.; Buysse, D.; Dinges, D.F.; Gangwisch, J.; Grandner, M.A.; Kushida, C.; et al. Recommended Amount of Sleep for a Healthy Adult: A Joint Consensus Statement of the American Academy of Sleep Medicine and Sleep Research Society. Sleep 2015, 38, 843–844. [Google Scholar] [CrossRef]
- Chaput, J.P.; Dutil, C.; Featherstone, R.; Ross, R.; Giangregorio, L.; Saunders, T.J.; Janssen, I.; Poitras, V.J.; Kho, M.E.; Ross-White, A.; et al. Sleep duration and health in adults: An overview of systematic reviews. Appl. Physiol. Nutr. Metab. 2020, 45, S218–S231. [Google Scholar] [CrossRef] [PubMed]
- Alnawwar, M.A.; Alraddadi, M.I.; Algethmi, R.A.; Salem, G.A.; Salem, M.A.; Alharbi, A.A. The Effect of Physical Activity on Sleep Quality and Sleep Disorder: A Systematic Review. Cureus 2023, 15, e43595. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Liu, S.; Chen, X.J.; Yu, H.H.; Yang, Y.; Wang, W. Effects of Exercise on Sleep Quality and Insomnia in Adults: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Front. Psychiatry 2021, 12, 664499. [Google Scholar] [CrossRef] [PubMed]
- Sullivan Bisson, A.N.; Robinson, S.A.; Lachman, M.E. Walk to a better night of sleep: Testing the relationship between physical activity and sleep. Sleep Health 2019, 5, 487–494. [Google Scholar] [CrossRef]
- Roohafza, H.; Sadeghi, M.; Naghnaeian, M.; Shokouh, P.; Ahmadi, A.; Sarrafzadegan, N. Relationship between Metabolic Syndrome and Its Components with Psychological Distress. Int. J. Endocrinol. 2014, 2014, 203463. [Google Scholar] [CrossRef]
- Kasiak, P.S.; Adamczyk, N.; Jodczyk, A.M.; Kaproń, A.; Lisowska, A.; Mamcarz, A.; Śliż, D. COVID-19 Pandemic Consequences among Individuals with Eating Disorders on a Clinical Sample in Poland-A Cross-Sectional Study. Int. J. Environ. Res. Public Health 2022, 19, 8484. [Google Scholar] [CrossRef]
- Scully, D.; Kremer, J.; Meade, M.M.; Graham, R.; Dudgeon, K. Physical exercise and psychological well being: A critical review. Br. J. Sports Med. 1998, 32, 111–120. [Google Scholar] [CrossRef]
- Smith, P.J.; Merwin, R.M. The Role of Exercise in Management of Mental Health Disorders: An Integrative Review. Annu. Rev. Med. 2021, 72, 45–62. [Google Scholar] [CrossRef]
- Bose, M.; Oliván, B.; Laferrère, B. Stress and obesity: The role of the hypothalamic-pituitary-adrenal axis in metabolic disease. Curr. Opin. Endocrinol. Diabetes Obes. 2009, 16, 340–346. [Google Scholar] [CrossRef]
- Kuo, W.C.; Bratzke, L.C.; Oakley, L.D.; Kuo, F.; Wang, H.; Brown, R.L. The association between psychological stress and metabolic syndrome: A systematic review and meta-analysis. Obes. Rev. 2019, 20, 1651–1664. [Google Scholar] [CrossRef]
- Boehm, J.K.; Kubzansky, L.D. The heart’s content: The association between positive psychological well-being and cardiovascular health. Psychol. Bull. 2012, 138, 655–691. [Google Scholar] [CrossRef] [PubMed]
- Boylan, J.M.; Ryff, C.D. Psychological well-being and metabolic syndrome: Findings from the midlife in the United States national sample. Psychosom. Med. 2015, 77, 548–558. [Google Scholar] [CrossRef] [PubMed]
- Jodczyk, A.M.; Kasiak, P.S.; Adamczyk, N.; Gębarowska, J.; Sikora, Z.; Gruba, G.; Mamcarz, A.; Śliż, D. PaLS Study: Tobacco, Alcohol and Drugs Usage among Polish University Students in the Context of Stress Caused by the COVID-19 Pandemic. Int. J. Environ. Res. Public Health 2022, 19, 1261. [Google Scholar] [CrossRef] [PubMed]
- Traversy, G.; Chaput, J.P. Alcohol Consumption and Obesity: An Update. Curr. Obes. Rep. 2015, 4, 122–130. [Google Scholar] [CrossRef]
- Yeomans, M.R. Alcohol, appetite and energy balance: Is alcohol intake a risk factor for obesity? Physiol. Behav. 2010, 100, 82–89. [Google Scholar] [CrossRef]
- AlKalbani, S.R.; Murrin, C. The association between alcohol intake and obesity in a sample of the Irish adult population, a cross-sectional study. BMC Public Health 2023, 23, 2075. [Google Scholar] [CrossRef]
- Golzarand, M.; Salari-Moghaddam, A.; Mirmiran, P. Association between alcohol intake and overweight and obesity: A systematic review and dose-response meta-analysis of 127 observational studies. Crit. Rev. Food Sci. Nutr. 2022, 62, 8078–8098. [Google Scholar] [CrossRef]
- Gunillasdotter, V.; Andréasson, S.; Hallgren, M.; Jirwe, M. Exercise as treatment for alcohol use disorder: A qualitative study. Drug Alcohol. Rev. 2022, 41, 1642–1652. [Google Scholar] [CrossRef]
- Lardier, D.T.; Coakley, K.E.; Holladay, K.R.; Amorim, F.T.; Zuhl, M.N. Exercise as a Useful Intervention to Reduce Alcohol Consumption and Improve Physical Fitness in Individuals With Alcohol Use Disorder: A Systematic Review and Meta-Analysis. Front. Psychol. 2021, 12, 675285. [Google Scholar] [CrossRef]
- El-Sayed, M.S.; Ali, N.; El-Sayed Ali, Z. Interaction between alcohol and exercise: Physiological and haematological implications. Sports Med. 2005, 35, 257–269. [Google Scholar] [CrossRef]
- Golaszewski, N.M.; LaCroix, A.Z.; Hooker, S.P.; Bartholomew, J.B. Group exercise membership is associated with forms of social support, exercise identity, and amount of physical activity. Int. J. Sport Exerc. Psychol. 2022, 20, 630–643. [Google Scholar] [CrossRef] [PubMed]
- Zuo, Y.; Ma, Y.; Zhang, M.; Wu, X.; Ren, Z. The impact of sharing physical activity experience on social network sites on residents’ social connectedness: A cross-sectional survey during COVID-19 social quarantine. Global Health 2021, 17, 10. [Google Scholar] [CrossRef]
- Abbate, M.; Pericas, J.; Yañez, A.M.; López-González, A.A.; De Pedro-Gómez, J.; Aguilo, A.; Morales-Asencio, J.M.; Bennasar-Veny, M. Socioeconomic Inequalities in Metabolic Syndrome by Age and Gender in a Spanish Working Population. Int. J. Environ. Res. Public Health 2021, 18, 333. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.Y.; Kim, S.H.; Cho, Y.J. Socioeconomic status in association with metabolic syndrome and coronary heart disease risk. Korean J. Fam. Med. 2013, 34, 131–138. [Google Scholar] [CrossRef] [PubMed]
- Dobrowolski, P.; Prejbisz, A.; Kuryłowicz, A.; Baska, A.; Burchardt, P.; Chlebus, K.; Dzida, G.; Jankowski, P.; Jaroszewicz, J.; Jaworski, P.; et al. Metabolic syndrome—A new definition and management guidelines: A joint position paper by the Polish Society of Hypertension, Polish Society for the Treatment of Obesity, Polish Lipid Association, Polish Association for Study of Liver, Polish Society of Family Medicine, Polish Society of Lifestyle Medicine, Division of Prevention and Epidemiology Polish Cardiac Society, “Club 30” Polish Cardiac Society, and Division of Metabolic and Bariatric Surgery Society of Polish Surgeons. Arch. Med. Sci. 2022, 18, 1133–1156. [Google Scholar] [CrossRef]
- Shelton, R.C.; McNeill, L.H.; Puleo, E.; Wolin, K.Y.; Emmons, K.M.; Bennett, G.G. The association between social factors and physical activity among low-income adults living in public housing. Am. J. Public Health 2011, 101, 2102–2110. [Google Scholar] [CrossRef]
- Shozi, S.; Monyeki, M.A.; Moss, S.J.; Pienaar, C. Relationships between physical activity, body mass index, waist circumference and handgrip strength amongst adults from the North West province, South Africa: The PURE study. Afr. J. Prim. Health Care Fam. Med. 2022, 14, e1–e11. [Google Scholar] [CrossRef]
- Lagacé, J.C.; Marcotte-Chenard, A.; Paquin, J.; Tremblay, D.; Brochu, M.; Dionne, I.J. Increased odds of having the metabolic syndrome with greater fat-free mass: Counterintuitive results from the National Health and Nutrition Examination Survey database. J. Cachexia Sarcopenia Muscle 2022, 13, 377–385. [Google Scholar] [CrossRef]
- Venojärvi, M.; Lindström, J.; Aunola, S.; Nuutila, P.; Atalay, M. Improved Aerobic Capacity and Adipokine Profile Together with Weight Loss Improve Glycemic Control without Changes in Skeletal Muscle GLUT-4 Gene Expression in Middle-Aged Subjects with Impaired Glucose Tolerance. Int. J. Environ. Res. Public Health 2022, 19, 8327. [Google Scholar] [CrossRef]
- Bateman, L.A.; Slentz, C.A.; Willis, L.H.; Shields, A.T.; Piner, L.W.; Bales, C.W.; Houmard, J.A.; Kraus, W.E. Comparison of aerobic versus resistance exercise training effects on metabolic syndrome (from the Studies of a Targeted Risk Reduction Intervention Through Defined Exercise—STRRIDE-AT/RT). Am. J. Cardiol. 2011, 108, 838–844. [Google Scholar] [CrossRef]
- Cannata, F.; Vadalà, G.; Russo, F.; Papalia, R.; Napoli, N.; Pozzilli, P. Beneficial Effects of Physical Activity in Diabetic Patients. J. Funct. Morphol. Kinesiol. 2020, 5, 70. [Google Scholar] [CrossRef] [PubMed]
- American College of Sports Medicine; Gary, L.; Yuri, F.; Charles, F.; Roy, B.A. ACSM’s Guidelines for Exercise Testing and Prescription, 11th ed.; Wolters Kluwer: Philadelphia, PA, USA, 2022. [Google Scholar]
- Swift, D.L.; Johannsen, N.M.; Lavie, C.J.; Earnest, C.P.; Church, T.S. The role of exercise and physical activity in weight loss and maintenance. Prog. Cardiovasc. Dis. 2014, 56, 441–447. [Google Scholar] [CrossRef] [PubMed]
- Donnelly, J.E.; Blair, S.N.; Jakicic, J.M.; Manore, M.M.; Rankin, J.W.; Smith, B.K. American College of Sports Medicine Position Stand. Appropriate physical activity intervention strategies for weight loss and prevention of weight regain for adults. Med. Sci. Sports Exerc. 2009, 41, 459–471. [Google Scholar] [CrossRef] [PubMed]
- Monda, V.; Sessa, F.; Ruberto, M.; Carotenuto, M.; Marsala, G.; Monda, M.; Cambria, M.T.; Astuto, M.; Distefano, A.; Messina, G. Aerobic Exercise and Metabolic Syndrome: The Role of Sympathetic Activity and the Redox System. Diabetes Metab. Syndr. Obes. 2020, 13, 2433–2442. [Google Scholar] [CrossRef]
- Dupré, C.; Brégère, M.; Berger, M.; Pichot, V.; Celle, S.; Garet, M.; Fundenberger, H.; Barth, N.; Guyot, J.; Bongue, B.; et al. Relationship between moderate-to-vigorous, light intensity physical activity and sedentary behavior in a prospective cohort of older French adults: A 18-year follow-up of mortality and cardiovascular events—The PROOF cohort study. Front. Public Health 2023, 11, 1182552. [Google Scholar] [CrossRef]
- Jodczyk, A.M.; Gruba, G.; Sikora, Z.; Kasiak, P.S.; Gębarowska, J.; Adamczyk, N.; Mamcarz, A.; Śliż, D. PaLS Study: How Has the COVID-19 Pandemic Influenced Physical Activity and Nutrition? Observations a Year after the Outbreak of the Pandemic. Int. J. Environ. Res. Public Health 2021, 18, 9632. [Google Scholar] [CrossRef]
- Sundell, J. Resistance Training Is an Effective Tool against Metabolic and Frailty Syndromes. Adv. Prev. Med. 2011, 2011, 984683. [Google Scholar] [CrossRef]
- Martin, A.; Fox, D.; Murphy, C.A.; Hofmann, H.; Koehler, K. Tissue losses and metabolic adaptations both contribute to the reduction in resting metabolic rate following weight loss. Int. J. Obes. 2022, 46, 1168–1175. [Google Scholar] [CrossRef]
- Irvine, C.; Taylor, N.F. Progressive resistance exercise improves glycaemic control in people with type 2 diabetes mellitus: A systematic review. Aust. J. Physiother. 2009, 55, 237–246. [Google Scholar] [CrossRef]
- Amaro-Gahete, F.J.; Sanchez-Delgado, G.; Jurado-Fasoli, L.; De-la, O.A.; Castillo, M.J.; Helge, J.W.; Ruiz, J.R. Assessment of maximal fat oxidation during exercise: A systematic review. Scand. J. Med. Sci. Sports 2019, 29, 910–921. [Google Scholar] [CrossRef]
- Chávez-Guevara, I.A.; Urquidez-Romero, R.; Pérez-León, J.A.; González-Rodríguez, E.; Moreno-Brito, V.; Ramos-Jiménez, A. Chronic Effect of Fatmax Training on Body Weight, Fat Mass, and Cardiorespiratory Fitness in Obese Subjects: A Meta-Analysis of Randomized Clinical Trials. Int. J. Environ. Res. Public Health 2020, 17, 7888. [Google Scholar] [CrossRef] [PubMed]
- Physical Activity. Available online: https://www.who.int/news-room/fact-sheets/detail/physical-activity (accessed on 5 October 2024).
- Wackerhage, H.; Schoenfeld, B.J. Personalized, Evidence-Informed Training Plans and Exercise Prescriptions for Performance, Fitness and Health. Sports Med. 2021, 51, 1805–1813. [Google Scholar] [CrossRef] [PubMed]
- Chung, N.; Park, M.Y.; Kim, J.; Park, H.Y.; Hwang, H.; Lee, C.H.; Han, J.S.; So, J.; Park, J.; Lim, K. Non-exercise activity thermogenesis (NEAT): A component of total daily energy expenditure. J. Exerc. Nutr. Biochem. 2018, 22, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Redman, L.M.; Heilbronn, L.K.; Martin, C.K.; Alfonso, A.; Smith, S.R.; Ravussin, E. Effect of calorie restriction with or without exercise on body composition and fat distribution. J. Clin. Endocrinol. Metab. 2007, 92, 865–872. [Google Scholar] [CrossRef]
- Donnelly, J.E.; Honas, J.J.; Smith, B.K.; Mayo, M.S.; Gibson, C.A.; Sullivan, D.K.; Lee, J.; Herrmann, S.D.; Lambourne, K.; Washburn, R.A. Aerobic exercise alone results in clinically significant weight loss for men and women: Midwest exercise trial 2. Obesity 2013, 21, E219–E228. [Google Scholar] [CrossRef]
- Dunn, C.L.; Hannan, P.J.; Jeffery, R.W.; Sherwood, N.E.; Pronk, N.P.; Boyle, R. The comparative and cumulative effects of a dietary restriction and exercise on weight loss. Int. J. Obes. 2006, 30, 112–121. [Google Scholar] [CrossRef]
- Johns, D.J.; Hartmann-Boyce, J.; Jebb, S.A.; Aveyard, P. Diet or exercise interventions vs combined behavioral weight management programs: A systematic review and meta-analysis of direct comparisons. J. Acad. Nutr. Diet. 2014, 114, 1557–1568. [Google Scholar] [CrossRef]
- Olateju, I.V.; Opaleye-Enakhimion, T.; Udeogu, J.E.; Asuquo, J.; Olaleye, K.T.; Osa, E.; Oladunjoye, A.F. A systematic review on the effectiveness of diet and exercise in the management of obesity. Diabetes Metab. Syndr. Clin. Res. Rev. 2023, 17, 102759. [Google Scholar] [CrossRef]
- Elliot, C.A.; Hamlin, M.J. Combined diet and physical activity is better than diet or physical activity alone at improving health outcomes for patients in New Zealand’s primary care intervention. BMC Public Health 2018, 18, 230. [Google Scholar] [CrossRef]
- Foster-Schubert, K.E.; Alfano, C.M.; Duggan, C.R.; Xiao, L.; Campbell, K.L.; Kong, A.; Bain, C.E.; Wang, C.Y.; Blackburn, G.L.; McTiernan, A. Effect of diet and exercise, alone or combined, on weight and body composition in overweight-to-obese postmenopausal women. Obesity 2012, 20, 1628–1638. [Google Scholar] [CrossRef]
- Joseph, G.; Arviv-Eliashiv, R.; Tesler, R. A comparison of diet versus diet + exercise programs for health improvement in middle-aged overweight women. Women’s Health 2020, 16, 1745506520932372. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niezgoda, N.; Chomiuk, T.; Kasiak, P.; Mamcarz, A.; Śliż, D. The Impact of Physical Activity on Weight Loss in Relation to the Pillars of Lifestyle Medicine—A Narrative Review. Nutrients 2025, 17, 1095. https://doi.org/10.3390/nu17061095
Niezgoda N, Chomiuk T, Kasiak P, Mamcarz A, Śliż D. The Impact of Physical Activity on Weight Loss in Relation to the Pillars of Lifestyle Medicine—A Narrative Review. Nutrients. 2025; 17(6):1095. https://doi.org/10.3390/nu17061095
Chicago/Turabian StyleNiezgoda, Natalia, Tomasz Chomiuk, Przemysław Kasiak, Artur Mamcarz, and Daniel Śliż. 2025. "The Impact of Physical Activity on Weight Loss in Relation to the Pillars of Lifestyle Medicine—A Narrative Review" Nutrients 17, no. 6: 1095. https://doi.org/10.3390/nu17061095
APA StyleNiezgoda, N., Chomiuk, T., Kasiak, P., Mamcarz, A., & Śliż, D. (2025). The Impact of Physical Activity on Weight Loss in Relation to the Pillars of Lifestyle Medicine—A Narrative Review. Nutrients, 17(6), 1095. https://doi.org/10.3390/nu17061095